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As a genre of computer games, the massively multiplayer online game (MMOG) has

the promise of enabling up to tens—or even hundreds—of thousands of simultaneous

players. This paper describes how we began with an existing single-server online game

engine and enhanced it to become a multiserver MMOG engine running on a grid.

Other approaches require that a game be specifically designed to scale to MMOG

player levels. Our approach, using IBM OptimalGrid middleware (which provides an

abstracted underlying grid infrastructure to an application) allowed us to reuse an

existing game engine without the need to make any significant changes to it. In this

paper we examine the design elements needed by an MMOG and provide a practical

implementation example—the extension of the id Software Quake IIt game engine

using OptimalGrid middleware. A key feature of this work is the ability to

programmatically partition a game world onto a dynamically chosen and sized set of

servers, each serving one or more regions of the map, followed by the reintegration of

the distributed game world into a seamless presentation for game clients. We explore

novel features developed in this work and present results of our initial performance

validation experiments with the resulting system.

INTRODUCTION

The computer game industry is deploying a new

genre known as the massively multiplayer online

game (MMOG), characterized by large numbers of

clients—ranging from several hundred to hundreds

of thousands—playing simultaneously. Until now,

the creation of such a scalable game has been done

primarily by custom-designing game engines unique

to the specific MMOG. Efforts to create reusable

MMOG game development and game engines have

been underway, Butterfly.net
1

being an example of a

commercial game development environment for

MMOGs. In its work, Butterfly.net obtained patents

related to the development of games and games

using grids. Subsequently, it has updated its busi-

ness plan and renamed itself Emergent Game

Technologies. At the time of the writing of this

paper, details about this new entity’s game archi-

tecture were not available. The issues surrounding

the building of MMOGs and large-scale virtual

environments
2

have become an area of interest and

study, with academia publishing studies on general

architecture, intelligent on demand provisioning,
3

server selection,
4

distributed communications mod-
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els,
5

distributed server location schemes,
6

game

artificial intelligence, and agent-based testing

frameworks for game developers. Additionally, the

application of MMOG technology to building large-

scale agent-based simulations
7

for research on non-

game-related commercial customer relationship

management systems is also underway. The com-

plexities of large-scale group interactions
8

within

online games, that is, exploring the communities

that come about within the virtual worlds of the

games, has also become a topic of research.

Many techniques have been developed to distribute

both massively parallel applications and connected

parallel applications, such as cellular automata and

finite element modeling.
9

MMOGs—like other ap-

plications that stress the resource limitations of a

single system—are excellent candidates to which the

scalable computing power of grids can be applied,

such as the approach taken by Emergent Technol-

ogies
1

and that presented in this paper.

MMOGs are especially demanding in their low

communication-latency requirements. In comput-

ing, as in other systems, increasing the number of

parts, in this case the number of computers,

increases the likelihood of failure of a part. To

provide a stable and long-lasting game for players,

MMOGs running on a grid require fault tolerance

and dynamic load balancing, just like scientific grid

applications. However, unlike scientific applications

that tolerate interruption for checkpoint and logging,

online games do not permit interruption or latency

degradation during load balancing or system main-

tenance.

Because considerable performance optimization and

game-play balancing have been done to single-

server multiplayer engines such as id Software

Quake** and Valve Half-Life**,
10,11

it would be

desirable if the effort put into such engines could be

reused to run MMOGs. Instead of designing new

engines specifically for MMOGs, the reuse of

existing optimized engines would allow many of

today’s games to be scaled up to MMOG level and

allow game developers to continue using game

engines with which they are familiar. Many popular

engines apply similar architectures, offering the

hope that techniques for scaling up of game engines

to MMOG levels for one engine can be reapplied to

other engines. Ideally, such scaling techniques

would be done in a generalized manner, rather than

specifically enhancing any one particular engine,

helping to broaden the applicability of the tech-

niques.

In this paper we report the results and lessons

learned in enhancing an existing single-server

multiplayer game engine to scale to the MMOG

level. We chose the popular open-source Quake

II**
12

game engine from id Software for this work,

but have attempted to develop reusable generalized

techniques in performing the enhancement. This

enhancement was accomplished by using the

OptimalGrid
13

autonomic grid middleware from IBM

Research. This middleware was originally designed

with scientific and engineering applications in mind;

however, the OptimalGrid object model and dy-

namic load-balancing features were easily adapted

to asynchronous online games.

In this paper, we examine the key issues in

extending a game engine to running in a multiserver

environment; we introduce the Quake II game

engine and OptimalGrid middleware. We then

provide an overview of the resulting system, out-

lining its major components, followed by an

exploration of the details of the design. We

introduce the runtime environment developed to

manage the execution of the MMOG game engine

and discuss the additional debugging challenges

inherent in a large distributed system, along with the

solutions we used. We then present the results of the

performance experiments we performed on the

system, and lastly, our conclusions and a brief

outline of future work.

MASSIVELY MULTIPLAYER ONLINE GAMES

Many types of parallel computational problems have

been considered in research and implemented in

mature systems. They range from problems with

moderate connectivity, such as the simulation of

finite element models, to massively parallel tasks,

such as the search for optimal Golomb rulers.
14,15

MMOGs however, present a set of unique con-

straints. Like many scientific simulations, the game

worlds found in MMOGs are often well-suited to

division into spatial regions that may be run in

parallel, albeit connected regions.

Game-world partitioning

Game worlds typically are continuous like the real

world. This means that each spatial division has

strong connectivity to the regions that neighbor
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(touch) it; actions and events in one region affect

objects in neighboring regions. For example, a gun

fired in one region of the world may cause damage

to a player in another region that lies along a line-of-

sight path from the first. Long-range interactions

between regions can exist, meaning in the example

that there may be multiple regions along the line-of-

sight path, with each region possibly being hosted

on a different server. Thus connectivity between

regions is not limited to those that are ‘‘physically’’

adjacent, but instead, connectivity exists between

any region and all the regions that are visible to it.

For example, in long hallways and large open areas,

a player’s local actions must be observable to

players in any other visible region, regardless of

which server is controlling that region. Any imple-

mentation of spatial partitioning of the game world

into discrete regions assigned to different servers

must provide a mechanism to propagate events to

servers holding adjacent regions, and it must also

have a mechanism to propagate such events along

the full path of connected regions, and events must

be propagated in a timely manner so that no cause-

and-effect delay is introduced that exceeds that

intended by the game designer or would be

experienced if the game regions were all hosted on a

single server.

The dependencies between spatial regions of the

world are mitigated somewhat by the presence of

barriers such as walls, but some long-distance

connections typically remain. This situation com-

plicates the problem of dividing the world into

regions. How can a parallel system take advantage

of the near-neighbor connectivity of regions with

multiple obstacles while still allowing distantly

connected regions to correctly influence one anoth-

er? An intelligent algorithm for positioning region

boundaries should take into account the underlying

mechanics of the game that may or may not allow

one point to influence another.

Data exchange
One way to help address the problems of strong

connectivity is to introduce a global, shared message

space, or whiteboard, for communication between

portions of the parallel system. In the most extreme

case, if every one of n servers was responsible for a

region of the world connected to some region on

every other server, connecting the servers directly to

one another would result in O(n
2
) connections

across the network, or n� 1 per server. Introducing

a single whiteboard as an intermediary, however,

reduces the total connections to O(n), or one per

server. Of course, this improvement comes at the

cost of increasing latency in sending messages and

limiting the collective bandwidth of all communi-

cation channels in the system to that of the

whiteboard. A more scalable approach is to use a

number of whiteboards, each responsible for for-

warding messages between a set of servers that are

nearby (in the sense of game-world regions). Each

server then needs to connect only to several white-

boards.

Partition granularity
A key problem involved in the partitioning of the

game world is choosing the degree to which the

world is subdivided. For a one-time or static

partitioning of the game world, a significant trade-

off must be made. If too few regions are used, then

fewer servers may be used, but regions can become

overloaded with players and other active entities. If

too many regions are chosen, the area of the game

world covered by a region becomes quite small.

While this allows for more servers to be used, it can

result in excessive data exchange among servers due

to the number of regions connected to each region;

player movement between servers will be very

frequent, and other game entities, such as weapons

fire, will be required to cross numerous servers. A

practical strategy for choosing a partitioning gran-

ularity takes into consideration the maximum

number of servers upon which the game will be

hosted, the complexity of the interconnectedness of

regions, and features specific to the game that affect

event propagation and generation.

& A key problem involved in the
partitioning of the game world is
choosing the degree to which
the world is subdivided. &

Although some effort at selecting an optimal

allocation of servers and assignment of regions can

be made before launching the game, such choices

become outdated and invalid quickly as the result of

game play. Thus, to achieve and maintain an

optimal use of servers requires adaptive reassign-

ment of regions and reallocation of servers (adding

and removing) during game play. This is because
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server load arises primarily from the players active

on a server and the players moving within the game

world—and thus moving between servers. These

activities can continuously change the optimal

assignment of regions and use of servers.

Latency

Apart from the issues arising from the topology of

the game world, MMOGs have another set of distinct

challenges. These derive from the interactive nature

of games. One would like the solution of a scientific

problem to be completed as soon as possible, but the

precise time taken by each successive step is not

typically a concern. Games, however, have stringent

constraints on the time taken to compute successive

states of the world and the latency in client/server

communications. This is especially true because it is

normally necessary to perform all game ‘‘physics’’

(evaluation of the rules of the game world) on

servers to prevent players from cheating by altering

their client software. Consider the sequence of

events triggered in a typical game when a player

moves forward. After the user chooses to move and

presses the corresponding key, the command is sent

to the server, which computes the movement, and

the new position of the player is then sent back to

the client. Players do not get any visual feedback

that they have moved until this round-trip commu-

nication has taken place. Players are sensitive to

delays in this feedback loop as small as tens of

milliseconds. To address this sensitivity during

periods of unusually high latency, the Quake II

client attempts to predict the server response to

provide feedback to the user sooner. However, this

prediction is error-prone and considered a last

resort.

These latency requirements significantly constrain

parallel architectures for MMOGs. If a distributed

architecture requires switching of network connec-

tions between clients and servers or transmission of

game objects such as players or projectiles between

servers, those transitions must take place in a time

frame sufficiently short to allow a seamless user

experience.

One strategy to reduce critical latencies is to treat

aspects of the system as asynchronous. Rather than

having every server act in lockstep, exchanging

messages at regular intervals, as is essential in

scientific simulations, it can be advantageous to

allow different components of the system to run

freely, sending each other events as soon as the need

arises. In a system for running MMOGs on multiple

servers, this may mean allowing the servers to

generate states of their portion of the world out of

sync with each other and to send each other

messages as soon as it is useful to do so.

QUAKE II

Quake II is a popular multiplayer (but not massively

multiplayer) game developed by id Software. Re-

leased in late 1997, it is representative of the genre

of games known as first person shooters—games in

which the player is presented with a three-dimen-

sional (3D) view rendered from the perspective of

the game character and whose action is centered on

the player firing weapons at adversaries. Like most

other first person shooters (FPSes), multiplayer

games in Quake II take the form of death matches, in

which players run around a level composed of

rooms, tunnels, and outdoor areas attempting to

shoot and kill their opponents. Although almost

seven years old, Quake II is particularly represen-

tative of many online games. Its engine has been

used in a number of other well-known games

including Valve Half-Life**
10,11

, Xatrix Kingpin: Life

of Crime**,
16

and Soldier of Fortune**.
17

Also, its

engine is architecturally similar to that of the more

recent Quake III**.
12

More important, id Software

released the complete source code under the GNU

General Public License (GPL) in 2001, allowing us to

modify it for research purposes. The engine is

written in a combination of highly optimized C and

x86 assembly.

Multiplayer games in Quake II are run by a single

server. All network communications are over User

Datagram Protocol (UDP). The designers of the

Quake II network protocol chose to use UDP to

reduce latency and also because it is not useful to

retransmit some time-sensitive messages. For ex-

ample, suppose a Quake II server sends a client an

update on the state of the world so the client may

render it, but the packets are lost. By the time the

client could discover that the packets were dropped

and request that the server retransmit, the server

would have likely generated the next state of the

world. Rather than retransmitting, the server should

send the most recent information.

All game logic and physics are carried out on the

server; the client is essentially a graphics-rendering

and client-input engine. The client continuously
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sends packets to the server with the state of the user

keys and mouse position. The server keeps all game-

state information and sends clients updated posi-

tions and appearances of entities in the game world

10 times per second, or every 100 ms. To make

motion appear smooth, the client interpolates

between the updates in the 10 Hz stream. In

moments of unusually high latency, the client also

attempts to predict the contents of the next sever

update, but this is error-prone and considered a last

resort.

We now give a few more details of the production

and structure of Quake II levels, which will be useful

later. A number of levels were developed by id

Software and shipped with the game, and many

more have been created by players. Levels (self-

contained scenarios within the game) can be

downloaded from the Internet and loaded into the

game at runtime. After the geometry of a level has

been created using specialized map creation tools,

the positions and orientations of walls and other

surfaces in the level are used to create a binary space

partitioning (BSP) tree. The BSP tree divides the

entire level into a number of small, irregular

(usually), convex polyhedrons, each of which

corresponds to a leaf in the tree. These BSP leaves

are further organized into leaf collections composed

of several adjacent leaves. A typical leaf collection

may be the size of a portion of a room. After the leaf

collections have been generated, each pair of leaf

collections is checked for the presence of line-of-

sight visibility between them, and this relation is

stored in the level with the leaf collections.

OPTIMALGRID

IBM OptimalGrid technology is research middleware

designed to hide the complexity of creating, man-

aging, and running, large-scale parallel applications

on any kind of heterogeneous computational grid.

OptimalGrid was created, in particular, to address

scientific and technical computing problems that are

parallel and connected, that is to say, not massively

parallel. However, the OptimalGrid object model is

general enough to handle a wide variety of other

coupled parallel applications, including MMOGs and

massively multiplayer online role-playing games

(MMORPGs). OptimalGrid automates the task of

resource allocation on a computational utility or grid

to optimize the performance of running applications.

It efficiently and automatically partitions a given

problem throughout a large collection of computer

resources and manages communication between the

nodes. It also adjusts to the dynamic grid environ-

ment by providing autonomic functionality in the

middleware layer to re-optimize the complexity of

running problem pieces to match the changing

landscape of resource capabilities on a grid.

OptimalGrid’s runtime model uses three different

services that are placed on computers in the grid:

autonomic program manager (APM), computer

agents (CAs), and TSpaces servers. The APM over-

sees the execution of the application and contains

any load-balancing and global-scheduling control

used by an application. The APM directs the work

assigned to and executed by each of the CAs. CAs

hold and execute the work units assigned to them by

the APM. Each CA has a variable problem partition

(VPP), which is the set of work units assigned to the

CA. The size of this set can be varied by the APM—

hence its name.

Communication between grid nodes is accom-

plished by exchanging messages with a set of one or

more distributed whiteboards. This distributed

Linda
18,19

model for communication is embodied in

IBM TSpaces
20

technology. Communication by

reading messages from or writing messages to a

whiteboard server has some additional overhead,

but offers several important advantages:

1. The whiteboard is both a communication system

and an in-memory database. This greatly sim-

plifies the implementation of both load balancing

and fault tolerances. It also allows caching,

staging, and checkpointing of persistent data

(that may reside in a relational database).

2. In a highly connected problem, a whiteboard

model can actually reduce the load. If each

problem piece must exchange data with

N neighbors, a peer-to-peer architecture requires

N � 1 connections per node. In a distributed

whiteboard architecture, each node reads from

one whiteboard and writes to n whiteboards,

where n ,, N.

3. When the communication load is high, Optimal-

Grid takes advantage of the TSpaces multiread

and multiwrite operations that group messages,

thus lowering overall message traffic. So long as

the computational load is correctly balanced with

the communication cost, this can actually lower

the application back-end latency. When the

communication load is very low, OptimalGrid

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 DEEN ET AL. 25



takes advantage of a wait-to-read or wait-to-take

mode. Thus nodes can register for callbacks and

receive data only when it is available, reducing

network load by eliminating query overhead.

OptimalGrid does not preclude the use of other peer-

to-peer communication modes, and one can even

locate a whiteboard on each grid node and perform

all reads from main memory. However, we found

that even for an FPS application like Quake II,

communication through a set of distributed white-

boards delivers adequate or even excellent per-

formance with good scalability.

The OptimalGrid object model assumes that an

application can be described as a graph where the

nodes on the graph contain data, methods, and

pointers to neighbors. In OptimalGrid terminology,

these nodes are called original problem cells (OPCs).

OPCs are the ‘‘atomic’’ problem units or the smallest

pieces of a problem that represent a unit of

computation. In general, OPCs interact with their

neighbors, sharing information to produce a larger,

big-picture computation. Therefore, an OPC must

communicate its state with its neighboring OPCs.

During load time, OPCs are grouped into collections.

These collections are precomputed and have pre-

defined dependencies on other collections. Each

computational node is assigned one or more OPC

collections. This defines both the computational

workload and the communication workload (the

collection edges) for that node. The partitioning of

the entire initial set of OPCs into collections and the

assignment of OPC collections to actual computers

on the grid must minimize the overall processing

time. The VPP for each CA is assigned zero or more

OPC collections, the actual number of which is

changeable through a load-balancing operation by

the APM. Thus, a computer runs a CA that holds a

VPP, which in turn holds zero or more OPC

collections that are each made up of one or more

OPCs.

Processing time is composed of three components:

computation time, communication time, and, in the

case of synchronous applications, idle time. To

efficiently parallelize the application, the ratio of

computation to communication for each node must

be minimized.

The computation time per server is primarily a

function of the number of players within the server

OPCs. When the OPCs are initially partitioned into

collections, however, we cannot know precisely

where players will be positioned; therefore, we

attempt to balance the area of the game world

within OPCs, OPC collections, and servers as an

approximation.

Additionally, when distributing OPC collections

among servers, we wish to give each server a set of

adjacent collections in order to minimize transfers of

players and other game entities between servers.

Given these considerations, the BSP-tree leaf col-

lections of a Quake II level are a natural choice for

the OPCs. To group the OPCs into collections, we

place them into an octree. (An octree is a tree data

structure that organizes 3-dimensional space. Each

node represents a cuboid volume and has eight

children.) The nodes of the octree are recursively

subdivided until the number of nodes reaches the

desired number of OPC collections. Each time it is

necessary to divide a node, the largest node is

selected. The resulting collections are then approx-

imately equal in size and consist of spatially

adjacent OPCs. An OPC collection is considered to

be dependent on another collection if there is line-

of-sight visibility between an OPC in the first

collection and an OPC in the second collection. This

is determined by checking for visibility between the

corresponding leaf collections, as stored with the

level by the Quake II map-creation tools. This

method was tuned to ensure that the resulting OPC

collections were small enough that a server could

handle at least several (even at their busiest in terms

of player presence and activity). Larger OPC

collections may result in the inability to effectively

balance the load among servers. As a side note, for a

game to be effectively parallelized and run on grid

middleware, it must provide some hints about the

connectivity among locations in the game world.

Quake II does this by providing the line-of-sight

visibility information between its leaf clusters within

the map file.

At runtime the grid nodes report their real-time

performance data. This data is collected by the

OptimalGrid load balancer, which watches over the

running parallel application and attempts to balance

the load across the computational nodes. This task is

accomplished by reassigning OPC collections from

loaded to less busy machines so as to harmonize the

workload across the servers being used by the game.
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The actual OPC collection to be moved should be

chosen with great care. The estimated communica-

tion overhead should be low relative to the expected

gain in computation time so that the overall

performance gain will be beneficial. Additionally, if

all the available servers are being used to the limit of

their reasonable capacity, the system can add new

servers to meet demand. Likewise, when the servers

supporting the game world are underutilized, the

world can be consolidated onto fewer servers,

freeing those that are no longer needed to meet

demand.

In Figure 1A we show a fragment of a BSP tree. The

root node of the tree represents the first partitioning

of the world space of the game into two halves,

separated by a plane. Each internal node represents

one half the space represented by its parent node

and also splits this space into two halves for its

children. The leaves of the tree do not introduce any

additional splitting of the space. In Quake II, the BSP

leaf nodes can represent a relatively small space

compared with the size of typical game objects

(such as players), so they are quite numerous.

Therefore, the game defines leaf clusters to be

groupings of leaf nodes that share common attri-

butes, such as visibility information. The game map

format contains this BSP tree along with information

about the relevant relationships among leaf clusters.

In our system, we create a one-to-one mapping

between leaf clusters and OPCs. When we form OPC

collections, we use the information the map file

provides us about leaf clusters to guide us in

creating edges between OPC collections. An example

fragment of the graph of connected OPC collections

is shown in Figure 1B. In practice the Quake II map

file is generous in associating leaf clusters for

visibility, and as a result, the graphs of connected

OPC collections approach completeness (a graph is

complete when every pair of nodes is connected).

Because this is undesirable for distribution, we

employ stricter heuristics to determine which OPC

collections should be connected.

SYSTEM OVERVIEW

Figure 2 illustrates the core components that make

up OptimalGrid and the components that comprise

the Quake II game environment running on Opti-

malGrid. The following describes each of these

components and conceptual elements and its role in

the overall system.

� Autonomic program manager—A service respon-

sible for coordinating the start up and operation of

a distributed program. In this case, the APM

coordinates the distributed game and can be used

to manage its computing resources and dynam-

ically adjust allocations of these resources during

the game.
� Back-end boundary—Defines the boundary be-

tween the infrastructure of the grid and the outside

world. Things on the inner side of this boundary

are assumed to be owned and operated by the

party hosting the distributed game; clients outside

of this boundary could potentially be anyone with

access to the system proxies and a copy of the

game client.
� Bot (short for robot)—A modified game client that

is given enough artificial intelligence to wander

about the game world, stressing the system

infrastructure in the process. Bots are meant to

simulate clients when enough players are not

X
Y

AA

B

DE

F

C

HG

A B C

A

B

BSP Node

BSP Leaf Cluster (OPC)

OPC (BSP Leaf Cluster)

 OPC Collection

Figure 1
Mapping: (A) Binary space partition (BSP) tree to 
IBM OptimalGrid original problem cells (OPCs); 
(B) BSP leaf clusters to OptimalGrid OPC collections.
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available or when there is a need to control

participation in the game for testing and debug-

ging purposes.
� Client—A human user not necessarily associated

with the hosts of the distributed game. The clients

represented in Figure 2 can be game clients in the

sense of software connecting to the proxies via a

network connection and human users interacting

with the system . . . and ultimately the virtual

game world.
� Compute agent (CA)—OptimalGrid terminology

for a network node with a piece of the grid

application problem. In this case, the problem is

hosting the game world, and having a piece of that

problem means being responsible for a region of

that virtual world and everything that moves

through it. The CA is a component made of both

general OptimalGrid logic and application-specific

logic. In our case, this is logic that pertains to

hosting a Quake II server instance.
� CA process—A Sun Java** process that extends

and ultimately uses the OptimalGrid code base to

run application-specific logic. In our case, this is

logic to interface the CA to an associated Quake II

server instance.
� Game server—A term we use to refer to a CA or CA

process given the task of running an instance of

the Quake II server. We usually talk about game

servers in a context in which we need to refer to

them collectively, or in the context of other

components of our system.
� Console—A visual tool used by a human to see

and manipulate the current state of the game on

the grid. (It is labeled on Figure 2 as grid-eye view

[GEV].) Using this tool, a user can see which CA

nodes are currently hosting pieces of the game

Proxy

Proxy Filter

Bot

Client Client Client

Proxy
Pool

Figure 2
System components and communication paths

TSpaces
Server

APM

CA Quake II Server

CA Process

Game (UDP)

CA Quake II Server

CA Process

Back-end Boundary

Game
Server
Pool

TSpaces
Server
Pool

Viewer
Pool

Control
(Transmission Control Protocol)

Distinct services or processes 
running on computers 

Grouping of processes 
and the computers they 
run on (when there can be 
more than one computer)

Bot
Pool

GEV
Scheduler
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world, how those pieces are arranged, and where

players and projectiles are in respect to them. A

user at the console also has the option of moving

game-world pieces among the game server pool to

demonstrate the overall ability of the system to

handle the world in a dynamic way.
� Proxy—A lightweight networking daemon written

in the C language to perform various tasks relating

to interfacing a pool of game clients with a pool of

potential servers. Among other things, it filters

and routes the game traffic between these two

pools by using information about the current

distribution of the game world and the current set

of game servers in the game server pool.
� Proxy filter—Interfaces the proxy (written in the C

language) to a Java-based TSpaces communica-

tion system. Using this interface, the proxy gets

initialization information about the game world as

well as updates about changes to the server and

proxy pools.
� Quake II server—An instance of a Quake II game

server modified to work under the control of

OptimalGrid.
� Scheduler—A pluggable unit that can be either

general or application-specific, which gives the

APM logic the ability to balance the load on the

grid that it is managing.
� TSpaces server—An implementation of the Linda

model for representing persistent shared state

among distributed nodes through spaces holding

tuples. These tuples collectively hold all the

information necessary to coordinate the operation

of the system and keep its current state.
� Tuple space—A whiteboard space on a TSpaces

server for holding tuples. The Linda model defines

operations for reading and writing tuples in these

spaces, as well as making queries for tuples

meeting some match criteria.

DESIGN ASSUMPTIONS AND DECISIONS
We started with a small set of assumptions about

how the system would be composed and what it

ought to be capable of when we were finished. The

following are our initial assumptions:

1. The use of Quake II as our proof-of-concept game

server and client was chosen because it was

available under the GNU GPL; it was simple

enough to rework in a short period of time; and it

was fast-paced enough to make perceivable lags

in our underlying infrastructure detectable,

which was important to demonstrate that our

solution was capable of meeting the performance

needs of games.

2. The use of OptimalGrid as our grid middleware

technology was chosen because of its inherent

ability to scale systems across a grid and provide

the needed communications and load-balancing

technology to make the game world both

distributed and dynamic.

3. The use of TSpaces was chosen because it was

already used by the OptimalGrid system for

communication, and it provided a scalable

communication system for managing the game-

system global state across all the individual nodes

of the grid.

We would make only the most minimal mod-

ifications to the Quake II server and client. Our

intention was to demonstrate the application of

grid technology to online games, not to create a

new and improved Quake II engine.

By deciding to grid-enable an online game, we

committed to having many game servers, many

proxies, and many TSpaces servers.

& We would make only the most
minimal modifications to the
Quake II server and client. &

Server boundaries

One problem with splitting a once single-server

game into distributed pieces is that the game space

now has boundaries and, as objects like players and

projectiles move through game space, they need to

be able to see across and move across server

boundaries. A popular solution to this problem is to

make each section of the game world cleanly

divisible from the rest and small enough to exist on

a single server. This means, however, that there is

no way for the player to see what is happening on a

server without actually being in the region of the

game world on the server. It also means using a

contrived map that just connects otherwise disjoint

game worlds through some kind of game element

like a door or teleportation device. Because the map

is contrived so that the state of each server is self-

contained, there is no communication issue among

the pools of game servers and game clients. Just as

with a single game server for a set of clients, the
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system has a one-to-many mapping between game

servers and game clients.

We did not want to create or use contrived maps,

nor did we want just to devise a system that had no

state dependencies among the system game servers.

To have a satisfying and general solution required

the division of a premade world into a form that

could be managed by many servers.

Following the OptimalGrid approach, we created a

problem builder to make this splitting a start-time

process that happens only when the system is

initialized. Thus, before the game world is adopted

by the game servers, it is split into indivisible units

that we call areas. These areas, as they are

implemented in our system, correspond to the

OptimalGrid concept of an OPC collection. One or

more areas are then allocated to each of the active

game servers. Once defined, these areas do not

change shape or size, but the assignment of areas to

game servers can change. As load-balancing occurs,

areas are traded among game servers, and the

collections are thus redefined. Any two areas that

are adjacent in the original game world but are

grouped apart on separate servers constitute a

server boundary. The problem builder and the

dynamic load-balancing algorithms can identify

which areas are mutually visible and, whenever

possible, server boundaries are chosen to minimize

both the surface area and visible interfaces between

the servers. There are, however, always some

visible connections. This boundary is literally a

surface in the map (usually a plane) that separates

area volumes managed by separate servers. When a

game object, such as a player or projectile, crosses

such a boundary that separates server S
a

from server

S
b
, S

a
must remove the game object from its state

and communicate its arrival and relevant associated

state to S
b
.

In Figure 3 we show a simple game world of six

areas managed by four game servers. Solid lines

illustrate areas grouped on the same server that are

mutually visible and connected, and dotted lines

show connections to areas placed on other servers.

We needed to address the problems associated with

allowing paths of visibility and influence to cross

such server boundaries. Say, for example, that a

player in area A
2

is facing into A
3
, and something in

A
3

is moving or otherwise changing state. S
b

needs a

way of keeping players up to date who are currently

in S
a

areas.

Proxy

In principle, game servers and game clients could

talk to each other directly, as they do in the original

Quake II game design, but this would introduce

some drawbacks. In the original design, there is

exactly one server managing the game world of one

or more clients. In our system, we assume there can

be both many clients and many servers. Having

clients and servers talk directly would require

connection-switching logic in the game client, which

had already been written under the assumption that

there was only a single game server.

Additionally, forcing direct contact between clients

and servers means potentially exposing much of the

internal infrastructure. This certainly includes game

servers, but it also includes other services not used

directly by the game clients, that is, services used by

the grid infrastructure as it communicates internally

and manages its subsystems. Exposing these sys-

tems means giving them addresses that are acces-

sible from all potential game clients, which may

include the entire Internet. In some cases this may

be acceptable, but it would also be desirable to

completely hide these machines from the end user

both for security and for added indirection and

abstraction of the grid system working behind the

scenes. We thus implemented an intermediary

proxy to manage the many-to-many connectivity

that is required when more than one server is used.

Sa

A4

Sb Sc

Sd

A2

A1

A5

A6

A3

Figure 3
Game map partitioned into six areas (A2–6) and 
distributed among four game servers, Sa–d
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This approach, and the alternative direct connection

approach, are illustrated in Figure 4.

In Quake II, the game server generates a new world

state every 0.1 second. At this same rate, the server

must send this state to all of the clients that need it.

In our system, this includes both clients that are in

the region of responsibility of this server and clients

that can ‘‘see’’ into this region. Without a proxy, it is

difficult for the server to get this information to the

right clients without having to keep a lot of

repetitive information. For example, it must know

about clients that it is not managing directly so that

it can send updates to them. As an alternative, the

server could send its state to neighboring servers,

which could then forward it to the clients that they

are managing, but this approach again requires

servers to be responsible for keeping other servers

informed about their continually changing state.

In our system, we eliminate this complication by

placing a pool of proxies between the clients and

servers. When a client wants to play the game, it

selects a proxy, connects to it, and stays connected

to it even as the player traverses the game world.

The proxy performs the act of connecting to the

game server responsible for the region of the world

in which the player is located. As the player moves

through the world, and hence into areas managed by

different servers, the proxy moves its connection for

the client to the appropriate server. The proxy is

aware of the regions of the world visible to the

player, and thus connects to the servers holding

those regions. It then filters out messages relating to

areas not visible to the player, but passes along, in

an integrated stream of updates, any messages from

visible areas, regardless of the server from which

they originated. In the implementation described

here, the proxy is not fault-tolerant. If a given proxy

fails in this implementation, those players connected

to it are disconnected from the game, but the game

continues to run without them. Implementation of a

fault-tolerant proxy was considered beyond the

scope of the project goals; however, either addi-

tional logic could be easily added to the game client

to support automated failover, or some form of

manipulation of network address or routing tables to

the proxy pool could be used, as is done with Web

servers, to provide failover.

The proxy can be thought of as a sort of multiplexer/

demultiplexer. A single proxy allows a set of game

servers and a set of game clients to communicate

with one another while minimizing the necessary

design and code modifications to either set. This

means we can afford to have a simpler client, as the

client does not have to be knowledgeable about the

underlying network back end, nor does it need to

know how to continually switch its connection

across this back end. It also means that the back end

can be totally inaccessible to the outside world, as

long as the pool of proxies is accessible and these

proxies can reach the back end. Finally, we can

improve game-state updates. Proxies can handle the

task of aggregating game-state information from all

the various servers and ensuring that each client

gets the exact information it needs, depending on its

location and the visibility associated with that

location.

Figure 4 
Back end connections: (A) When clients and servers are connected directly, the back end is exposed, and the 
number of required connections is large; (B) when a proxy (or set of proxies) couple clients and servers, the back 
end can remain private, and the proxies can multiplex connections between clients and servers.

A B

Server Server

Client Client Client

ServerServer

Client Client Client

Proxy
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Proxy alternatives

Alternative architectures that do not use a proxy are

possible, though each has its own drawbacks. One

alternative is to merge the proxy logic into the client

itself. With the client responsible for managing its

own connection switching, the need for a proxy pool

would be eliminated. This would additionally

eliminate the filtering of game updates sent to the

client (passing only those from regions visible to the

player), thus significantly increasing message traffic

and bandwidth requirements between the client and

the game servers. To alleviate this, servers could

have additional logic added to perform some

message filtering to clients, but this approach would

increase the computational load on the game

servers, reducing the number of players or the size

of the world region each could host.

Another alternative is having a sticky server, that is,

clients never switch connections; they connect to a

server and stay connected. The game server itself

performs the switching by allowing the client to

tunnel through it as it moves through the game

world. The drawback with this is that now a

machine is acting as both a proxy and game server,

when really they should be separate tasks. What

happens when this game server goes down or the

administrator wants to take it off the network? It is

managing not only a piece of the game world, which

can be moved to another grid node, but it is also

acting as a proxy for some clients as well. This

design is less robust, as clients may not have the

logic necessary to switch proxies midstride, and if

this is the case, shutting down a sticky game server

will result in disconnections, even if the game state

of that server is transferred.

Game server

When Quake II is deployed onto OptimalGrid, it runs

as a child process of the OptimalGrid CA, which is a

service that encapsulates and manages the respon-

sibilities and resources of a grid node. In Figure 5A

we illustrate how a game server is made up of two

layers. The CA process—an application-specific Java

process—is the lower layer and has a communica-

tion path to TSpaces, and with it, the rest of

OptimalGrid. The upper layer is an instance of the

Quake II server, which has a communication path to

its clients via the proxy pool. The two layers of the

game server communicate via an interprocess

communications (IPC) mechanism that allows

events and data to be sent and received. This

mechanism couples the two processes written in

different source languages and running in different

runtime environments—the Java Virtual Machine

(JVM**) and the native machine.

Interserver communication

Figure 5B illustrates the connection of two servers

via TSpaces. When a game object crosses a server

Figure 5  
Communication: (A) Game server composed of two subcomponents, Quake II server and a CA connected
by an interprocess communication (IPC) mechanism; (B) two game servers communicating by means of
a TSpaces whiteboard.

Proxies

TSpaces

Proxies ProxiesA B

CA Quake II

IPC

CA Process

CA A

CA Process

CA B Quake II

CA Process
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Quake II
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boundary, that object state needs to be communi-

cated from the original server S
1

to the new server S
2

very quickly and reliably. This transfer process

happens in the following steps:

1. Game object P moves from game area A
1

through

the game space on S
1
, and its new game area A

2
is

noted. Every time a game object moves into a

new BSP-tree leaf cluster, the Quake II server

notifies the CA of a possible need to transfer the

game object.

2. Area A
2

is known to be on another server S
2
.

Therefore S
1

begins the dump sequence to

remove P from its state and place it into TSpaces

for S
2
.

3. The Quake II process on S
1

removes P, serializes

it, and sends it to its CA process on S
1

through an

IPC mechanism.

4. The CA process places the serialized copy of P in

a Java object, which is put into TSpaces.

5. The CA process of S
2

retrieves a tuple from

TSpaces containing a Java object holding P.

6. From this Java object, the CA process extracts the

serialized version of P and sends this version to

its own Quake II process on S
2
.

7. The Quake II process on S
2

deserializes P and

places P back into the game world in its new

position in A
2
.

Quake II modifications

To give the Quake II server the mechanisms to

manage only portions of the game world, when

before it assumed control over it entirely, several

extensions and modifications were necessary.

Although we tried to avoid it, some minor changes

to the Quake II client were also necessary, although

these ended up being trivial and in the end did not

alter much of the logic or behavior of the client:

� Entity serialization and deserialization midgame
� Map-file interpretation and partitioning
� Packet size maximum reached; extended the

upper limit of the client packet size
� Game frame numbers translated and rewritten in

proxy
� Packet sequence numbers translated and rewritten

in proxy
� Game updates constructed in game server on a

per-area basis as well as a per-client basis
� Game updates about areas from game servers

routed by proxy to applicable clients

Proxy state

The proxy needs to maintain some routing infor-

mation as its current state to properly route packets

between the game servers and game clients. Routing

a game packet is then a simple function of this state.

After examining what was required to route the

Quake II protocol, we found that several tables (lists

of associations) needed to be kept current to route

game traffic between clients and servers.

For the game updates that are created and delivered

for each simulation frame of the game world, we

need client-to-area mapping M
CA

and area-to-area

mapping, M
AA

. For client messages that provide

player input and commands to their corresponding

game servers, we need client-to-server mapping,

M
CS

.

M
AA

is static and an inherent property of the map

and its current partitioning into swappable units.

These units (which the proxy calls areas) are then

distributed as responsibilities among the game

servers and can later be traded between them in the

process of load balancing. M
AA

is unique because

this part of the proxy state is static. The other

mappings needed for routing are subject to change

throughout the course of the game.

We take a common approach to keeping these

mutable mappings up to date by putting their

continually changing pairings in each update that is

sent from the game servers to the proxies. For

example, to keep M
CA

up to date, we allow the

servers to tag each client-specific message with the

client’s current area location. This avoids the need

for explicit updates about clients’ area changes,

which tend to happen often as the clients transverse

the virtual game world, but it also sidesteps another

issue: all the traffic coming directly from the game

servers to the proxy is, by default, unreliable.

Because the datagrams that make up these messages

can be lost by the underlying network stack, we

would have to invent or adopt some kind of

reliability layer to prevent our updates from getting

lost. By tagging every client update with the client’s

current area, we avoid this problem.

The other dynamic mappings are maintained this

way as well. As the flow of game traffic comes into

the proxies from the game servers, the game servers

prefix a header for the proxy with pieces of the

current state of the proxy state mappings. The actual

data that appears in the header corresponds to the
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type of the game update packet being sent. For

client-specific packets, client-routing data is pre-

fixed. For area-specific updates, area-routing data is

prefixed. The overhead of this data is minimal (eight

bytes), but it allows the proxy state to remain

current at all times and to cope with any disruptive

properties of the underlying unreliable UDP, which

does not include error detection or recovery/replay.

The state of each game entity is sent to every client

that needs it in each frame of the game. This enables

the proxies and modified game servers to accom-

plish the task of making a once-centralized world

that is now split across many servers acting in

concert.

Global views
Once the system is running, observing exactly what

is going on from some global world view is a

desirable administrative function. Without such a

view, the only graphical view an administrator has

of the game world is through a game client, and the

only view of the game world’s current occupation of

the grid is by snooping about the communications

between the grid components. What is needed is a

snapshot of the state of the grid for a developer or

administrator and a conceptual view of a working

grid system for a newcomer.

We accomplish this by aggregating the problem

state and responsibility of each grid node and

presenting this aggregation graphically. This global

viewing client, called the console or grid-eye view

(and labeled GEV in Figure 2), provides this

function. Using the console, we can see what, if any,

responsibility has been given to each node in the

running system, and we can see the human players

or game bots active in the system and their location

in the game world. From this view, we collapse

many layers of abstraction: from physical machines,

to grid services, to problem pieces, to game notions

like map sections and players. Furthermore, our

console gives us the ability to issue commands and

query statuses for each node in the system. This

includes the ability to dynamically move the game-

world pieces between the participating grid nodes.

An explanation of the supported operations is given

in the next section, ‘‘Load balancing.’’

LOAD BALANCING

The architecture for Quake II on a grid thus far has

not dealt with dynamically reconfiguring the use

and number of servers in response to system load. In

our architecture, OptimalGrid CAs are responsible

for starting and stopping Quake II servers and for

moving player and game objects between servers.

There remains one more important feature provided

by CAs: load balancing.

In the OptimalGrid core design, each CA is assigned

a task set or VPP holding OPC collections. In Quake

II terminology, an OPC collection represents an area

in the Quake II world map, and a VPP represents a

region composed of connected areas.

& Load-balancing operations
occur on demand as the APM
identifies a suboptimal
distribution of load across the
grid. &

In the OptimalGrid architecture, load balancing is

achieved by migrating an OPC collection from the

VPP on one CA to another. In the case of Quake II,

this operation translates to adding or removing areas

from the region controlled by a particular server.

Entities in a migrated area are dropped by the server

that formerly owned that area and are picked up by

the server that now assumes responsibility for that

area, similar to the operation that takes place when

an entity crosses a region boundary.

Originally, OptimalGrid was designed to support

scientific applications, which typically follow a

synchronous model of communication. This syn-

chronous mode of operation as supported by

OptimalGrid is based on stages of computation; that

is, no communication occurs between the CAs,

followed by a stage of information exchange. This

information exchange is required for the next stage

to begin, providing a natural synchronization point

for the grid application. OptimalGrid uses this

feature to collect performance data and redistribute

the workload accordingly. Quake II, on the other

hand, is an asynchronous application. Interaction

between different CAs is predicated on user inter-

action (entities moving from one region to another),

which does not occur at regular intervals and does

not involve all the CAs at the same time. We

therefore must artificially synchronize the various

CAs when reconfiguration occurs.
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Synchronization is required to maintain consistency

of the application state. To demonstrate this

consideration, let us examine a simple scenario in

which one player P
a

is throwing a hand grenade at a

second player P
b
. The two players are located in two

separate regions of the world map controlled by two

different servers, S
a

and S
b

respectively. At this

instant, the APM has decided to balance the system

load and the problem is being repartitioned. It so

happens that the OPC collection in which player P
b

is located is now being reassigned to a third server.

Let us assume that P
a
’s grenade in the original

single-server setting would indeed hit P
b
. In the case

of a grid, without additional synchronization, the

grenade may or may not hit P
b
, depending on timing

(i.e., a race condition exists). If, at the time when the

grenade crosses the boundary of S
a
’s region, P

b
’s

area is already assigned to the new server S
c

but the

player P
b

himself has not yet been transferred from

S
b

to S
c
, the grenade will appear to have missed

player P
b
. If, on the other hand, the grenade crosses

S
a
’s boundary either before the transfer of P

b
’s area

occurs or after it is completed, the grenade will

indeed appear to have hit P
b
, as in the single-server

case. Such a condition is obviously unacceptable to

Quake II users.

We have chosen to implement synchronization of

the servers by freezing entities that take part in an

inter-region interaction that involves a region which

is being migrated for as long as the migration

operation is in progress. This ensures that any

additional inter-region activity is either wholly

completed before the migration takes place or is

delayed until after all the regions and their entities

are picked up by their newly assigned CAs.

Obviously, this is a trade-off solution that favors

consistency over real-time performance. However,

because the Quake II clients are designed to operate

in an environment in which communication be-

tween the server and client may be intermittent and

because the client maintains a map of the complete

world, the client can interpolate between the world

state updates to smooth out these freezes to the

user. This greatly mitigates the effects of the freezes

on the end user.

The load-balancing operations could be imple-

mented in terms of contraction and expansion

operations on the regions controlled by the servers.

When a server’s region is expanded, it is reconfig-

ured to take on responsibility for the new areas

added to it.

Entities in that area are then migrated to the

expanded server, and finally the server that pre-

viously controlled this area has its region con-

tracted. This solution, however, is Quake II-specific,

in contrast to our solution that is built around

OptimalGrid. We have chosen to implement the

load-balancing operations in a more transparent

way as far as the server code is concerned. Instead

of modifying the region controlled by an already

active server, our scheme creates a new server

(under its own CA) that is started with a config-

uration appropriate for controlling the newly modi-

fied region. Then, entities in the region in the

existing server are migrated to the new server.

Finally, any superseded servers, which now control

no entities, are shut down.

This solution has higher overhead because of the

need to start new servers, and it also requires better

management and knowledge of the grid configura-

tion because new servers are started on a different

machine. However, this solution is more generic and

does not rely on the ability of individual servers to

be reconfigured on the fly. It is also much better

from a game-play point of view as the client game

play is not interrupted by expansion, contraction, or

server replacement.

Figure 6 demonstrates a repartition operation. On

the upper half of the figure, we see S
a

and S
b
, where

S
a

controls an area R3 that is about to be reassigned

to S
b
. To perform the repartitioning operation, two

new Quake servers are allocated, S
a0 and S

b0. The

configuration of the two new servers is the config-

uration that S
a

and S
b

would have, respectively,

after the repartition operation is completed. S
a

and

S
b

drop all the entities in the areas they controlled,

and the new servers S
a0 and S

b0 pick up the entities.

After the operation is completed, the old S
a

and S
b

are shut down.

Load-balancing operations occur on demand as the

APM identifies a suboptimal distribution of load

across the grid. Identifying the ideal load distribu-

tion in the general case is a hard problem. The CAs

report computation and communication loads at

regular intervals or on demand by the APM. The

APM uses pluggable algorithms to balance the load
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across available servers. It is then possible to

implement policies based on any number of factors

upon which optimization is desired: number of

players on a server, the activity levels of players, the

load on the CPU, and so on. In our example

implementation, one policy we implemented was

rebalancing based upon the number of players on a

server: above a given threshold, the number of

servers assigned regions expanded to two; below a

given threshold, two servers were contracted into

one.

The following explains the basic load-balancing

operations supported by the OptimalGrid infra-

structure:

� Repartition—Balance the load on a server by

reassigning a region of the world map controlled

by one server to another server. In practice, the

two old servers are shut down, and two new

servers are assigned the two new regions resulting

from the repartitioning operation. This approach

of using two new servers was chosen so that we

can ensure full initialization and synchronization

of the new servers before using them. Future

versions will likely do away with this very

conservative approach.

� Expand—Split the region set assigned to one

server into two smaller region sets and reassign

the two newly created regions to two new servers.

As with the repartition operation, we followed a

conservative strategy of not reusing the existing

server as one of the servers after the split. It is

unlikely that future versions will be this conser-

vative.

� Contract—Merge two regions controlled by two

servers into one. Reassign the newly created

region to a new server. Once again the strategy of

using a new server was chosen for this imple-

mentation.

Figure 6
Repartition operation moving regions between servers
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� Migrate—Reassign the region controlled by one

server to a new server. The old server is then shut

down.

In the case of the Quake II application, the load on

individual servers is directly related to the number

of players within the control region of the server and

is independent of the size of the control region itself.

Therefore, the load-balancing mechanism used by

the APM can be greatly simplified and based on

thresholds set for the difference between the

numbers of players in each region.

RUNTIME ENVIRONMENT

Instantiating Quake II on OptimalGrid is a carefully

orchestrated workflow across the many computers

on which the services that make up the system will

be run. Unlike a simple server running on only one

computer, Quake II on OptimalGrid has one or more

TSpaces servers, one or more CAs, one or more

proxies, one APM, and one problem builder. Addi-

tionally, one or more computers may be used to run

bots. Each of these services has build and config-

uration issues that need to be handled.

We initially created a tool to assist in setting up and

starting Quake II on OptimalGrid. This was intended

to make it easy for users to start and stop the

system. The first version of the tool was written in

Perl and was directly tied to the Quake II on

OptimalGrid application. The original version was

written in a few days and met our basic and initial

needs as developers. As Quake II on OptimalGrid

began to be used by more and more people outside

our immediate project team, the need to simplify the

configuration process for both nonexpert users and

the research team motivated us to revisit the tool.

The second version was more general. It was written

in Object-Oriented Perl and supported an external

XML (Extensible Markup Language) configuration

file.

The Quake II on OptimalGrid runtime system was

designed to work on Linux**. OptimalGrid can run

on any Java-enabled platform, but the Quake II

modifications made by the research team were done

only to the Linux version of the Quake II server. This

reduced the complexity of controlling the runtime

environment because only Linux needed to be

supported. The source for Quake II on OptimalGrid

consisted of both the Java code of OptimalGrid, the

C code of the Quake II server, and the proxy we

developed.

First runtime system

The first runtime system, written in Perl, followed a

hub-and-spoke model, where all the compilation,

configuration, and packaging into tar files was done

on the hub, then pushed (using the Linux scp tool)

to the appropriate node on the network, and then

unpacked. The services on each node were started

and stopped by means of a remote invocation of a

copy of the script on the hub by using the Linux ssh
tool. The spoke version would then directly invoke

the executable to start the service or issue the Linux

kill command to stop it. In this original version,

the specific machines that ran CAs, and thus servers,

were hard-coded into the master script. This script

was then used during the build and bundling

process to select the map partitioning that would be

used. Thus, in order to change either the specific

server assignment or the number of servers, the

source file of the script had to be edited and

completely rebuilt, followed by a complete redis-

tribution and unpacking of the system executables.

Even simple changes in the configuration were slow

and painful to make.

A consequence of doing all the builds on the one

master node is that the nodes that run the compiled

executables must have compatible runtime libraries.

Linux systems are patched regularly to incorporate

fixes and changes, particularly the GNU C compiler

libraries. For this reason, the hub node used for the

builds needed to be identical to the spoke nodes,

which would run the binaries. Although this

solution met the immediate needs of the research

team, its ongoing use revealed areas where usability

could be improved.

Second-generation runtime system

As use of the first runtime system grew beyond the

immediate research team, there were a number of

areas to improve:

� Configuration editing—Changing configuration

should only require the editing of one file. The

configuration file should be easy to edit, and it

should be programmatically verifiable for cor-

rectness. This was done by isolating all the

configuration parameters in one XML file: nodes,

node assignments, service options, and so forth.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 DEEN ET AL. 37



XML provided the ability to programmatically

verify the configuration file. This allowed us to

implement a syntax checker for the configuration

file. A detailed semantic checker could have been

created as well by using a document type

definition and a validating parser, but this was

never implemented.
� Configuration changes—The runtime system

should only need to move the updated config-

uration file, and possibly any new code required,

to each node, instead of doing a complete rebuild

on the hub node, followed by a complete

replacement of any existing code on the spoke

nodes. This requirement was met by changing

when and where the OptimalGrid problem con-

figuration was performed. In the first version, this

was done when distribution tar files for each

service were compiled and built. The tar files for

the APM and the CAs included the explicit Quake

II map partitioning for the specific number of

servers for which the system was being built.

Thus, every change to the number of servers

required a rebuild and redistribution of tar files.

This was avoided by making several changes.

First, the build process was changed so that it did

not require any specific knowledge of which

servers were being used or their number or roles.

The configuration for a specific setup was moved

into the XML configuration file. Second, the

problem builder process was modified to be run as

part of the launch sequence of the system. This

allowed the details of the system to be specified at

launch time instead of build time. Another benefit

of this was that once the executable for a service

had been installed on a node, only the config-

uration file needed to be updated when different

system setups were made.
� Build—The runtime system should be able to run

on different Linux systems. The requirement that

all the nodes be clones of the hub, or at least have

compatible runtime libraries, was very limiting.

The restriction to Linux only was not a problem,

but the restriction of all nodes being the same

distribution and version of Linux was. For

example many users wanted to run our Quake II

on OptimalGrid system, but the collection of

systems available to them on which to run would

include a heterogeneous mixture of Linux versions

and distributions, such as Red Hat** 7, Red Hat 8,

Red Hat 9, and SUSE** Linux to name a few. We

solved this by moving the compilation process of

C code from the hub node onto each of the spokes.

This did mean that when a service was set up on a

node for the first time, it was necessary to wait

while the C portions of it compiled, but this was a

one-time penalty. Subsequent starts would reuse

the previously built binaries.
� Service assignment and status—One of the limi-

tations of the original system was determining the

service assignments to nodes as coded in the script

file. To discover them, users would have to look at

the source of the Perl script. For non-Perl users,

this was not very friendly. Another limitation was

that once the system had been launched, there

was no easy way to see the status and assignment

of all the services. We solved this by introducing

two features into the system. The first feature can

parse the XML configuration file and produce a

user-friendly summary of the system configura-

tion. The second feature dynamically queries the

status of each service on each node as laid out in

the XML configuration file and returns its current

status. These two features provide easy under-

standing of the system’s configuration and real-

time status.

The new runtime system was written in Object-

Oriented Perl. A set of utility classes were created for

performing interaction with the underlying operat-

ing system and for data management. A base class

representing a generic service was created, with

subclasses created for each of the services: APM,

problem builder, CA, proxy, and bots. The use of

object-oriented design allowed for easy extension of

the system for use in other OptimalGrid applications

and beyond. New services could be added quickly

by extending the base class and implementing tasks

specific to the service, such as building, configuring,

starting, stopping, and asking for status.

Another change in the design affected how the hub

issued commands on the spoke nodes. In the

original version, the script on the hub was dupli-

cated on each spoke. It would then call its copy of

itself, using a different subroutine as its entry point.

This is how the script would determine whether it

was running on the hub or a spoke. The change we

made was to create specific scripts for the hub and

for the spokes. Following object-oriented design

principles, we then created classes and subclasses as

needed for the two sides of the conversation. The

spoke script would instantiate the appropriate Perl

object class for the service on the node, which
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would then follow the configuration in the XML file

and perform the requested action on the service:

start, stop, status, and so forth.

Hub and spoke conversations

One of the limitations we encountered was in

detecting the results of actions the hub node asked

the spokes to perform. The ssh session used to

connect with the spoke would only give the return

code of the last command to execute as an integer

when the ssh session was completed. Additionally

the messages to the stdout stream could be

captured, but they were only a stream of characters

without context. The stderr messages for remotely

executed tasks were difficult to capture in Perl—not

impossible, just difficult—but they too lacked

context. This made it difficult for the script on the

hub to do anything more meaningful than just dump

the messages to the console. A considerable amount

of mostly meaningless text was displayed when

launching the system on 20 nodes. The solution was

to create an XML messaging object that was used by

the hub to send commands to the spokes, and for

the spokes to send all output. This allowed the code

on the spokes to produce output as XML messages

and hold the resulting output from the scripts and

commands on the spoke, while retaining the context

of the text along with the return code associated

with them. With this additional knowledge, the hub

script could then be extended to perform more

intelligent and useful actions than was possible in

Version 1.

DEBUGGING

The task of parallelizing Quake II with OptimalGrid

presented the significant challenge of debugging the

large distributed application. In a simple client/

server application, there are only two parts to

consider when tracking down problems: the client

and the server. Behavior of both can be directly

observed through application graphical user inter-

faces, consoles, and the log files of each. Quake II on

OptimalGrid, by comparison, is much more complex

to debug.

The OptimalGrid services—CAs, APM, TSpaces, and

problem builder—are distributed across several

systems connected together to form the OptimalGrid

runtime. The pieces produce large amounts of

debugging information across different nodes and

servers. This information must be integrated to

present a useful overall view of the application state.

The addition of the Quake II servers, Quake II

clients, proxies, and proxy filters increases the

number of sources and also introduces new inter-

connected relationships (Quake II servers to CAs,

Quake II clients to Quake II servers, etc.) that must

be integrated for effective debugging of problems.

This resulted in our creation of several ways to

improve access to debugging information and to

make viewing it easier.

Logs

Each service and Quake II component produces

some form of log output to help in debugging. In a

typical test done during development, nine grid

nodes would be allocated. One node would run the

APM, TSpaces, problem builder, proxy filter, and

proxy, resulting in five logs. Six nodes would run

CAs and Quake servers, adding two logs per node

(two would be running CAs waiting for use as

needed and adding one log for the CA, and one log

each if a server was started). This adds up to 17 log

files across the nine nodes if load balancing is not

active, and up to 19 if it is. The problem grows as the

scale of the test grows.

Accessing these numerous independent logs was

tedious, requiring numerous logins. Our solution to

this was to add log access to our launch and

distribution system in the operating environment.

The launch systems knew which grid nodes were

used, what roles they were assigned, and where

each service log file was on local disk. The ability to

log in and access the files was relatively easy to add.

The problem remaining was how to display the logs

themselves. Two options were provided to devel-

opers. The first was a dedicated window per log file,

created on the developer’s workstation. This was

updated in real time as the log file was changed on

the remote grid node. The second was a merged

output of all the log files being monitored. This

output would merge the stream of messages from

each monitored log file and show them together in a

single window. It was also possible for specific

services to be monitored, for example, only CAs if

that was all the developers needed. This was made

available to the developer as a simple one-line

command.

Log file content detail was also selectable, allowing

developers to increase the level of detail for
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particular services, either for all instances of the

service or instances on specific nodes. The combi-

nation of log level control and easy one-command

access greatly improved the ability for developers to

quickly monitor and locate problems.

Messages

A second form of output by the OptimalGrid system

is messaging through the TSpaces communication

system. Embedded in each OptimalGrid service is a

debug class that can generate and send message

objects. Objects can include simple events generated

by the services up to the Java event objects

generated by fatal exceptions. In addition to the

more traditional logs in use, these objects are useful

because clients can be easily written, making it

possible to monitor the message space and actively

filter which messages are displayed to the user.

Filtering based on any attribute of the message

object is possible: source, service, message content

(error only, server errors, memory exceptions, etc.).

Messages are accessible by a small footprint client

we wrote for the task or from any Web browser.

PERFORMANCE OF QUAKE II AS AN MMOG

Several different experiments were done to validate

the performance of the MMOG version of Quake II.

The primary goal was to determine if our imple-

mentation satisfied the single most basic criterion:

Was game play from the player’s perspective any

different when on a grid? Two tests are presented

here that demonstrate we did indeed achieve this

goal. Deeper, more robust performance testing and

analysis is beyond the scope of this paper and

belongs in separate work.

Player transfer latency

The first test was done precisely six weeks after

coding began on the project. In this test, the

modified Quake II client was made available to

people inside the IBM Research Division who were

invited to play the game. The invitation eventually

was sent to other IBM employees around the world.

This early test was designed to validate the code

itself (determine that the servers would not crash

due to coding errors) and to demonstrate that the

Quake II on OptimalGrid distributed system could

deliver adequate performance for an FPS game. The

critical factor in this performance evaluation was the

player transfer latency or the time required to pull a

moving object or player out of one server and

reinsert the object or player into a destination

server. The player transfer latency could not exceed

the Quake II world update time, which is fixed at

100 ms. If the player transfer latency exceeded 100

ms, then the player would notice a distinct jitter or

interruption when moving around the world among

servers. Note that the player transfer latency is not

correlated with the overall game play latency, which

depends on many factors, including network infra-

structure, network traffic, and raw server speed. In

our tests, the normal game play latency was quite

good, and game play within a server was indistin-

guishable from game play on a single (nondistrib-

uted) Quake II game.

Figure 7A shows the player transfer latency mea-

sured in the second of two separate tests of the

Quake II system. Note that in reporting player

transfer latency it is not sufficient to report the

average latency achieved. A histogram of the data

more accurately represents the game play as the tail

of the distribution reveals how often (or if) a critical

threshold time or game-world update time might be

exceeded.

The first performance test used 30 servers and a 100-

Mb Ethernet infrastructure for the servers. In this

first test, the average player transfer latency was

approximately 150 ms, and game play across servers

had a noticeable jitter or delay. Subsequently, we

reexamined some implementation choices, making

several changes.

We conducted a second test using the updated code

and improved server hardware. The second test

results, shown in Figure 7A, reflect the performance

when the system was moved to a server cluster of

dual Intel Xeon** processor nodes with a Gigabit

Ethernet infrastructure. The game was distributed

over 12 servers. In this test, the average player

transfer latency was less than 70 ms, which is less

than the Quake II server 100-ms update frequency.

In this test there was no obvious delay when players

moved between servers, meaning we had achieved

the core goal that players should get as good a

playing experience in regard to performance on the

grid as they did on a single server.

Between these two tests we made a change to the

algorithm used in the problem builder to perform

the initial partitioning of the game map. This was

one of the most significant factors in the perfor-
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mance improvement seen in the second test. In

particular one aspect we did not fully consider in the

original partitioning scheme was the 3D nature of

the world. The one poor choice made in the original

algorithm was to occasionally partition stairways

too finely. This resulted in players moving between

servers with each step on the stairway.

As we have experimented with this MMOG version

of Quake II, we have subsequently made other

improvements to the system. These were individu-

ally minor, making it difficult in a paper of finite size

to discuss, but the sum of their contributions was

significant. It is worth noting however, that even in

the early implementation profiled here, we were

able to demonstrate adequate performance for an

FPS game.

Optimal map partitioning
For any infrastructure and system design, the

efficiency of the map-partitioning algorithm has a

significant effect on overall system performance. In

simple terms, a partitioning algorithm that lowers

surface-to-volume ratio lowers the rate at which

players cross server boundaries for a given map

design. This fact is evident in Figure 7B, which

shows latency compared with the number of game

servers (CAs). For control purposes, this data was

acquired with a constant number of 200 client-side

Quake II bots running on the 100-Mb Ethernet

cluster. The data demonstrates that for the map and

partitioning algorithm in use, the system is most

efficient (and performance most consistent) when

the game world is divided across 10–12 servers.

Scalability

Ultimately, it is important to consider how total

game load limits overall system performance. In our

live-play tests, we had difficulty finding sufficient

numbers of people who could play simultaneously

to stress our test grid. To study the system at even

Figure 7
Player transfer latency: (A) Frequency of player transfer latency occurrence; (B) player transfer latency as a function
of the number of game servers (CAs); (C) player transfer latency compared with the number of bots; 
(D) player transfer latency as a function of per-server transfer frequency. (The unit time interval was four minutes.)
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higher loads, we measured the latency as a function

of the number of Quake II client-side bots, where the

number of bots was varied between one and 200.

We could run up to five bots per server, which

limited the range of this test. The latency of one to

200 bots running on six to 30 servers is shown in

Figure 7C. There is a large scatter in the data, but

analysis reveals an important scaling function. If the

same data is plotted as player transfer latency

against the number of server crossings per server

per second (which increased with the number of

servers and the number of players or bots), then all

of the data collapses onto the single curve shown in

Figure 7D.

Analysis

Somewhat surprisingly, the system performance

initially improves as the load on the communication

system is increased. This improvement is likely due

to two factors. At very low load, our original Quake

II code ran open loop with all CAs continually

polling the whiteboard servers to detect new players

arriving. When game traffic was low this was highly

inefficient, as requests for data were frequent but

returned nothing (there was no data). This situation

was later improved by modifying the system so that

if a query for arriving players returned null, the CA

would enter a wait to take state (registering for a

callback on the TSpaces server). In this state, if a

player arrives, in response to the callback the server

immediately enters a multitake loop and processes

arriving players continually until a query returns

null, in which case it returns to the wait to take

state. This design is much better given the dynamic

nature of game play (with varying levels of activity

of different servers).

The second reason for the improvement in per-

formance at higher loads may be understood in

terms of the multitake operation itself. In periods of

intense traffic when many players are crossing a

common server boundary in the same 100-ms

interval, these player objects are written to and read

from a single whiteboard in a single multitake or

multiwrite operation. At high loads, the number of

player server crossings can increase with no

increase in the number of messages or transactions

and only a slight increase in message size. This

predicts a nearly linear improvement in perfor-

mance as load increases. Of course at very high

load, other factors should cause the performance to

decrease, but we were unable to observe this, given

our limit of 200 bots in the experiment. This regime

may be explored in future studies.

CONCLUSION

MMOGs are an emerging form of online entertain-

ment. While the common approach of addressing

the demands of MMOGs can be done through the

design and implementation of specialized MMOG-

specific game server engines, we have demonstrated

that existing engines, such as Quake II, can be

extended to become dynamically scalable engines

capable of meeting these same demands without

compromising game play or game design. This was

possible through the use of intelligent autonomic

middleware, such as IBM OptimalGrid, which

handled the decomposition of the game world into

connected regions capable of being hosted on

different servers, and subsequently the reintegration

of the game world messages, enabling clients to see

the distributed virtual world as one that was single

and unified.

& The results of our performance
tests showed that the resulting
MMOG Quake II engine was
capable of meeting game-play
needs. &

Autonomic load balancing, server expansion, server

consolidation, and server start/stop control were

added, along with a simple-to-use provisioning

system, making the resulting system more than a

trivial example. Instead, it is an advanced imple-

mentation that showcases how OptimalGrid can be

used in a practicable way to add features that are

vital in production-level commercial deployments of

MMOG engines servicing paying customers. The

results of our performance tests showed that the

resulting MMOG Quake II engine was capable of

meeting game-play needs, providing a seamless

world, and hiding from the players the reality of

running the world across more than one server.

Finally, this extension of the Quake II engine to

MMOG status was done while strictly following the

constraint of making only minor changes to the

original Quake II server. The solutions to the

challenges faced in this work are reusable features

that can be applied, without redesign of the game

engine core, to add dynamic load balancing,

dynamic scaling, support for distributed servers, and
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advanced execution management to other existing

game engines, making it possible to give them new

life as MMOGs.

The changes we made to the Quake II open-source

game engine and client, and the OptimalGrid

middleware to run them, is available on the Web

from the IBM alphaWorks*
21

site.

FUTURE WORK
This paper focused on the creation of an MMOG

game engine beginning with an existing single-

server online engine. In particular, the engine

chosen was an FPS game. Another popular type of

game for MMOGs is the role-playing game, often

called MMORPG, which is typically much longer

running than FPS games, with both characters and

the game world having significant and evolving

amounts of state information. Such state informa-

tion is maintained in the game server memory, with

copies of it backed by network-connected databases.

This introduces a new set of issues, such as how to

use a grid to enhance the performance and

scalability of the distributed database servers used

by the game engine.

The use of BSP trees in Quake II to represent the

game world, wherein the world is represented as a

graph with leaf nodes being visible vertices, made

the choice of mapping these to OptimalGrid OPCs

the obvious choice. This—together with the fact that

the primary limit faced by the Quake II engine when

hosting a large number of players is the ability of a

server to process player-client messages and updates

for all the regions of the map—made the partitioning

of the Quake II engine along map regions the most

appropriate one. This choice however may not be

the best to apply to different game engines that face

different resource limitations when required to host

large numbers of players. The ability to partition and

distribute the computational needs of these alternate

engines would require analysis of the particular

design and behavior of the engine to make the

appropriate partitioning decision. One can imagine a

game in which the game world would be hosted in

full on each server, and instead, its computationally

expensive task is game physics. In this case, it

would be best to partition and distribute physics

calculations for the game regions on the grid, with

the physics calculations and game world areas

forming the interconnected graph, instead of the

graph of connected visible areas used for Quake II.

This different partitioning and management is still

possible with OptimalGrid, but would require that a

different OPC and problem builder component be

developed.

**Trademark, service mark or registered trademark of id
Software, Inc., Valve Corporation, Xatrix Entertainment, Inc.,
Omega Group, Ltd., Sun Microsystems, Inc., Linus Torvalds,
Red Hat, Inc., or SUSE, a trademark of SUSE LINUX Products
GmbH, a Novell business, in the United States, other
countries, or both.
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