
A Programmer’s Guide to Ethereum and Serpent

Kevin Delmolino
del@terpmail.umd.edu

Mitchell Arnett
marnett@umd.edu

Ahmed Kosba
ahmed.essamk@gmail.com

Andrew Miller
amiller@cs.umd.edu

Elaine Shi
elaine@cs.umd.edu

Contents

1 Introduction 2

2 Ethereum Tools 2
2.1 Acquiring the Virtual Machine . 2
2.2 Installing Pyethereum and Serpent . 3

3 Using Pyethereum Tester 4
3.1 Public and Private Keys . 5
3.2 Testing Contracts with Multiple Parties . 6

4 Language Reference 6
4.1 The log() Function . 6
4.2 Variables . 7

Special Variables . 7
4.3 Control Flow . 8
4.4 Loops . 9
4.5 Arrays . 9
4.6 Strings . 10

Short Strings . 10
Long Strings . 10

4.7 Functions . 11
Special Function Blocks . 11

4.8 Sending Wei . 12
4.9 Persistant Data Structures . 12

Self.storage[] . 13

1

4.10 Hashing . 13
4.11 Random Number Generation . 14
4.12 The Callstack . 14

5 Simple Serpent Contract Example - Namecoin 15

6 Basic Serpent Contract Example - Easy Bank 16

7 Moderate Serpent Contract Example - Bank 18

8 Student Exercise - Mutual Credit System 20

9 Resource Overview 21

1 Introduction

The goal of this document is to teach you everything you need to know about Ethereum in
order to start developing your own Ethereum contracts and decentralized apps. So, what is
Ethereum? Ethereum can be seen as a decentralized platform that uses the network unit
Ether as the fuel to power all contracts on the network. Ethereum is more than a cryptocur-
rency (even though mining is involved), it is a network that enables and powers Ethereum
contracts. So what is an Ethereum contract? Think of it as a program that aims to provide
decentralized services including: voting systems, domain name registries, financial exchanges,
crowdfunding platforms, company governance, self-enforcing contracts and agreements, in-
tellectual property, smart property, and distributed autonomous organizations. Ethereum is
the ubiquitous bitcoin. It uses a similar underlying blockchain technology as bitcoin while
broadening the scope of what it is capable of accomplishing. [4, 1]

2 Ethereum Tools

2.1 Acquiring the Virtual Machine

We have made a virtual machine that contains all of the necessary software. The virtual
machine is running Ubuntu 14.04 LTS, Pyethereum and Serpent 2.0. Pyethereum is the
program that allows for us to interact with the blockchain and test our contracts. We will
be using Pyethereum, but there are also Ethereum implementations in C++ (cpp-ethereum)
and Go (go-ethereum). Serpent 2.0 will allow for us to compile our serpent code into the
stack-based language that is actually executed on the blockchain.

The Virtual Machine has been tested using VMWare Fusion (https://www.vmware.com/
products/fusion) and VirtualBox (https://www.virtualbox.org/), however, it should
work with any VM software that supports VMDK files. The Virtual Machine is available from
https://drive.google.com/file/d/0BzlG8wGYwTrGWlp0LWctYVIxRVU/view?usp=sharing.
The username is ”user” and the password is ”dees”.

2

https://github.com/ethereum/cpp-ethereum
https://github.com/ethereum/go-ethereum
https://www.vmware.com/products/fusion
https://www.vmware.com/products/fusion
https://www.virtualbox.org/
https://drive.google.com/file/d/0BzlG8wGYwTrGWlp0LWctYVIxRVU/view?usp=sharing

2.2 Installing Pyethereum and Serpent

NOTE: This section is not required if the provided virtual machine is used. We
have preinstalled all of the necessary applications to program Ethereum contracts using
Pyethereum and Serpent. This section goes over installing a native copy of Pyethereum
and Serpent on your machine and give a brief overview of what each component does.

This section assumes you are comfortable with the command line and have git installed. If
you need assistance getting git installed on your local machine, please consult http://git-
scm.com/book/en/v2/Getting-Started-Installing-Git.

First, lets install Pyethereum. In order to install Pyethereum, we first need to download
it. Go to a directory you don’t mind files being downloaded into, and run the following
command:

git clone https://github.com/ethereum/pyethereum

This command clones the code currently in the ethereum repository and copies it to your
computer. Next, change into the newly downloaded pyethereum directory and execute the
following command

git branch develop

This will change us into the develop branch. This code is usually stable, and we found
that it has better compatibility with the more modern versions of Serpent. Please note that
later on, this step may not be necessary as the Ethereum codebase becomes more stable, but
with the current rapid development of Ethereum, things are breaking constantly, so it pays
to be on the cutting edge.

Finally, we need to install Pyethereum. Run the following command:

python setup.py install --user

This actually installs Pyethereum on our computer. Note that commands may be different
if you are on a non-Unix-like platform. We recommend running Ethereum on Unix-like
operating systems such as Mac OS X and Linux.

Now, we are going to install serpent. The steps are extremely similar. Go to the directory
that you downloaded ethereum into and run the following commands:

git clone https://github.com/ethereum/serpent

cd serpent

git branch develop

python setup.py install --user

Now that Pyethereum and Serpent are installed, we should test that they are working.
Go to the pyethereum/tests directory and run the following command:

python pytest -m test_contracts.py

If the test states that it was successful, then everything is installed correctly and you are
ready to continue with this guide!

3

http://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://git-scm.com/book/en/v2/Getting-Started-Installing-Git

3 Using Pyethereum Tester

In order to test our smart contacts, we will be using the Pyethereum Tester. This tool allows
for us to test our smart contracts without interacting with the blockchain itself. If we were
to test on a blockchain - even a private one - it would take a lot of time to mine enough
blocks to get our contract in the chain and acquire enough ether to run it. It would waste a
lot of time. Therefore, we use the tester.

Below is a simple contract that will be used as an example to show how to set up a
contract. [5, 8]

import serpent

from pyethereum import tester, utils, abi

serpent_code=’’’

def main(a):

return (a*2)

’’’

evm_code = serpent.compile(serpent_code)

translator = abi.ContractTranslator(

serpent.mk_full_signature(serpent_code))

data = translator.encode(’main’, [2])

s = tester.state()

c = s.evm(evm_code)

o = translator.decode(’main’, s.send(tester.k0, c, 0, data))

print(o)

Now what is this code actually doing? Let’s break it down.

import serpent

from pyethereum import tester, utils, abi

This code imports all of the assets we need to run the tester. We need serpent to compile
our contract, we need pyethereum tester to run the tests, we need ABI to encode and decode
the transactions that are put on the blockchain, and we need utils for a few minor operations.

serpent_code=’’’

def main(a):

return (a*2)

’’’

This is our actual serpent code. We will discuss Serpent’s syntax later in the guide, but
this code will return a value that is double the parameter a. Please note that this is the only
non-python code in this section.

4

evm_code = serpent.compile(serpent_code)

translator = abi.ContractTranslator(

serpent.mk_full_signature(serpent_code))

Here, we finally get ready to run our actual code. The evm code variable holds our
compiled code. This is the byte code that we will actually ”run” using ethereum. The
translator variable holds the code that will allow for us to encode and decode the code that
will be run on the blockchain.

data = translator.encode(’main’, [2])

s = tester.state()

The data variable holds our encoded variables. We are going to call the main() function,
and we are going to send one parameter to it, the number 2. We encode using the translator.
Next, we are going to create a state (essentially a fake blockchain). This state is what we
will run our contract on.

c = s.evm(evm_code)

o = translator.decode(’main’, s.send(tester.k0, c, 0, data))

The c variable holds our contract. The evm() function puts our contract onto our fake
blockchain. Finally, we run a transaction. We use the send() function to execute the contract
(whose address is stored in c). The entity sending the transaction is tester.k0 who is a fake
private key used for testing. It signs and ”authorizes” the transaction. We are sending no
ether into the contract, so the third parameter is a zero. Finally, we send our encoded data.

o = translator.decode(’main’, s.send(tester.k0, c, 0, data))

print(o)

Finally here, we will use our translator to decode out what the function returned. We
will print that using the standard python print() function.

The code can be executed using the command ”python file name.py”. When executed,
this code will output double the input parameter. So this code will output the number 4.
[5, 8]

3.1 Public and Private Keys

All cryptocurrencies are based on some form of public key encryption. What does this mean?
It means that messages can be encrypted with one key (the private key) and unencrypted
with the public key. The Pyethereum tester provides us with fake addresses we can use for
testing (tester.k0 - tester.k9). However, these are private addresses that we are using to sign
transactions. This tells the world that we have authorized this transaction to exist. Others
can confirm this by using our public key.

Now, lets say we want someone to be able to submit public keys to a contract as a
parameter. How do we calculate the public keys from the private tester keys we have? There
is a function in pyethereum’s utils that allows for us to do this:

5

public_k1 = utils.privtoaddr(tester.k1)

data = translator.encode(’transfer’, [500, public_k1])

We don’t want to send our private key to a contract, because then others could sign trans-
actions as us and take all of our ether! The code above uses the utils.privtoaddr(privatekey)
function, which returns the public key associated with privatekey. We can then send the
public key with the transaction, as we do in line two.

3.2 Testing Contracts with Multiple Parties

Let’s say we want to write a smart contract between two people, we need to make sure
they are able to identify as themselves. In ethereum, every user has one (or probably more)
addresses that they are associated with. Due to the nature of public key encryption, the
public key is what identifies them on the Ethereum network, and the private key is what
they use to sign and authorize transactions. When testing a contract, we don’t want to go
through the hassle of making all of these keys, so we can use tester private keys. We used one
of these in the previous section (tester.k0). However, there is of course more than just one
tester address. We can also use tester.k1, tester.k2 and so on, all the way up to tester.k9.
Therefore, it is possible to test a contract with up to 9 parties using this method.

4 Language Reference

There are several different languages used to program smart contracts for Ethereum. If you
are familiar with C or Java, Solidity is the most similar language. If you really like Lisp or
functional languages, LLL is probably the most functional language. The Mutant language
is most similar to C. We will be using Serpent 2.0 (we will just refer to this as Serpent, since
Serpent 1.0 is deprecated) in this reference, which is designed to be very similar to Python.
Even if you are not very familiar with Python, Serpent is very easy to pickup. Note that
all code after this point is Serpent, not Python. In order to test it, it must be put in the
serpentcode variable mentioned previously. Another thing to note is that many, if not all, of
the built-in fuctions you may come accross in other documentation for Serpent 1.0 will work
in 2.0.

4.1 The log() Function

The log() function allows for easy debugging. If X is defined as the variable you want
output, log(X) will output the contents of the variable. We will use this function several
times throughout this document. Here is an example of it in use:

def main(a):

log(a)

return(a)

6

This code will output the variable stored in a. Since we passed in a three, it should be a
three. Below is the output of the log function:

(’LOG’, ’c305c901078781c232a2a521c2af7980f8385ee9’, [3L], [])

The part that is important to us is the third piece of data stored in the tupple, specifically,
the [3L]. This tells us that the value in the variable is a three. Unfortunately, the rest of
this function is not well documented currently.

4.2 Variables

Assigning variables in Serpent is very easy. Simply set the variable equal to whatever you
would like the variable to equal. Here’s a few examples:

a = 5

b = 10

c = 7

a = b

If we printed out the variables a, b and c, we would see 10, 10 and 7, respectively.

Special Variables Serpent creates several special variables that reference certain pieces of
data or pieces of the blockchain that may be important for your code. We have reproduced
the table from the official Serpent 2.0 wiki tutorial (and reworded portions) for your reference
below. [7]

7

Variable Usage
tx.origin Stores the address of the address the transaction

was sent from.
tx.gasprice Stores the cost in gas of the current transaction.
tx.gas Stores the gas remaining in this transaction.
msg.sender Stores the address of the person sending the infor-

mation being processed to the contract
msg.value Stores the amount of ether (measured in wei) that

was sent with the message
self The address of the current contract
self.balance The current amount of ether that the contract con-

trols
x.balance Where x is any address. The amount of ether that

address holds
block.coinbase Stores the address of the miner
block.timestamp Stores the timestamp of the current block
block.prevhash Stores the hash of the previous block on the

blockchain
block.difficulty Stores the difficulty of the current block
block.number Stores the numeric identifier of the current block
block.gaslimit Stores the gas limit of the current block

Wei is the smallest unit of ether (the currency used in ethereum). Any time ether is
referenced in a contract, it is in terms of wei.

4.3 Control Flow

In Serpent, we mostly will use if..elif..else statements to control our programs. For example:

if a == b:

a = a + 5

b = b - 5

c = 0

return(c)

elif a == c:

c = 5

return(c)

else:

return(c)

Tabs are extremely important in Serpent. Anything that is inline with the tabbed section
after the if statement will be run if that statement evaluates to true. Same with the elif and

8

else statements. This will also apply to functions and loops when we define those later on.
[7]

Important to also note is the not modifier. For example, in the following code:

if not (a == b):

return(c)

The code in the if statement will not be run if a is equal to b. It will only run if they are
different. The not modifier is very similar to the ! modifier in Java and most other languages.
[7]

4.4 Loops

Serpent supports while loops, which are used like so:

somenum = 10

while somenum > 1:

log(somenum)

somenum = somenum - 1

This code will log each number starting at 10, decrementing and outputting until it gets
to 1. [6]

4.5 Arrays

Arrays are very simple in serpent. A simple example is below:

def main():

arr1 = array(1024)

arr1[0] = 10

arr1[129] = 40

return(arr1[129])

This code above simply creates an array of size 1024, assigns 10 to the zero-th index and
assigns 40 to index 129. It then returns the value at index 129 in the array [7, 6].

Functions that can be used with Arrays include:

• slice(arr, items=s, items=e) where arr is an array, s is the start address and e is the
end address. This function splits out the portion of the array between s and e, where
s <= e. That portion of the array is returned.

• len(arr) returns the length of the arr array.

Returning arrays is also possible [7]. In order to return an array, append : arr to the end
of the array in the return statement. For example:

9

def main():

arr1 = array(10)

arr1[0] = 10

arr1[5] = 40

return(arr1:arr)

This will return an array where the values were initialized to zero and address 0 and 5
will be initialized to 10 and 40, respectively [7].

4.6 Strings

Serpent uses two different types of strings. The first is called short strings. These are treated
like a number by Serpent and can be manipulated as such. Long strings are treated like an
array by serpent, and are treated as such. Long strings are very similar to strings in C, for
example. As a contract programmer, we must make sure we know which variables are short
strings and which variables are long strings, since we will need to treat these differently. [7]

Short Strings Short strings are very easy to work with since they are just treated as
numbers. Let’s declare a couple new short strings:

str1 = "string"

str2 = "string"

str3 = "string3"

Very simple to do. Comparing two short strings is also really easy:

return (str1 == str2)

return (str1 == str3)

The first return statement will output 1 which symbolizes true while the second statement
will output 0 which symbolizes false. [7]

Long Strings Long strings are implemented similarly to how they are in C, where the
string is just an array of characters. There are several commands that are used to work with
long strings:

• In order to define a new long string, do the following:

arbitrary_string = text("This is my string")

• If you would like to change a specific character of the string, do the following:

arbitrary_string = text("This is my string")

setch(arbitrary_string, 5, "Y")

10

In the setch() function, we are changing the fifth index of the string arbitrary string
to ′Y ′.

• If you would like to have the ASCII value of a certain index returned, do the follow-
ing:

arbitrary_string = text("This is my string")

getch(arbitrary_string, 5)

This will retrieve the ASCII value at the fifth index in arbitrary string.

• All functions that work on arrays will also work on long strings.

[7, 6]

4.7 Functions

Functions work in Ethereum very similarly to how they work in other languages. You can
probably infer how they are used from some of the previous examples. Here is an example
with no parameters:

def main():

#Some operations

return(0)

And here is an example with three parameters:

def main(a,b,c):

#Some operations

return(0)

Defining functions is very simple and makes code a lot easier to read and write [7].
But how do we call these functions from within a contract? We must call them using
self.function name(params). Any time we reference a function within the contract, we
must call it from self (a reference to the current contract). Note that any function can be
called directly by a user. For example, lets say we have a function A and a function B. If B
has the logic that sends ether and A just does the check, and A calls B to send the ether,
an aversary could simply call funcion B and get the ether without ever going through the
checks. We can fix this by not putting that type of logic in seperate functions.

Special Function Blocks There are three different special function blocks. These are
used to declare functions that will always execute before certain other functions.

First, there is init. The init function will be run once when the contract is created. It is
good for declaring variables before they are used in other functions.

Next, there is shared. The shared function is executed before init and any other func-
tions.

Finally, there is the any function. The any function is executed before any other function
except the init function [7].

11

4.8 Sending Wei

Contracts not only can have ether (currency) sent to them (via msg.value), but they can also
send ether themselves. msg.value holds the amount of wei that was sent with the contract.

In order to send wei to another user, we use the send function. For example, lets say I
wanted to send 50 wei to the user’s address stored in x, I would use the code below.

send(x, 50)

This would then send 50 wei from this contract’s pool of ether (the ether that other
users/contracts have sent to it), to the address stored in x.

How do we get a user’s address? The easiest way is to store it when that user sends
a command to the contract. The user’s address will be stored in msg.sender. If we save
that address in persistent storage, we can access it later when needed [7] (we will go over
persistent storage in the next section).

One thing to note is that the send function will send all of the remaining gas in the
contract to the destination address, minus 25. if we want to define how much gas to send,
we specify it as the first parameter. If we wanted to send only 100 gas, we would send the
following:

send(100,x, 50)

4.9 Persistant Data Structures

Persistant data structures can be declared using the data declaration. This allows for the
declaration of arrays and tupples. For example, the following code will declare a two dimen-
sional array:

data twoDimArray[][]

Very simple, the next example will declare an array of tupples. The tupples contain two
items each - item1 and item2.

data arrayWithTupples[](item1, item2)

These variables will be persistent throughout the contract’s execution (In any command/-
function called by any user to the same contract instance). Please note that data should
not be declared inside of a function, rather should be at the top of the contract before any
function definitions.

Now, lets say I wanted to access the data in these structures. How would I do that? Its
simple, the arrays use standard array syntax and tupples can be accessed using a period and
then the name of the value we want to access. Lets say, for example I wanted to access the
item1 value from the arrayWithTupples strucutre from the second array address, I would
do that like so:

12

x = self.arrayWithTupples[2].item1

And that will put the item1 value stored in the self.arrayWithTupples array into x.
[7] Note that we will need the self declaration so the contract knows we are referencing the
arrayWithTupples structure in this contract.

Self.storage[] Ethereum also supplies a persistent key-value store called self.storage[].
This is mostly used in older contracts and also is used in our example below for simplicity.
Essentially, put the key in the brackets and set it equal to the value you want. An example
is below when I set the value y to the key x.

self.storage["x"] = "y"

Now whenever self.storage[”x”] is called, it will return y. For simple storage, self.storage[]
is useful, but for larger contracts, we reccomend the use of data (unless you need a key value
storage, of course). [7, 6]

4.10 Hashing

Serpent allows for hashing using three different hash functions - SHA3, SHA-256 and RIPEMD-
160. The function takes the parameters a and s where a is the array of elements to be hashed
and s is the size of the array to be hashed. For example, we are going to hash the array
[4,5,5,11,1] using SHA-256 and return the value below. [7]

def main(a):

bleh = array(5)

bleh[0] = 4

bleh[1] = 5

bleh[2] = 5

bleh[3] = 11

bleh[4] = 1

return(sha256(bleh, items=5))

The output is [9295822402837589518229945753156341143806448999392516673354862354350599884701L]
The function definitions are:

• x = sha3(a, size = s) for SHA3

• x = sha256(a, size = s) for SHA-256

• x = ripemd160(a, size = s) for RIPEMD-160

Please note that any inputs to the hash function can be seen by anyone looking at the
block chain. Therefore, when keeping secrets between two parties, the hash values should
be computed off of the blockchain then only the hash value put on the block chain. When
we want to decode the secret in the hash, we should then send the nonce and the text to
the blockchain, rehash it, and compare them with the prestored hash value. There is more
detail about this process in the section ”Failing to Use Cryptography”.

13

4.11 Random Number Generation

In order to do random number generation, you must use one of the previous blocks as a
seed. Then, use modulus to ensure that the random number is in the necessary range. In
the following examples, we will do just this.

In this example, we will the function will take a parameter a. It will generate a number
between 0 and a (including zero).

def main(a):

raw = block.prevhash

if raw < 0:

raw = 0 - raw

return(raw%a)

Note that we must make sure that the raw number is positive. [3]
If we wanted the lowest number to be a number other than zero, we must add that

number to the random number generated.
Now, when we are referencing previous blocks, we need to make sure there are blocks

before our current block that we can reference. On the actual ethereum blockchain, this
would not be a big deal since once we build one block on the genesis block, we will always
have a previous block. When testing, however, we will need to create more blocks. This will
also give us more ether if our tester runs out of ether. The code to mine a block is below:

s.mine(n=1,coinbase=tester.a0)

where n refers to the number of blocks to be mined and coinbase refers to the tester
address that will ”do” the mining. Note that this is python code, and the s variable references
the current state of the ”blockchain”. You can not mine from inside of a Serpent contract.
This function must be used after we have create the state [8]

4.12 The Callstack

The maximum callstack in Ethereum is of size 1024. An attacker could call a contract with
an already existing callstack. If a send function (or any function) is called while already at
the maximum callstack size, it will create the exception, but the execution of the contract
will continue. Therefore, they could cause certain portions of the contract to be skipped.
To solve this, put the following code at the beginning of your functions to ensure that an
attacker can not try to skip portions of the contact:

if self.test_callstack() != 1: return(-1)

Then create the function testcallstack():

def test_callstack(): return(1)

This will add a function to the callstack. If an attacker tries to break the callstack by 1,
it will cause the contract to not execute.

14

5 Simple Serpent Contract Example - Namecoin

Now that we understand the basics of Serpent’s syntax, lets do a couple of examples to show
how all of these pieces work together. First, we will make a contract that is normally called
”namecoin”. Essentially, it allow for us to create a basic key-value store. A key value store is
a data storage structure that allows for us to associate a key with a value, and look up values
based on their keys. This contract will have two different functions to call. The first is the
key-value registration function and the second is a function that retrieves a value associated
with a provided key.

The first function we will look at is register(key, value), which takes a key and value
and associates them with each other:

def register(key, value):

if not self.storage[key]:

self.storage[key] = value

return(1)

else:

return(-1)

Lets break this down. This contract essentially consists of an if-else statement. First, we
check to see if the key-value is already in storage. We can use the not statement to check if
nothing is stored. So if nothing is stored, we will store the value in the persistant key-value
store self.storage[]. However, what if the key is already taken? We can’t just overwrite
someone else’s key! So, we just return -1.

Now that we know how to store values, we need to be able to retrieve them. For that we
use the get(key) function:

def get(key):

if not self.storage[key]:

return(-1)

else:

return(self.storage[key])

This function will simply return the value associated with the key. This function is
very similar to our storage function. However, this time we don’t store anything. If there
is nothing associated with the key, we return -1. Otherwise, we return the value that is
associated with the key.

The complete code for namecoin is below:

def register(key, value):

if not self.storage[key]:

self.storage[key] = value

return(1)

else:

return(-1)

15

def get(key):

if not self.storage[key]:

return(-1)

else:

return(self.storage[key])

6 Basic Serpent Contract Example - Easy Bank

Let’s take a quick look at an Easy Bank example from KenK’s first tutorial. A contract like
this allows for a fully transparent bank to function with an open ledger that can be audited
by any node on the network (an ideal feature for ensuring banks aren’t laundering money or
lending to enemies of the state.)

Before looking at the code for the contract, let’s define our ”easy bank” further. Our
bank will be using its own contractual currency and not Ether (which we will discuss and
implement in a later contract example). So, creating the currency is done within our contract.
Now that we know what our bank does (create and send a currency that is exclusive to the
contract), let’s define what the contract must be capable of doing:

1. Setup at least one account with an initial balance of our contract-exclusive currency

2. Take funds from one account and send our currency to another account

def init():

self.storage[msg.sender] = 10000

self.storage["Taylor"] = 0

def send_currency_to(value):

to = "Taylor"

from = msg.sender

amount = value

if self.storage[from] >= amount:

self.storage[from] = self.storage[from] - amount

self.storage[to] = self.storage[to] + amount

So what’s going on in this contract? Our contract is divided into two methods, let’s take
a look at the first method:

def init():

self.storage[msg.sender] = 10000

self.storage["Taylor"] = 0

The init function in serpent is very similar to init in python, which is very similar to
common constructors in Java. The init function runs once and only once at contract creation.
In our contract the init block runs and instantiates two objects in contract storage.

16

Our init method, from a general perspective, intializes one account with a balance of
10,000U (this will be how we donote our contract-exclusive currency) and another account
with a balance of 0U. In our Ethereum contract, storage is handled with key value pairs.
Every contract has their own storage which is accessed by calling self.storage[key]. So in
our example the easy bank’s contract storage now has a value of 10,000U at key msg.sender
(we’ll identify what this is in a moment) and at the key ”Taylor” there is a value of 0U.

Awesome. So who is msg.sender? msg.sender is the person who is sending the specific
message to the contract - which in this case is us. msg.sender is unique and assigned and
verified by the network. We now have a heightened understanding of init, lets look at our
send method.

def send_currency_to(value):

to = "Taylor"

from = msg.sender

amount = value

if self.storage[from] >= amount:

self.storage[from] = self.storage[from] - amount

self.storage[to] = self.storage[to] + amount

Let’s take a look at this one piece at a time. The first three lines are setting up variables
that we will use in the last three lines. The first line is establishing who we are sending
our funds to - and just as we setup in init, we are sending our funds to our friend Taylor.
from is being set to the address that the funds are from, which is us - msg.sender. Finally,
the value variable is set to the parameter passed to our send currency to function. When
the contract is invoked a parameter called value needs to be provided in order for it to run
properly. This parameter is the value that is going to be sent to Taylor.

Okay, now that we understand what variables we are working with let’s dive into the
last portion of our contract. We want to check that the balance for the bank account in
the contract’s storage at from (remember that you are who this is from!) is greater than
or equal to the amount we are attempting to send - obviously we do not want our contract
sending money that the sender does not have.

If the account balance passes our check we subtract the amount being sent from the sender
balance:self.storage[from] = self.storage[from] − value. We then add to the balance of
the account receiving the currency:self.storage[to] = self.storage[to] + value.

Great! We have officially worked our way through a very basic contract example! Now
our friend Taylor has 1000U! Try to think of ways that you could improve this contract, here
are some things to consider:

• What happens when the value exceeds the amount setup in the from account?

• What happens when the value is negative?

• What happens when value isn’t a number?

[2]

17

7 Moderate Serpent Contract Example - Bank

Let’s take a quick look at a smart contract that impelements a bank. A contract like this
allows for a fully transparent bank to function with an open ledger that can be audited by
any node on the network (an ideal feature for ensuring banks aren’t laundering money or
lending to enemies of the state.)

Before looking at the code for the contract, let’s define our bank further. Our bank
will allow users to store Ether in units of Wei. It must be capable of the following actions
allowing users to:

1. Deposit money into their account.

2. Transfer money from their account to another account.

3. Withdraw their money.

4. Check their balance.

def deposit():

if not self.storage[msg.sender]:

self.storage[msg.sender] = 0

self.storage[msg.sender] += msg.value

return(1)

def withdraw(amount):

if self.storage[msg.sender] < amount:

return(-1)

else:

self.storage[msg.sender] -= amount

send(0, msg.sender, amount)

return(1)

def transfer(amount, destination):

if self.storage[msg.sender] < amount:

return(-1)

else:

if not self.storage[destination]:

self.storage[destination] = 0

self.storage[msg.sender] -= amount

self.storage[destination] += amount

return(1)

def balance():

if not self.storage[msg.sender]:

return(-1)

18

else:

return(self.storage[msg.sender])

So what’s going on in this contract? Our contract is divided into four methods, let’s take
a look at the first method:

def deposit():

if not self.storage[msg.sender]:

self.storage[msg.sender] = 0

self.storage[msg.sender] += msg.value

return(1)

This method is a relatively simple method. It allows for a user to deposit funds into their
account. Similar to our Namecoin example, we are using self.storage[] so we can associate
the address of the person who owns the account with the value of the ether they are storing
in their account. We do this on the third and fourth lines, where we use msg.sender as
the key. msg.sender stores the address of whomever sent the command. The other built-in
variable reference we use is msg.value. This stores the amount of ether (measured in wei)
that is sent with the transaction. When ether is sent with a command to a contract, it is
stored by the contract. Therefore, we just need to account for how much each person owes.
This is stored as the value we are associating with the key in self.storage[].

This method first checks if the person already has an account. If they don’t, we make
one for them and give it a zero balance. Next, it adds the value sent with the deposit to the
person’s account (stored in self.storage[]). Then, it returns 1. Since something will always
be deposited, there isn’t really an error condition that can occur (where we may return
something else).

def withdraw(amount):

if self.storage[msg.sender] < amount:

return(-1)

else:

self.storage[msg.sender] -= amount

send(0, msg.sender, amount)

return(1)

This method here is doing essentially the opposite of the of the deposit method. Here
we are taking amount ether out of our account and sending it to ourself. First, we check to
make sure they have enough to withdraw. If we don’t, we return -1. We could technically
return anything, but in this guide, we use negative numbers to symbolize that there is an
error. If they do have enough wei in there account, we simply subtract that from that from
their account (still using msg.sender as a key). However, how do we send that wei back
to the account owner? Simple! We simply use the send function. The send function takes
three parameters. First, it takes the amount of gas we are sending with the contract. Since
we are going to assume that this is being refunded to a user and not another contract, we

19

don’t need to send any gas with it. The next parameter is the address that we are sending
this money to. Since msg.sender own the account, we are going to send this ether back
to msg.sender. Next, since we have shown that there is at least the requested amount in
the account, we will send that amount to them. Finally, we will return 1 to show that the
operation completed successfully.

Finally, lets look at our transfer method:

def transfer(amount, destination):

if self.storage[msg.sender] < amount:

return(-1)

else:

if not self.storage[destination]:

self.storage[destination] = 0

self.storage[msg.sender] -= amount

self.storage[destination] += amount

return(1)

This method allows for someone to move ether from one account to another. It works
very similarly to the deposit and withdraw methods we have already looked at. The only
difference with this one is that one of the parameters is called ”destination”. This parameter
takes in the public address of the person’s account we are sending the money to. Remember
that we use the public address as the key in our self.storage[] key-value store.

In this method, we first check to make sure there is enough money in the account. If
there is, we check if the destination account exists. If it doesn’t, we make one. Finally, we
transfer the funds between the accounts.

I will leave it as an exercise to you to see how the balance function works.

8 Student Exercise - Mutual Credit System

Now that you have looked at a few examples of ethereum contracts, it’s time for you to try
it for yourself. We are going to continue with the idea of a banking contract, but we are
going to change it up. We want you set up what we are a calling a ”Mutual Credit System”.
In this system, everyone will start off with a balance of zero. When you make a transaction,
you pay using debt, so your balance becomes negative. The person you pay gains credit, so
his balance becomes positive. After all of the transactions, people will have varying amounts
of money, some positive, some negative. We are limiting the amount of debt one is allowed
to spend to 1000 credits. Note that we will be using our own currency, not ether.

To complete this task you will need to use self.storage[] for persistent storage. You will
need to create two methods. The first ”transfer” which accepts a public key and a value.
This will transfer the credits from the msg.sender’s account to the public key’s account
(return 0). If the account that is sending the credits will exceed 1000 credits of debt, the
transaction should be declined (return -1).

20

You will also need to implement a balance method that takes in the public key the sender
wants the balance of, and returns the balance of that public key.

For more information on Mutual Credit Systems, visit http://p2pfoundation.net/

Mutual_Credit.

9 Resource Overview

This guide is provided as a ”one stop shop” for a quick way to learn how to program
smart contracts with ethereum. However, the platform is always changing and it would
be impossible for this guide to cover everything. We have provided some links below that
provide some additional insight into programming ethereum contracts. All of these sources
were actually used in creating this guide.

• Ethereum Wiki - https://github.com/ethereum/wiki/wiki - This source has some
fantastic tutorials and reference documentation about the underlying systems that
power Ethereum. This should be your first stop when you have problems with Ethereum.

• Serpent Tutorial - https://github.com/ethereum/wiki/wiki/Serpent - This is the
official serpent tutorial that is on the Ethereum Wiki. It gives a good, brief overview
of many of the most used components of serpent and goes over basic testing.

• KenK’s Tutorials - Most of these tutorials use old versions of Serpent, but should be
updated soon. These give a great overview of some of Ethereum’s more advanced
features. Note that these tutorials use cpp-ethereum and not pyethereum.

– Part 1: http://forum.ethereum.org/discussion/1634/tutorial-1-your-first-
contract

– Part 2: http://forum.ethereum.org/discussion/1635/tutorial-2-rainbow-
coin

– Part 3: http://forum.ethereum.org/discussion/1636/tutorial-3-introduction-
to-the-javascript-api

References

[1] V. Buterin. Ethereum white paper. https://www.ethereum.org/pdfs/

EthereumWhitePaper.pdf, 2014.

[2] KenK. Kenk’s first contract tutorial. http://forum.ethereum.org/discussion/1634/
tutorial-1-your-first-contract”, 2014.

[3] PeterBorah. ethereum-powerball. https://github.com/PeterBorah/ethereum-

powerball/tree/master/contracts, 2014.

21

http://p2pfoundation.net/Mutual_Credit
http://p2pfoundation.net/Mutual_Credit
https://github.com/ethereum/wiki/wiki
https://github.com/ethereum/wiki/wiki/Serpent
http://forum.ethereum.org/discussion/1634/tutorial-1-your-first-contract
http://forum.ethereum.org/discussion/1634/tutorial-1-your-first-contract
http://forum.ethereum.org/discussion/1635/tutorial-2-rainbow-coin
http://forum.ethereum.org/discussion/1635/tutorial-2-rainbow-coin
http://forum.ethereum.org/discussion/1636/tutorial-3-introduction-to-the-javascript-api
http://forum.ethereum.org/discussion/1636/tutorial-3-introduction-to-the-javascript-api
https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf
https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf
http://forum.ethereum.org/discussion/1634/tutorial-1-your-first-contract
http://forum.ethereum.org/discussion/1634/tutorial-1-your-first-contract
https://github.com/PeterBorah/ethereum-powerball/tree/master/contracts
https://github.com/PeterBorah/ethereum-powerball/tree/master/contracts

[4] Elaine Shi and Andrew Miller. Undergraduate ethereum lab at mary-
land and insights gained. https://docs.google.com/presentation/d/1esw_

lizWG06zrWaOQKcbwrySM4K9KzmRD3rtBUx0zEw/edit?usp=sharing”, 2015.

[5] Pyethereum team. pyethereum/tests/test contracts.py. https://github.com/

ethereum/pyethereum/blob/develop/tests/test_contracts.py, 2015.

[6] Ethereum Wiki. Serpent 1.0 (old). https://github.com/ethereum/wiki/wiki/

Serpent-1.0-(old), 2015.

[7] Etheruem Wiki. Serpent. https://github.com/ethereum/wiki/wiki/Serpent, 2015.

[8] Pyethereum Wiki. Using pyethereum.tester. https://github.com/ethereum/

pyethereum/wiki/Using-pyethereum.tester, 2014.

22

https://docs.google.com/presentation/d/1esw_lizWG06zrWaOQKcbwrySM4K9KzmRD3rtBUx0zEw/edit?usp=sharing
https://docs.google.com/presentation/d/1esw_lizWG06zrWaOQKcbwrySM4K9KzmRD3rtBUx0zEw/edit?usp=sharing
https://github.com/ethereum/pyethereum/blob/develop/tests/test_contracts.py
https://github.com/ethereum/pyethereum/blob/develop/tests/test_contracts.py
https://github.com/ethereum/wiki/wiki/Serpent-1.0-(old)
https://github.com/ethereum/wiki/wiki/Serpent-1.0-(old)
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/ethereum/pyethereum/wiki/Using-pyethereum.tester
https://github.com/ethereum/pyethereum/wiki/Using-pyethereum.tester

	Introduction
	Ethereum Tools
	Acquiring the Virtual Machine
	Installing Pyethereum and Serpent

	Using Pyethereum Tester
	Public and Private Keys
	Testing Contracts with Multiple Parties

	Language Reference
	The log() Function
	Variables
	Special Variables

	Control Flow
	Loops
	Arrays
	Strings
	Short Strings
	Long Strings

	Functions
	Special Function Blocks

	Sending Wei
	Persistant Data Structures
	Self.storage[]

	Hashing
	Random Number Generation
	The Callstack

	Simple Serpent Contract Example - Namecoin
	Basic Serpent Contract Example - Easy Bank
	Moderate Serpent Contract Example - Bank
	Student Exercise - Mutual Credit System
	Resource Overview

