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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 41, Number 2, June 1976 

THE INFINITE INJURY PRIORITY METHOD1 

ROBERT I. SOARE 

One of the most important and distinctive tools in recursion theory has been the 
priority method whereby a recursively enumerable (r.e.) set A is constructed by 
stages to satisfy a sequence of conditions {R,},ncw called requirements. If n < m, 
requirement R, is given priority over Rm and action taken for Rm at some stage s 
may at a later stage t > s be undone for the sake of R, thereby injuring Rm at stage t. 
The first priority method was invented by Friedberg [2] and Muchnik [11] to solve 
Post's problem and is characterized by the fact that each requirement is injured 
at most finitely often. 

Shoenfield [20, Lemma 1], and then independently Sacks [17] and Yates [25] 
invented a much more powerful method in which a requirement may be injured 
infinitely often, and the method was applied and refined by Sacks [15], [16], [17], 
[18], [19] and Yates [25], [26] to obtain many deep results on r.e. sets and their 
degrees. In spite of numerous simplifications and variations this infinite injury 
method has never been as well understood as the finite injury method because of 
its apparently greater complexity. 

The purpose of this paper is to reduce the Sacks method to two easily understood 
lemmas whose proofs are very similar to the finite injury case. Using these lemmas 
we can derive all the results of Sacks on r.e. degrees, and some by Yates and 
Robinson as well, in a manner accessible to the nonspecialist. The heart of the 
method is an ingenious observation of Lachlan [7] which is combined with a further 
simplification of our own. 

The reader need have no prior knowledge of priority arguments for in ?1 we 
review the finite injury method using a version invented by Sacks for his Splitting 
Theorem [15]. In ?2 we discuss the two principal obstacles in extending the strategy 
to the infinite injury case. We show how the obvious and well-known solution to 
the first obstacle has automatically solved the second and more fundamental one. 
We then prove the two main lemmas upon which all of the theorems depend, and 
from these we prove the Thickness Lemma of Shoenfield [21, p. 83]. 

In ?3 we apply the method to derive the Yates Index Set Theorem, and results of 
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Sacks on interpolation, upper bounds for ascending sequences of r.e. degrees, in- 
complete high degrees, and incomplete maximal sets. We give the Sacks Jump 
Theorem in ?4, and the Sacks Density Theorem and related results in ??5, 6. There are 
several other types of "infinite-injury" constructions which we do not discuss here, 
such as the minimal pair constructions of Yates [24] and Lachlan [3], the Yates 
Theorem [1] on r.e. degrees which cannot be "joined up" to 0', and the method of 
generating automorphisms of the lattice of recursively enumerable sets [22]. These 
and other topics will be treated in our forthcoming monograph [23]. 

When discussing a complex theorem informally a recursion theorist never 
presents the complete proof at once but explains the basic strategy for each 
component separately and then shows how the various strategies may be combined. 
As an aid to the nonspecialist we have followed this style even at the cost of some 
repetition. 

We assume familiarity with r.e. sets and relative recursiveness [21, Chapters 4 
and 5] or [14, Chapters 5 and 9]. Let (De,s(X; y) be the result, if any, after perform- 
ing s steps in the eth Turing reduction with oracle X and input y. Let be = 
U{Des: S - W}. We identify sets A (- w with their characteristic functions and let 
A[n] denote the restriction of A to arguments < n. Let A c* B denote that A - B 
is finite and A =* B denote that A c* B and B '* A. Let deg(A) be the (Turing) 
degree of A. Further unexplained terminology or notation can be found in Rogers 
[14]. 

?1. The finite injury priority method. 
1.1. The Sacks strategy of preserving agreements. We illustrate the finite injury 

priority method by proving the Friedberg-Muchnik theorem using a variation of 
Sacks which is just as easy as the standard method and is much more powerful. 
In the constructions which we shall consider the requirements {Re}eeo can be divided 
into the negative requirements Ne = R2e which attempt to keep elements out of the 
r.e. set A being constructed, and positive requirements Pe = R2e+ 1 which attempt to 
put elements into A. The negative requirement Ne will always be of the form 
C =A 'De(A), where C <T 0' is a fixed set (usually r.e.), so that the negative require- 
ments together assert C AT A. Sacks ingeniously observed that the requirement Ne 
can be met by attempting to preserve agreement between CQ(x) and DeJs(As; x) 
contrary to intuition. Sacks originally invented the technique to prove his splitting 
theorem [15, Theorem 1]. This surprisingly powerful strategy can be used [10, 
Theorem 2.2] to obtain such unexpected corollaries as Lachlan's remarkable 
characterization of hh-simple sets [4, Theorem 3]. An r.e. set A is simple if A is 
infinite but contains no infinite r.e. set. 

THEOREM 1.1 (FRIEDBERG-MUCHNIK). For every nonrecursive r.e. set C there 
is a simple set A such that C AT A. 

PROOF. It clearly suffices to construct A to be coinfinite and to satisfy, for all e, 
the requirements: 

Ne: C =# De(A), Pe: We infinite => We rl A : 0. 

Let {C8},,,. be a recursive enumeration of C. Define AO = 0. Given A, define the 
following three recursive functions whose roles are obvious from their names: 
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(use function) u(e, x, s) = min{z: De,s(As[z]; x) defined} if z exists, 
= 0 otherwise. 

(length function) l(e, s) = max{x: (Vy < x)[CQ(y) = (De"s(As; y)]}. 
(restraint function) r(e, s) = max{u(e, x, s): x < l(e, s)}. 
For each e < s, if W,8 n A, = 0 and 

(1.1) (3X)[XE We,s & x > 2e & (Vi < e)[x > r(i, s)]], 

then enumerate the least such x in As+ +. Define A = UA,. 
(Intuitively, u(e, x, s) is the maximum element used in the above computation, 

and the elements x < r(e, s) are restrained from A,+1 by requirement Ne in order 
to preserve the length of agreement measured by l(e, s).) The negative requirement 
Ne is injured at stage s + 1 by element x if x < r(e, s) and x E A+,- A,. These 
elements form an r.e. set: 

(injury set) Ie = {x: (3s)[x E A,1- A, & x ? r(e, s)]}. 
Note that each Ie is finite because Ne is injured at most once for each Pi, i < e, 

whereupon Pi is satisfied thereafter. (Positive requirements, of course, are never 
injured.) 

LEMMA 1.1. (Ve)[C =# (De(A)]. 
PROOF. Assume for a contradiction that C = (De(A) Then lim, l(e, s) = oo. 

Choose s' such that Ne is never injured after stage s'. We shall recursively compute 
C(x) contrary to hypothesis. To compute C(p) for p E co find some s > s' such that 
l(e, s) > p. It follows by induction on t ? s that 

(1.2) (Vt > s)[l(e, t) > p & r(e, t) ? max{u(e, x, s): x < p}], 

and hence that De,s(As; p) = De(As; p) = (De(A; p) = C(p). Since s > s', (1.2) 
clearly holds unless Cx(x) = Cs(x) for some t ? s and x < p; but if x and t are 
minimal then our use of "< l(e, t)" rather than "< l(e, t)" in the definition of 
r(e, t) insures that the disagreement Ct(x) =# Det(At; x) is preserved forever, 
contrary to the hypotheses that C = De(A). Note that even though the Sacks 
strategy is always described as one which preserves agreements, it is crucial that we 
preserve at least one disagreement as well. 

LEMMA 1.2. (Ve)[lim, r(e, s) exists and isfinite]. 
PROOF. By Lemma 1.1 choose p = ,ux[C(x) =# (De(A; x)]. Choose s' sufficiently 

large such that, for all s > s', 

(Vx < p)[FDebs(As; x) = (De(A; x)], (Vx < p)[Cs(x) = C(x)], and 
Ne is not injured at stage s. 

Case 1. (Vs > s')[(De,s(As; p) undefined]. Then r(e, s) = r(e, s') for all s > s'. 
Case 2. (De,t(At; p) is defined for some t > s'. Then (De,s(As; p) = (De,t(At; p) 

for all s > t because l(e, s) > p, and so, by the definition of r(e, s), the computation 
Det(At; p) is preserved and Ne is not injured after stage s'. Thus (De(A; p)= 

(De,s(As;p). But C(p) =# (De(A;p). Thus 

(Vs > t)[Cs(p) # (e,s(As; p) & l(e, s) = p & r(e, s) = r(e, t)]. 

Hence, r(e, t) = lim, r(e, s). 
LEMMA 1.3. (Ve)[We infinite => We rl A =# 0]. 
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PROOF. By Lemma 1.2, let r(e) = lims r(e, s) and R(e) = max{r(i): i < e}. Now 
if (3x)[x e We & x > R(e) & x > 2e] then We n A =# 0. Note that AT is infinite 
by the clause "x > 2e" in (1.1), and hence A is simple. L1 

1.2. The Sacks splitting theorem. Sacks invented the above preservation method 
(which plays a crucial role in the later infinite injury arguments) to prove the 
following theorem. 

THEOREM 1.2 (SACKS SPLITTING THEOREM). Let B and C be r.e. sets such that C 
is nonrecursive. Then there exist r.e. sets AO and A1 such that 

(a) AO uA1 = Band AO nA1 = 0,and 
(b) C T Ai, for i = 0, 1. 
PROOF. Let {Bs}sew and {Cs}se,,w be recursive enumerations of B and C such that 

Bo = 0 and 1Bs+1 - Bs1 = 1 for all s. It suffices to give recursive enumerations 
{Ais}sew, i = 0, 1, satisfying the single positive requirement 

P: x E Bs+, - Bs => [x E A0,s+ 1 or x E Al s+ l], 

and the negative requirements for i = 0, 1 and all e, 

Ne: C =# Oe(Ai). 

Define AiO = 0. Given Ais define the recursive functions li(e, s) and rt(e, s) as 
in ? 1.1 but with Ais in place of As. Let x E Bs+1 - Bs. Choose <e', i'> to be the 
least <e, i> such that x < ri(e, s), and enumerate x E Ai-. s+,. If <e', i'> fails to 
exist, enumerate x E Ao0s+1. This defines Ai, i = 0, 1. 

To see that the construction succeeds define the injury set Ie as in ? 1.1 but with 
Ai in place of A. It follows by induction on <e, i> that, for i = 0, 1 and all e, 

(1) C =# (De(Ai), 
(2) lims ri(e, s) exists and is finite, and 
(3) Ie is finite. L1 
The r.e. sets Ai automatically satisfy the further property A'=T 0' as we shall 

see in Remark 4.5. 
1.3. Remarks and extensions. Theorems 1.1 and 1.2 hold under the weaker 

hypothesis C <T 0' in place of C r.e. by the same proof. If C <T 0' then by the 
Limit Lemma of Shoenfield [21, p. 29] there is recursive sequence of recursive 
functions {Cs(x): s Ec w} such that C(x) = lims Cs(x) for all x. Use Cs in the de- 
finition of l(e, s) as above. 

Finite injury arguments are characterized by the fact that the injury set Ie is 
finite for each e. In ?2 we shall consider cases where Ie is infinite although usually 
recursive. Note that Lemma 1.1 holds by virtually the same proof as above if we 
assume "Ie recursive" in place of "Ie finite". This will be crucial for the infinite 
injury method. 

?2. The infinite injury priority method. 
2.1. The objective. In many finite injury constructions of an r.e. set A (such as 

Theorem 1.1) we can specify a recursive array of r.e. sets {Wp(e)}eew and can define 
the positive requirements {Pe}eeo by Pe: WP(e) r) A =# 0. We now consider con- 
structions in which the positive requirements are of the form 

(2.1) Pe: Wp(e) C* A, 
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(where X c Y denotes that X - Y is finite) so that a single positive requirement 
may contribute infinitely many elements to A. In the simplest cases the r.e. sets 
{ Wp~e)}ee will be specified prior to the construction of A and will even be recursive 
(but not uniformly in e). As in ?1 the negative requirement Ne will assert C =# ('e(A) 
for some fixed set C, f <T C <T i'. For each Ne we would like a restraint function 
r(e, s) so that exactly as in ?1 we can enumerate x in A at stage s + 1 for the sake 
of Pe just if x E Wp(e),s+1 and x > r(i, s), for all i < e. The negative requirement 
can now be injured infinitely often by those positive requirements Pi, i < e, but 
reasonable hypotheses on the sets Wp(i), i < e, will enable us to meet Ne as in 
Lemma 1.1. 

The main difficulty will be that some Pe remains unsatisfied because of the 
restraint functions r(i, s), i < e, which may now be unbounded in s (i.e. 
lim sups r(i, s) = oc). To satisfy Pe it clearly suffices to define r(e, s) such that 

(2.2) lim inf8 R(e, s) < oc, 

where R(e, s) = max{r(i, s): i < e}, because then Pe has a "window" through the 
negative restraints at least infinitely often. 

2.2. The two obstacles. The first obstacle to achieving (2.2) is that if we let 
r(e, s) be r(e, s) as defined in ?1 then we may have lim, r(e, s) = oc for some e, 
even though requirement Ne is satisfied. Requirement No having highest priority is 
never injured and hence lim, r(O, x) < oc. Thus PO is satisfied but PO may con- 
tribute infinitely many elements to A and injure N1 infinitely often. Even though N1 
may be satisfied, we may have lim, r(1, s) = oc and hence P1 not satisfied. (Perhaps 
F1(A; 0) is undefined but C(O) = F1j,(A,; 0) for almost every s, and lim, u(1, 0, s) 
= oc. For example, suppose F18,(X, 0) = C(O) just if n 0 X for some even n < s, 
but PO eventually forces every even number into A so that FD1(A; 0) is undefined.) 

This difficulty arises only if there are infinitely many stages s such that Aj[u] =# 
As+ 1[u] where u = u(1, x, s). Thus, we can easily remove the first obstacle by 
replacing De,s everywhere by CD,,, defined in ?2.3 below, and letting r(e, s) denote 
the resulting restraint function. If C =# be(A) then we shall have lim inf, r(e, s) < 
oo. (A similar device was used by Sacks, Yates and others.) 

The second obstacle to (2.2) is that lim, R(e, s) = oc even though lim inf, r(i, s) < 
oc for each i < e. (For example, N1 and N2 may together permanently restrain all 
elements because their restraint functions do not drop back simultaneously.) This 
is a more serious obstacle which required complex solutions and made a natural 
definition of r(e, s) seem unlikely. However, by a very ingenious observation2 

2 The heart of this method is Lachlan's observation [7] that using a device like (De,s the 
restraint functions f(e, s) will all drop back simultaneously at each true stage. However, at 
each stage s Lachlan defined the restraint functions f(e, s) by a series of substages e before which 
the positive requirements Pi, i < e, had already acted. By defining i(e, s) only in terms of 
{At: t < s} we can avoid mentioning the positive requirements and substages, and can isolate 
and prove the two crucial lemmas once and for all. Furthermore, Lachlan specified a recursive 
sequence of recursive sets {Di}jjc,, prior to the construction (roughly equivalent to { in 
the notation of Lemma 2.3) and required in the definition of his counterpart to jes(As; x) that 
z e U{Dj: i < e}. This is unnecessary in our version and would hamper applications to theorems 
like the incomplete maximal set (Theorem 3.8) where we cannot specify Wp(e) for (2.1) before 
the construction. 
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of Lachlan we shall see that the naive solution to the first obstacle has already 
removed the second. 

2.3 The main lemmas. The lemmas in this subsection are very general and apply 
to any r.e. set A whether it and its recursive enumeration {As}SGCO are given (i.e. 
specified by the "opponent" as in Lachlan [5]), or whether we ourselves are 
enumerating A during the construction by recursively defining A,+1 in terms of 
{At: t < s}. 

To remove the first obstacle of ?2.2 we replace :Fes everywhere by the following 
Ce,s Given {At: t ? s} define 

as = >x[xeAs - As 1] if As -As A1 #0, 
l-max(A, U {s}) otherwise; 

4Des(As x) _ f~e,s(As; x) if defined and u(e, x, s) < as, s undefined otherwise; 

^(e, x, s) fu(e, s, x) if De,s(As; x) is defined, 
0c~e, 

x, 5) = 1>o otherwise; 

and 
T = Is: Aj[a.] = A [as]}. 

If {AJ}S60 is any recursive enumeration of an r.e. set A we refer to T as the set of 
true (nondeficiency) stages of this enumerationY Note that T is infinite and T T A 
uniformly in A [14, p. 140]. If De(A; x) = y then clearly lims Ses(As; x) = y as 
before. The crucial point about I)es is that for any true stage t any apparent com- 
putation Se t(At; x) = y is a true computation (e(A; x) = y. Namely, 

(2.3) (Vt e T)[4et(At; x) = y => 
(Vs ? t)['Fes(As; x) = De(A; x) = y & uz(e, x, s) = u(e, x, t)]], 

because if Se t(At; x) is defined then u(e, x, t) < at and Atjat] = A[at]. 
Given 0 <T C <T 0' fix a recursive sequence of recursive functions {Cs}sC,,, such 

that C(x) = lims Cs(x). Given {A,: v < s} we define, as in ?1: 
(length function) l(e, s) = max{x: (Vy < x)[Cs(y) = 4es(As; y)]}. 
(modified length function) 

M6(e, s) = max{x: (iv ? s)[x < I(e, v)] 
& (Vy ? x) [As[u(e, y, v)] = Av[u(e, y, v)]]}. 

(restraint function) f(e, s) = max{u(e, x, x): x ? Mi(e, s)}. 
(injury set) fe = Usfes, where fes = {x: (3v < s)[x < f(e, v) & x e A,, - A,]}. 
(The point of mh is to record a length of agreement established at some stage v 

so long as the " De(A) side" is unchanged even though a change in the "C side" at 
some stage s > v may cause !(e, s) < !(e, v).) For many applications such as 
Lemma 2.3 below we could use I instead of m' in the definition of r exactly as in ?1. 

3 These stages were also called nondeficiency stages and were used by Dekker in constructing 
hypersimple sets [14, p. 140]. These stages are a measure of the nonrecursiveness of an r.e. set A 
since a recursive set has a recursive enumeration in which every stage is true. 
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However, the use of m' immediately yields by (2.3) certain convenient properties 
such as Remark 2.5 below and also 

(2.4) (Vt E T)(Vs ? t)[Mi(e, t) < Mi(e, s) & f(e, t) < f(e, s)]. 

The infinite injury method depends upon the following two lemmas whose 
proofs are very similar to those of Lemma 1.1 and Lemma 1.2 respectively. 

LEMMA 2.1 (INJURY LEMMA). If C ,T fe then C : (De(A). 
LEMMA 2.2 (WINDow LEMMA). Let Tbe the set of true stages in the enumeration 

{As}SE0 of the r.e. set A. If C :# (De(A) then limteT r(e, t) < Oc. (Hence, if C :# Oi(A), 
for all i < e, then limteT R(e, t) < co, where R(e, s) = max{f(i, s): i < e}, thereby 
satisfying (2.2).) 

PROOF OF INJURY LEMMA. Assume for a contradiction that C = 4De(A). Then 
lims l(e, s) = oo. Fixing fe as an oracle we shall compute C contrary to hypothesis. 
To compute C(p) for p Ec w find some s such that l(e, s) > p and 

(Vx < p)(Vz)[z < u(e, x, s) > [z 0 He or z E As]]. 

Such s exists since C = 4De(A). By the same remarks as in Lemma 1.1 it follows by 
induction on t ? s that 

(Vt 2 s)[l(e, t) > p & r(e, t) ? max{u(e, x, s): x < p}], 

and hence that (Des(As; p) = (De(As; p) = (De(A; p) = C(p). D 
PROOF OF WINDOW LEMMA. Assume C : 4De(A). Define p = ,tx[C(x) # 

(De(A; x)]. Choose s' sufficiently large such that, for all s 2 s', 

(Vx < P)[d)es(As; x) = De(A; x)] and (Vx < p)[Cs(x) = C(x)]. 

Case 1. (Vt ? s')[t E T => Se t(At; p) undefined]. Then for any t ? s', such that 
t E T, we have i(e, t) = l(e, t) = p and f(e, t) = max{u(e, x, s'): x < p}. 

Case 2. 4?e,t(At; p) is defined for some t T, t > s'. Then (De(A; p) = 

(De,s(As; p) for all s ? t by (2.3). But C(p) :# De(A; p). Hence, by the definitions 
we have 

(Vs 2 t)[l(e, s) = p & mi(e, s) < mi(e, t)], 
and thus 

(Vs 2 t) [Mi(e, t) = MP(e, s) & f(e, t) = f(e, s)] by (2.4). 5 

2.4. Applications of the lemmas. Our first application is to prove the Thickness 
Lemma which is the paradigm of the infinite injury method. It was first proved by 
Shoenfield [20, p. 173] in the case where C = 0'. Then Sacks [18] and Yates [25] 
each independently developed stronger forms of the infinite injury method by 
combining different devices for handling infinite injury with preservation methods 
as in ?1.1. The latter will handle the case C <T 0' below, which is necessary for 
almost all applications to degrees. Later Shoenfield [21, Chapter 16] formulated 
a stronger version of the Thickness Lemma, and showed how it could be used to 
yield results of Sacks and Yates. Fix a 1 :1 recursive pairing function z from W x e 
onto w [14, p. 64] and let <x, y> denote r(x, y). For any set A and x Ec w define the 
"column" A(x) = {<x, y>: <x, y> e A}, and A(<x) = U{A(z): z < x}. A subset 
A c B is a thick subset of B if A(x) =* B(x) for all x, and B is piecewise recursive if 
B(x) is recursive for each x. 
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LEMMA 2.3 (THICKNESS LEMMA-SHOENFIELD). Given 0 <T C <T 0' and a 
piecewise recursive r.e. set B there is a thick r.e. subset A of B such that C AT A. 

PROOF. Fix recursive sequences {Bs}secw and {C8}, such that B = U8B8 and 
C = lime C,. Let AO = 0. Given {At: t < s} define f(e, s) as above. To meet the 
requirements 

Pe: B(e) =* A(e) and Ne: C #A se(A), 

we enumerate x in AS 1 just if x E B, +1 and x > r(i, s) for all i < e. Let A = U8A8. 
Note that Ie C A(, e) because Ne is injured by Pi only if i < e. Thus now (and in 

all later theorems) we have 

(2.5) le <T A(<e) 

because if x E A(<e), say x E A(<e), then x E le just if x E ebs 
Fix e and assume by induction that C =# (i(A) and A") =* B(" for all i < e. 

Then A(< e) =* B(<e) is recursive and hence le is recursive. Thus C =# Se(A) by 
the Injury Lemma, limteT R(e, t) < oo by the Window Lemma, and A(e) =* B(e) by 
construction. E 

If we assume (Ve)[C AT B(<e)] instead of B piecewise recursive, then the above 
proof still suffices, because le <T A(<e) =* B(<e) and the Injury Lemma requires 
only that C AT le. Indeed locally we have proved that, for each e, 

[C T B(<e)] => [A(e) =* B(e) & C :# se(A)] 

which suffices for the Yates index set theorems in ?3 and in ?6. 
REMARK 2.4. Define A(<e) = U{A(1): i < e} and let Te be the set of true stages 

in the enumeration {A(< e)}secw of the r.e. set A(< e). Then Te ?T A(< e) and if le A(< e) 
then 

(2.6) (Vt e Te)(Vx < mi(e, t))[tDe t(At; x) = y => (e(A; x) = y] and 

(2.7) (Vt e Te)(Vs ? t)[mii(e, t) < mi(e, s) & r(e, t) < f(e, s)]. 

PROOF. Since fe c A(<e), (2.6) follows as (2.3) and (2.7) follows as (2.4). 
REMARK 2.5. For A and B as in Lemma 2.3 we have automatically achieved 

A <TB. 

PROOF. Fix e and assume that for all i < e we have B-effectively computed g(i) 
such that A(') = ?Dg(D)(B). Then B-effectively compute A(< e) and Te. Now if x E B(e), 
say x E B(e), let t' = lit [t 2 s & t E Te]. Hence, x E A(e) just if x E A'e) by (2.7). 

All these remarks can be simultaneously combined as follows. (Similar versions 
have been obtained using different proofs by Shoenfield [21, p. 92], Robinson [12, 
Theorem 1] and Yates [25].) 

LEMMA 2.6 (THICKNESS LEMMA-STRONG FORM). Given 0 <T C ?T 0' and an 
r.e. set B there is an r.e. set A c B such that A <T B and 

(a) (Ve)[C T B(< e)] => [C 4-T A & A is a thick subset of B], 
(b) (Ve)[C 4T B(<e) => (Vi < e)[C #A (F(A) & Ai =* B")]]. 

Furthermore, an index for A can be computed uniformly in indices for B and C. 

?3. Direct applications. Many results in the literature are almost immediate 
corollaries of the Thickness Lemma. All the results in this section are of this form 
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except for the incomplete maximal set (Theorem 3.8) which requires reapplying 
the Injury and Window Lemmas. 

THEOREM 3.1 (SACKS [18, p. 108]). Let do < d1 < d2 <... be an infinite 
ascending sequence of simultaneously r.e. degrees. Then there exists an r.e. degree a 
such that do < d < .* < a < O'. (Hence, O' is not a minimal upper boundfor the 
sequence.) 

PROOF. Fix a recursive function h such that deg(Wh(X)) = d. for all x. Define 
the r.e. set B by B(x) = {<x, y>: y E Wh(X)}. Let C = 0' and apply Lemma 2.6(a) to 
obtain a thick r.e. subset A c B such that C :T A. By thickness Wh(X)=T B(x) * 

A(x) so that di < deg(A) for all i. L1 
The next corollary is a weak form of the Sacks Jump Theorem (Theorem 4.2) 

below and implies that there are infinitely many r.e. degrees d which are high 
(d' = O"). 

THEOREM 3.2 (SACKS). For any nonrecursive C <T 0' there exists an r.e. set A 
such that A'--T 0" and C AT A. 

PROOF. By Post's theorem [14, p. 314] any set S which is r.e. in 0 (such as ot) 
is in O form, i.e., there is a recursive predicate R(x, y, z) such that, for all x, 
x E S -: (3y)(Vz)R(x, y, z). Hence, there exists a recursive function h(x) such that, 
for all x, x E S => Wh(x) is finite, and x 0 S => Wh(x) = w. Namely, define Wh(x),s = 
{v: (Vy < v)(]z < s) - R(x, y, z)}. For each such S define the r.e. set Bs by 
BOx) = {<x, y>: y E Wh(X)}. If A is any thick subset of Bs then S ?T A' because 

x E S => B(x) finite => A(X) finite => limp A(<x, y>) = 0 and 
X ? S =t B(x4 - ) => A(x) =* w(x) => lim, A(<x, y>) = 1. 

(The function F(x) = lim, A(<x, y>) is recursive in A' by the Limit Lemma of 
Shoenfield [21, p. 29].) 

Choose S = 0" and apply Lemma 2.6(a) to Bs to obtain A. L1 
The following theorem yields a weak form of the density theorem for the special 

case of r.e. sets C <T D satisfying C' <T D'. 
THEOREM 3.3 (INTERPOLATION THEOREM-SACKS [18, p. 117]). If C and D are 

r.e. sets such that D <T C then there exists an r.e. set A such that D <T A <T C and 
A' = C'. 

PROOF. Fix recursive enumerations {CJ}SO and {Ds}sew of C and D and define 
the recursive function 

h(x, s) = if 
sx,s(Cs; x) is defined, 

{s otherwise. 

Define B(?) = {<O, y>: y E D} and B(x+l) = {<x + 1, y>: (3s)[y < h(x, s)]}. Note 
that, by (2.3), B(x+1) is finite if and only if Dx(C; x) is defined (if and only if x E C'). 
Also note that B <T C, because if 4x,8(C8; x) is defined and u = min{z: 0F,8(CdJz] 
is defined}, then h(x, s) = h(x, t) for all t ? s just if C [u] = Cj[u]. 

Since B is piecewise recursive in D, use Lemma 2.6(a) to choose a thick r.e. 
subset A of B such that A <T B and C 4:TA. Now D <TA because A(') -* 

B(?)-T D. Next A' <T C' because A <T B <T C. Finally C' <T A' because 

x E C' > B(x+1) finite => limp A(<x + 1, y>) = 0 and 
x 0 C' B(x+l) -= (x+1) =>limy A(<x + I, y>) = 1 D 
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COROLLARY 3.4 (WEAK DENSITY THEOREM). If C and D are r.e. sets such that 
D <T C and D' <T C' then there is an r.e. set A such that D <T A <T C. 

PROOF. By Theorem 3.3. L1 
After proving this weak form of the density theorem, Sacks eliminated the 

hypothesis D' <T C' to obtain the full Density Theorem by inventing a new coding 
strategy to insure A 4$T D as we discuss in ?5. Shortly thereafter Yates [25] derived 
the Density Theorem as a corollary of the following result on index sets. To prove 
his result we need two lemmas of Yates which can easily be derived without using 
priority methods [25, pp. 312, 314] and whose proofs we omit. Let V be an r.e. set. 
(As in Rogers [14, p. 304] let S E Ev denote that there is a predicate Rv recursive in 
V such that x E S just if (3y)(Vv)(3w)RV(x, y, v, w).) 

LEMMA A (YATES). {x: Wx T V} e V3 

LEMMA B (YATES). For any set S E E v there is a recursive function h(x) such 
that, for all x, Wh(X) <T V and 

(a) x E S => (3e)[ W((x) T V & (Vi < e)[Wh()X) is recursive]], 
(b) x 0 S => (Ve)[Wh(e) recursive]. 
THEOREM 3.5 (INDEX SET THEOREM-YATES). Given r.e. sets C and D such 

that D <T C and S E El there is a recursive function g(x) such that, for all x, 
(a) D <T Wg(x) <T C, and 
(b) x e S Wg(x) T C. 

COROLLARY 3.6 (DENSITY THEOREM-SACKS). If D and C are r.e. and D <T C 

then there exists an r.e. set A such that D <T A <T C. 

PROOF (COROLLARY 3.6). Let S = {x: Wx =TD}. Then, by Lemma A, S e3 

and hence S e El. Apply Theorem 3.5 to find g(x) such that D <T Wg(x) <T C and 
Wx T D just if Wg(x) =T C. By the recursion. theorem choose x0 such that Wx = 

Wg(x.). Then D <T Wg(x.) <T C. Li 
PROOF (THEOREM 3.5). Fix V = C, S El3 and h(x) the recursive function for 

S according to Lemma B. For each x define the r.e. set Bx by 00) = {<O, y>: y e D} 
and B e+ ) = {<e + 1,y>:ye W(x)}. (Note that Bx <T C for all x because 
Wh(x) <T C and D <T C.) For each x apply Lemma 2.6(b) to Bx and C to find 
Ax - Bx, so that Ax <T Bx <T C. Moreover, for each x, D ?T Ax because 
A(-) =* B(0)- T D by Lemma 2.6(b) with e = 0. By the uniformity of Lemma 2.6 
there is a recursive function g(x) such that Wg(x) = Ax. Now if x 0 S then B e) is 
recursive for all e > 0 by Lemma B(b) whence C $T A. by Lemma 2.6(b). If 
x e S then by Lemma B(a) and the definition of B choose e such that 

B Te) C & (VM)[O < i < e => B") is recursive]. 

Hence, B( e)_T D <T C. Therefore, by Lemma 2.6(b) A(e) _* B(e) T C, so that 
C <T Ax. Thus, Ax =T C because Ax <T Bx <T C. L1 

COROLLARY 3.7 (YATES). If C is r.e. and S e El then S <1 {x: Wx- T C}. 
PROOF. If C -T 0 see Rogers [14, p. 327]. Otherwise apply Theorem 3.5 with 

D = 0. L1 
Even when the Thickness Lemma does not apply directly, the Injury and Window 

Lemmas can be applied to prove such theorems as the following by Sacks [16] 
which implies the existence of an incomplete maximal set. An r.e. coinfinite set A 
is maximal if A c Wx implies A =* Wx or co =* Wx for all x. 
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THEOREM 3.8 (SACKS). For any nonrecursive set C <T 0' there exists a maximal 
set A such that C :T A. 

PROOF (SKETCH). We assume that the reader is familiar with the Yates maximal 
set construction [14, p. 235] where the positive requirement Pe asserts that, for all 
i ? e, xi the ith member of A achieves the highest possible e-state which is in- 
finitely resided by {xj: j 2 i}. Given C define Ne and i(e, s) as usual. Allow Pe to 
contribute x to A at stage s + 1 only if x > r(i, s) for all i < e. Applying Lemmas 
2.1 and 2.2 it is easy to show by induction on e that for all e: Ne is satisfied, Pe is 
satisfied, and the set of elements contributed to A by Pe is recursive (whence le+1 
is recursive). L1 

Later Martin [9] proved by a different method that an r.e. degree a contains a 
maximal set if and only if a is high (a' = 0"). By Theorem 3.2 such degrees may be 
incomplete and hence Martin's result implies Theorem 3.8. 

?4. The Jump Theorem. Historically Sacks' first application of the infinite 
injury priority method was to prove the Jump Theorem [17] which asserts that if S 
is r.e. in 0', 0' <T S, and 0 <T C <T 0' then S TA' for some r.e. set A such that 
C AT A. Of course, S <T A' is easy to achieve using the corresponding r.e. set B, 
(abbreviated B) defined in Theorem 3.2 because any thick r.e. subset A of B 
satisfies S <T A'. Keeping down the jump A' requires some further restraint which 
is best illustrated by the following special case of the Jump Theorem. This result is 
dual to Theorem 3.2, and requires only a finite injury proof as in Theorem 1.1. 

THEOREM 4.1. There exists a simple set A such that A' T 0' (i.e., A is low). 
PROOF. Define the positive requirement Pe: A #A We as in Theorem 1.1. To 

insure A' <T O' it suffices to meet for each e the negative requirement 

Qe (3'S)[te,s(As; e) defined] =I (De(A; e) defined, 

where (3 0s) abbreviates "there exist infinitely many s." To see this we define the 
recursive function g(e, s) = 1 if 4be,s(As; e) is defined and g(e, s) = 0 otherwise. 
If requirement Qe is satisfied for all e then G(e) = lim8 g(e, s) exists, is the charac- 
teristic function of A', and G <T o' by the Limit Lemma [21, p. 29]. 

To meet Qe define a second restraint function 

(4.1) j(e, s) = u(e, e, s). 

The construction of A and definition of injury are the same as in Theorem 1.1 with 
q(e, s) in place of r(e, s). (As in Theorem 1.1, Qe is injured at most finitely often, 
say never after stage s'. In place of Lemma 1.1 note that Qe is satisfied because if 
4'e,s(As; e) is defined for some s > s' then Oet(At; e) = (Ie(A; e) for all t ? s.) Li 

For the full Jump Theorem below we have for each e the positive requirement 
Pe: A(e) =* B(e) and negative requirement Ne: C =# (De(A) as in ?2. In addition we 
have the negative "pseudo-requirement" Qe above which we cannot hope to meet 
for each e because we want A'--TS and perhaps O' <T S. Nevertheless we attempt 
to meet Qe in exactly the same way as before by allowing Pi to injure Qe only if 
i < e. We then prove that the injuries to Qe (although possibly infinite in number) 
are sufficiently well-behaved so that we can verify A' <T S using the hypothesis 
0' <T S. This is accomplished by defining an S-recursive function g such that, for 
every e, TPg(e) is the characteristic function of A(e). 
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THEOREM 4.2 (JUMP THEOREM-SACKS). For any sets S and C such that S is 
r.e. in 0', 0' <T S, and 0 <T C <T 0' there exists an r.e. set A such that A' -T S 

and C$T A. 
PROOF. Given S define the r.e. set B as in the proof of Theorem 3.2 such that, 

for all x, 

(4.2) x E S => B(x) is finite and x 0 S => B(x) = w(X) 

Fix recursive sequences {B8}8,CO and {C8}8,O such that B = U8B8 and C = limr C. 
Given {At: t < s} define r(e, s) as in ?2 and qj(e, s) as above. Enumerate x in A?4+1 
just if x E Bw and x > max{r(i, s), q(i, s)} for all i < e. Let A = USAS. 

LEMMA 1. For all e, A(e) =* B(e) and C # Oe(A) (Hence, C $T A and S <T A'.) 
PROOF. Let T be the set of true stages in the enumeration {As}sCO. Fix e and 

assume that Pi and Ni hold for all i < e. Then A(<e) =* B(<e) is recursive (because 
B is piecewise recursive); Ne is satisfied by the Injury Lemma, and limteT r(e, t) < 
so by the Window Lemma. Furthermore, limteT qj(e, t) < so by (2.3). Hence, A(e) -* 

B(e) by construction. 
LEMMA 2. A' ?T S. 

PROOF. Define Te to be the set of true stages of the enumeration {A(<e)}SCo, (as 
in Remark 2.4 whose proof is very similar). Now requirement Ne or Qe can be 
injured by element x only if x e A") for some i < e. Thus, as in (2.6) and (2.7), 

(4.3) (Vt e Te)[('e,t(At; e) defined => "e(A; e) defined] and 

(4.4) (Vt e Te)(Vs ? t)[q(e, t) < q(e, s) & r(e, t) < r(e, s)]. 

Fix e and assume that we have S-recursively computed, for all i < e, 
(1) whether ieA'; and 
(2) an index g(i) such that A") has characteristic function 9g(:). 

From (2) we can S-recursively compute indices for the (recursive) characteristic 
functions of A(< e) and Te. Since 0' <T S we now decide whether e E A' because, by 
(4.3), 

(4.5) e E A' OJ e(A; e) defined (3t)[t E Te & "Je,t(At; e) defined], 

and the latter is in Z? form and hence recursive in 0'. 
To compute g(e) we first S-recursively compute an index for the recursive 

characteristic function of B(e) using (4.2) and the definition of B. Now if x e B(e), say 
x e B'e), define t' = (at > s)[t e Te]. Then x e A(e) just if x e At, by (4.4). LI 

For future reference note that using 0' <T S and (4.4) we have 

(4.6) r(e) = lim inf8 r(e, s) is an S-recursive function. 

REMARK 4.3 (SACKS). Given S and C as in Theorem 4.2 if D is any r.e. set 
such that D' <T S and C $T D then we can add to the conclusion that D <T A. 

PROOF. Replace B above by the r.e. set B where B(0) = {<O, y>: y e D} and 
<x + 1, y> e B just if <x, y> e B. The construction and proofs are now the same 
as above except that A and B are now "piecewise recursive in D" instead of 
"piecewise recursive" because A(?) =* B(O) T D. The Injury Lemma still applies 
in Lemma 1 because e <T A(<e) ?T D and C $T D. Now Te <T D so that in (4.5) 
we must use a D'-oracle instead of a 0'-oracle. L1 
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REMARK 4.4. Given S and C as in Theorem 4.2 we can obtain A by directly 
applying the Thickness Lemma to C and B without introducing the second restraint 
function q(e, s). 

PROOF. Given C(O) define the partial recursive functional, 

"g(e)(X; y) =C(O) if y = 0 and (Ie(X; e) is defined, 
g 'e) ~ undefined otherwise. 

*e(A; e) defined 4(g(e)(A; 0) = C(O) ` lims !(g(e), s) > 0. 
In the proof of Theorem 4.2 replace all instances of q(e, s) by r(g(e), s). F 
REMARK 4.5. The r.e. sets Ai of the Sacks Splitting Theorem (Theorem 1.2) 

automatically satisfy A' -T 0' for i = 0, 1. 
PROOF. By the proofs of Remark 4.4 and Theorem 4.1. Li 

?5. The Density Theorem and the coding strategy. Sacks originally proved the 
Density Theorem not by index sets as in Corollary 3.6 but by inventing a new 
coding strategy [19] for the positive requirements. This coding strategy is the major 
new idea in that proof and has numerous other applications. 

THEOREM 5.1 (DENSITY THEOREM-SACKS). Given r.e. sets D <T C there exists 
an r.e. set A such that D <T A <T C. 

PROOF.4 Fix recursive enumerations {Cs}ec, {Ds}seco of C and D. Define 
A(0) = {<O, y>: y e Ds} so that D ?T A. We shall arrange A ?T C as in Remark 2.5 

by finding a C-recursive function g such that A(e) = q>g(e)(C) for all e. To make both 
inequalities strict it suffices to meet, for all e > 0, the requirements 

Ne: C =A # e(A) and Pe: A =A # e(D). 

To meet Pe we attempt to code C into A(e) so that if A = (De(D) then C ?T D 
contrary to hypothesis. 

Let AO = 0. Given {A,: t < s} define r(e, s) as in ?2, and define 

JD(e, s) = max{x: (Vy < x)[As(y) = (Des(Ds, y)]}. 

Let <e, x, s> denote <e, <x, s>>. For t < s, and e > 1 enumerate <e, x, t> in As,, 
just if<e, x, t> > r(i, s) for all i < e, xe C,+1 andx < JD(e, v) for all v, t ? v ? s. 
Let A = UsAs8 

(We visualize this coding strategy as follows. Fixing e, the elements 
{<e, x, y>: x, y eC W} are arranged in a plane. A "coding marker" is assigned to 
<e, x, t> at stage t if l0(e, t) > x. The marker is later removed (forever) at some 
stage s > t if JD(e, s) ? x. If x e C,+1 then all elements <e, x, t>, t < s, still 
possessing markers at stage s and not restrained with higher priority are enumerated 
in As+1.) 

To see that A succeeds we shall verify the requirements by induction on e and 
simultaneously C-recursively define g(e) such that A(e) -= g(e)(C). Clearly g(O) 
exists because A(?)- T D <T C. Fix e > 0 and assume, for all i, 0 < i < e, that 

(5.1) C # (Di(A), 
(5.2) A # 1Xi(D), 

4Our proof of the Density Theorem is very similar to Lachlan [7] except for our treatment of 
N6 as explained in ?2. 
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(5.3) A") is recursive, and 
(5.4) A")' = (Dg(i)(C), where g(i) has been C-recursively computed. 
LEMMA 1. C =# 'e(A). 
PROOF. Now A(<e) <T D because A") is recursive for 0 < i < e. Let le be the 

injury set for Ne defined in ?2. Then le ( A(<e) and hence le <T A(<e) as in (2.5). 
Thus, le <T A(<e) <T D <T C. Hence, C =# (De(A) by the Injury Lemma. 

LEMMA 2. A =# (De(D). 

PROOF. By Lemma 1 and the Window Lemma i(e) = lim inf8 i(e, s) < oo. If 
A = (Ie(D) then limn JD(e, s) = so. Since D is r.e. we can D-recursively compute 
the modulus function 

M(x) = (,Us)(Vt 2 s)[JD(e, t) > x] 

For x > i(e), x E C just if <e, x, M(x)> E A. Hence, C <T A <T D contrary to 
hypothesis. (Note that M is a D-recursive function because D r.e. implies that 
M(x) = (1zs)[lD(e, s) > x & D8[u] = D[u]], where u = max{u(e, y, s): y < x}.) 

LEMMA 3. A(e) is recursive. 
PROOF. By Lemma 2, let Pe = (/x)[A(x) =# (De(D; x)]. Then lim inf8 JD(e, s) = 

Pe. For x ? Pe given x and t find s ? t such that JD(e, s) = Pe. Then <e, x, t> E A 
just if <e, x, t> E A,. For x < Pe fix s' such that Cs[pe] = C[Pe]. Given t define 

vI = (fzv)[v ? s' & v ? t & r(e, v) = i(e)]. 

Then <e, x, t> e A just if <e, x, t> ev A, 
LEMMA 4. We can C-recursively compute g(e) such that A(e) = (Dg(e)(C) 

PROOF. Define Te as in Remark 2.4. From {g(i): i < e} we C-recursively 
compute A(<e) and hence Te. Fix <e, x, t>. If x 0 C then <e, x, t> 0 A. If x E C, say 
x E C,, define 

v' = (fv)[v ? t & v ? s & v e Te]. 

Then <e, x, t> E A just if <e, x, t> E A,,. L: 
(Notice that unlike Lemma 2 of Theorem 4.2 we do not claim here that (5.3) 

and (5.4) can be combined to produce a C-recursive function g such that (Pg(,) is 

the characteristic function of A(e) for all e > 0, but merely that A(e) = Ig (e)(C). 
The point is that even though A(e) is recursive for all e > 0, the proof of Lemma 3 
above depends upon parameters Pe and r(e) which cannot be C-recursively com- 
puted uniformly in e, and the proof of Lemma 4 clearly uses a C-oracle for each x. 
This subtle distinction will become more apparent after comparing the functions 
g and h in the proof of Theorem 5.4 below, where the distinction is crucial.) 

The above coding procedure has many other applications such as the following. 
THEOREM 5.2 (SACKS-YATES5). Given any r.e. set C such that 0 <T C <T 0' 

there exists an r.e. set A such that A is Turing incomparable with C. Furthermore, 
an index for A can be found uniformly from one for C. 

PROOF. It suffices to meet for all e > 0 the requirements Ne: C =# (De(A), and 

5The nonuniform version of the theorem follows immediately from the Sacks Splitting 
Theorem. The uniform version requires an infinite injury argument and was proved by Yates 
[25] using index sets. 
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Pe: A =A (De(C). Let K = {e: e e We}-T 0'. In place of the hypothesis D <T C 
of Theorem 5.1 we use the hypothesis C <T K so that C and K play the former roles 
of D and C respectively. Let AO = 0. Given {C}SEC, {Ks}seo and (At: t < s} as 
usual define 

lC(e, s) = max{x: (Vy < x)[As(y) = 4'e,s(Cs; Y)]}. 

For t < s enumerate <e, x, t> in As,1 just if <e, x, t> > i(i, s) for all i < e, 
xe Ksl, and x < lC(e, v), for all v, t < v < s. Let A = UsAs. 

Fix e and assume by induction that, for all i < e, C =# Di(A), A =# DiI(C), and 
A(i) is recursive. The proofs above establish (with C and K in place of D and C 
respectively in Lemmas 2 and 3): C =# (Ie(A); A =# (Ie(C); and A(e) is recursive. L1 

It is natural to ask to what extent the previous theorem can be combined with 
the jump theorem of ?4 so that A' T S for some given S. Yates [26, p. 261 ] proved 
that this could be done for S T 0 " while still preserving the uniformity of Theorem 
5.2. Later Robinson [13, Corollary 3] extended the result to any S r.e. in 0' such 
that 0' <T S. but without the Yates uniformity. We prove the result in two stages 
as the next two theorems in order to fully expose the difficulties. 

THEOREM 5.3 (YATES). Given any r.e. set C such that 0 <T C <T 0' and any set 
S r.e. in 0' such that C' <T S there exists an r.e. set A such that A' T S and A is 
Turing incomparable with C. Furthermore, an index for A can be found uniformly in 
indices for C and S. 

PROOF. The strategy for enumerating elements in A(e) is the same as that for Pi 
of Theorem 5.2 if e = 2i and as that for Pi of Theorem 4.2 if e = 2i + 1 subject to 
the usual restraint function i(e, s). (By Remark 4.4 we can eliminate the second 
restraint function q(e, s) and still achieve A' <T S.) 

For the former proofs to suffice it remains only to show that there is an S- 
recursive function g such that Pg(e) is the characteristic function of A(e) for all e ? 0. 
Given {g(i): i < e} compute g(e) as in Theorem 4.2, Lemma 2, if e is odd, and as in 
Theorem 5.2, Lemma 3, if e is even. (Note that the parameters r(e) and Pe in Lemma 
3 are S-recursive as functions of e using (4.6) and C' <T S.) L1 

THEOREM 5.4 (ROBINSON). Given any r.e. set C such that 0 <T C <T 0' and set 
S r.e. in 0' such that 0' <T S there exists an r.e. set A Turing incomparable with C 
such that A' -T S. 

PROOF. By Theorem 1.2 and Remark 4.5 there exist r.e. sets Do, D1 such that 
(1) Do U D1 = K and Do n DI = 0, 
(2) C$TDifori=O,1,and 
(3) Di-T O' for i =O 1. 

From (1), (2), and K $T C it follows that one of the sets, say Do. is incomparable 
with C. Now using (2) and (3) apply Remark 4.3 to construct A such that Do <T A, 
A' T S. and C $T A. But A $T C because Do <T A and thus A <T C would 
contradict Do $T C. L1 

We can also use the coding strategy to simultaneously combine the results of the 
Jump Theorem, the Density Theorem, and the Interpolation Theorem (Theorem 
3.3). Given r.e. sets D <T C suppose that D <T A <T C and S =T A'. What can 
be said of S? Clearly it is necessary that D' <T S and deg(S) is r.e. in C [14, 
Chapter 13]. The following theorem asserts that these conditions are also sufficient. 
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THEOREM 5.5 (JUMP INTERPOLATION THEOREM-ROBINSON). Given r.e. sets 
D <T C and a set S r.e. in C and D' <T S, then there exists an r.e. set A such that 
D <TA <T Cand A' -T S. 

PROOF. Since S is r.e. in C (and hence S <1 C') we can use the method of 
Theorem 3.3 to find an r.e. set B <T C such that B?0-=T D and, for all x > 0, 
x e S => B(x) is finite, and x 0 S => B(x) = c(x). The strategy for enumerating 
elements in A(e) is the same as that for Pi of Theorem 3.3 (with B as above) if e = 2i 
and for Pi of Theorem 5.1 if e = 2i + 1. 

Since B <T C we can compute (as in Lemma 4 of Theorem 5.1) a C-recursive 
function g such that, for all e > 0, A(e) = (g(e)(C) Since D' <T S we can also 
compute as in Theorem 4.2, Lemma 2, and Theorem 5.3 an S-recursive function 
h(e) such that (Ph(e) is the characteristic function of Ale). The rest follows as in the 
previous proofs. El 

By modifying slightly the coding procedure of Theorem 5.2 one can weaken the 
hypothesis there from C r.e. to 0 <T C <T 0'. Further generalizations were 
obtained by R. W. Robinson [13, Theorem 3] using more complicated methods. 

?6. Degrees of index sets. Let D be any r.e. set and d its degree. Following Yates 
[26] we define the following index sets related to d. 

G(d) = {e: We =T D}, G(< d) = {e: We <T D}, G(? d) = {e: D <T We} 

G(I d) = {e: We and D are Turing incomparable}. 

From the results of Yates in ?3 (Lemma A and Corollary 3.7), G(d) is El-complete 
(as defined in Rogers [14, p. 316]). 

Yates then proved that if d < O' then G(< d) is X_-complete. (If d = O' there is 
no interest because G( < d) = .) We shall omit the proof which does not use any 
priority method although it is clever and delicate and requires a coding method 
like that used by Sacks in Theorem 5.1. Yates also proved [26, ?3] by an infinite 
injury argument that if 0 < d < O' then G(2 d) is Z4-complete and if 0 < d < O' 
then (G(I d) is H14-complete. We now easily derive these results from Lemma 2.6. 

THEOREM 6.1 (YATES). For any r.e. set D, 0 <T D <T 0, and .any set S e Z4 

there is an r.e. sequence {Ax}XCO of r.e. sets such that 

xe S => Ax T 0', 

x 0 S => Ax is Turing incomparable with D. 

PROOF. By Theorem 5.2 (or Theorem 1.2) there exists an r.e. set E Turing 
incomparable with D. Since S e 14 and 4 = ZK apply Yates Lemma B of ?3 above 
to produce an r.e array {Wh(x)}X~c- such that 

xe S => (3e)[Wke)=T K & (Vi < e)[W(x) is recursive]], 
x ? S => (Ve)[ W((x) is recursive]. 

For each x choose an r.e. set Bx in the obvious way such that B()=T E and 
B(e+l) T W((x). Apply Lemma 2.6 with C = D to produce an r.e. set Ax ( B, 
If x 0 S then, for all e, D $T B(<e). Hence, (a) of Lemma 2.6 yields D $T Ax and 
Ax a thick subset of Bx (whence E <T Ax and therefore Ax $T D). If x e S then 

Ax- TK by (b) of Lemma 2.6. El 
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COROLLARY 6.2 (YATES). If d is r.e. and 0 < d < O' then G(? d) is Z24-complete. 
PROOF. Using d r.e. and the Tarski Kuratowski algorithm Yates easily shows 

[26, p. 254] that G(? d)- e4. If d = O' apply Corollary 3.7 and K 
= 4. If 

d < O' apply Theorem 6.1. C: 
COROLLARY 6.3 (YATES). If d is r.e. and 0 < d < O' then G(I d) is '174-complete. 
PROOF. First G(ld) E 114 because G(< d) ED~ eZ4 and G(? d) e4. Now 

G(I d) is I14-complete by Theorem 6.1. Cl 
Virtually the same proof yields the following stronger result of Yates [26, 

Theorem 2, p. 255] which generalizes Theorem 3.1. 
THEOREM 6.4 (YATES). Let 0 <r D <T 0' and let D1 <T D2 <T D3 < ... be a 

recursively enumerable sequence of r.e. sets such that D 4T Di for all i. If S E Z4 

then there is a recursively enumerable sequence {Ax}xeco of r.e. sets, such that for all 
x and i, Di ?T Ax, and 

x e S => Ax =T 0, 

xOS => DrTAX. 

PROOF. The proof is the same as in Theorem 6.1 with the following change. 
For each x define an r.e. set B. in the obvious way such that B e) =T W(X) and 
B(2e+1) = D E1 

COROLLARY 6.5 (YATES). Let 0 <T D <T 0' and let D1 <T D2 ?T D3 ? ... be 
a recursively enumerable sequence of r.e. sets such that D $T Di for all i. Then there 
exists an r.e. set A Turing incomparable with D such that Di <T A for all i. 

PROOF (YATES [26, p. 260]). Let d = deg(D). Set S = G(< d) eZ4. Apply 
Theorem 6.4 to obtain {A,}XECO By the recursion theorem choose n such that 
Wn = An. Now Wn ?T D implies An-T 0', a contradiction. Thus, Wn $T D, 
hence n Sand D $TAn. L 
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