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Symbolic execution is an automated technique for program testing that has

recently become practical, thanks to advances in constraint solvers. Generally speak-

ing, a symbolic executor interprets a program with symbolic inputs, systematically

enumerating execution paths induced by the symbolic inputs and the program’s

control flow. In this dissertation, I discuss the architecture and implementation of

Otter, a symbolic execution framework for C programs, and work that uses Otter

to solve two program analysis problems.

Firstly, we use Otter to solve the line reachability problem—given a line target

in a program, find inputs that drive the program to the line. We propose two new

directed search strategies, one using a distance metric to guide symbolic execution

towards the target, and another iteratively running symbolic execution from the

start of the function containing the target, then jumping backward up the call chain

to the start of the program. We compare variants of these strategies with several

existing undirected strategies from the literature on a suite of 9 GNU Coreutils

programs. We find that most directed strategies perform extremely well in many



cases, although they sometimes fail badly. However, by combining the distance

metric with a random-path strategy, we obtain a strategy that performs best on

average over our benchmarks. We also generalize the line reachability problem to

multiple line targets, and evaluate our new strategies under a different experimental

setup. The result shows that many directed strategies start off slightly slower than

undirected strategies, but they catch up and perform the best in the long run.

Another use of Otter is to study how run-time configuration options affect

the behavior of configurable software systems. We conjecture that, at certain levels

of abstraction, software configuration spaces are much smaller than combinatorics

might suggest. To evaluate our conjecture, we ran Otter on three configurable

software systems with their concrete test suites, but making configuration options

symbolic. Otter generated data of all execution paths of these systems, from which

we discovered how the settings of configuration options affect line, basic block, edge,

and condition coverage for our subjects under the test suites. Had we instead run

the test suites under all configuration settings, it would have required many orders

of magnitude more executions to generate the same data.
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Chapter 1

Introduction

Every year, billions of dollars are lost due to software system failures [51]. For

example, in 2010, Toyota recalled more than 13 million vehicles worldwide due to

a bug in its vehicles’ software that gave faulty speed readings, costing Toyota an

estimated 2-5 billion dollars [53]. As another example, the London Stock Exchanges

IT system collapsed in 2007. The stock market was paused for 40 minutes due to

the collapse, and as a result billions of pounds worth of share trades were lost [35].

More than a third of this cost could be avoided if better software testing

was performed [51]. However, software testing comes with great cost. Typically,

about half of the man-hours of a software project is dedicated to software testing.

Considering that billions of dollars are spent on software development every year,

more efficient and effective software testing processes are of great interest.

A huge body of work has studied designing automated solutions for program

testing (see Chapter 5). Symbolic execution is one automated technique proposed

back in the 1970s [28]. It remained an unrealized idea for decades, but recently it

has become practical, thanks to advances in constraint solvers [21, 16] used to effi-

ciently limit the search space. Generally speaking, a symbolic executor interprets a

program with symbolic inputs, systematically enumerating execution paths induced

by the symbolic inputs and the program’s control flow. Unlike certain black-box
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approaches (e.g.,[7]) that generate concrete tests randomly, symbolic executors only

generate one path for each set of inputs that drive the program to the same path,

and therefore they avoid repeated work. Also, by design, symbolic executors are

complete—paths generated by a symbolic executor are always realizable. In other

words, should a symbolic executor find a path that triggers a bug, the bug actually

exists, and a bug-triggering input can be derived from the path condition (Chap-

ter 2.2). Knowing how a bug manifests gives programmers great help for debugging

it.

Programs often have an unbounded number of paths, so it is impossible to

enumerate all of them. Much of the literature has focused on developing symbolic

execution search strategies so that the “interesting” paths are explored first, where

interest is defined by a goal, such as maximizing code coverage [11]. In Chapter 3,

I will present work that uses symbolic execution to solve the line reachability prob-

lem—given some line(s) of code in a program, the goal is to find inputs that drive the

program to those lines. This work has applications to program testing and analysis.

Another use of symbolic execution, although less common, is to fully enumerate

all execution paths of a program given a constrained input (e.g., an input taken

from a relatively small set of possible values). Therefore enumerating all paths is

feasible—in the worst case there is one execution path per combination of input

values. Furthermore, this exactly models configurable software, where flags, often

booleans, are used to control the software’s behavior. In Chapter 4, we shall see

how to use symbolic execution to enhance understanding of configurable software.
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1.1 Thesis

This work aims to develop a framework for symbolic execution and use it to

assist program testing and understanding. Concisely, this dissertation shows that

Symbolic execution can be improved to (1) solve the line reachability

problem effectively using directed search strategies, and (2) help under-

standing configurable software systems by incorporating symbolic execu-

tion with coverage analyses.

In support for this thesis, we developed Otter, a symbolic execution framework for

C programs. This dissertation describes the implementation of Otter and how it

is used in two software analysis problems: solving the line reachability problem

and understanding configurable software systems. For each problem, we discuss its

motivation and applications, explain its complexity using examples, and present ex-

perimental results that show the effectiveness of our techniques. Finally, we suggest

future work to improve symbolic execution’s usefulness.

1.2 Contributions

The remainder of this section will sketch my contributions, which will be pre-

sented in the rest of this dissertation.

1.2.1 Otter, a Symbolic Execution Framework

Otter is a symbolic execution framework for C. Otter is written in OCaml,

and employs the CIL (C Intermediate Language) infrastructure (version 1.3.7) to

3



transform a C program into a high-level representation [40]. Otter performs symbolic

execution on the CIL representation, and uses STP as its constraint solver [21].

STP embeds the theory of bitvectors and arrays, which captures most expressions

from the C language. In order to run Otter on programs that interact with the

environment (e.g., I/O, environment variables), Otter is bundled with pre-configured

system libraries. We import most of newlib [41] as the C library and we emulate

part of the POSIX library ourselves.

Otter was also designed to easily adopt new search strategies and thus serves

as a vehicle to compare them. We implemented a range of state-of-the-art strategies

(random-path, KLEE [11] and SAGE [26]), and we also developed our own strategies,

which are presented in Chapter 3.

1.2.2 Directed Symbolic Execution

We study the problem of automatically finding program executions that reach a

particular target line. This problem arises in many debugging scenarios; for example,

a developer may want to confirm that a bug reported by a static analysis tool

on a particular line is a true positive, i.e., that can actually arise under realistic

conditions. We propose two new classes of directed symbolic execution strategies

that aim to solve this problem: shortest-distance symbolic execution (SDSE) uses a

distance metric in an interprocedural control flow graph to guide symbolic execution

toward a particular target; and call-chain-backward symbolic execution (CCBSE)

iteratively runs forward symbolic execution, starting in the function containing the

4



target line, and then jumping backward up the call chain until it finds a feasible

path from the start of the program. We also propose a hybrid strategy, Mix-CCBSE,

which alternates CCBSE with another (forward) search strategy. We compare these

three new strategies with several existing undirected strategies (KLEE, SAGE and

random-path) from the literature on a suite of 9 GNU coreutils programs containing

10 bugs. We also generalize the line reachability problem to multiple line targets.

We find that SDSE strategies performs extremely well in many cases compared

to undirected strategies, but they sometimes fail badly. CCBSEs and Mix-CCBSEs

also perform quite well sometimes, but impose additional overhead that often makes

them slower than SDSEs. Finally, we try to combine SDSE with random-path, and

found this combination performed best on average over all our benchmarks, com-

bining to good effect the features of its constituent components. We also find that

directed strategies tend to perform very well on the multi-target line reachability

problem. Often undirected strategies start off finding targets quickly, however di-

rected strategies are able to increase coverage gradually, and get better coverage in

the end.

To our best knowledge, this is also the first work to study

• Symbolic execution in the middle of a program (whereas prior symbolic exe-

cution work only starts from the beginning of a program, i.e., main, or from

the beginning of a function with programmer-supplied pre-conditions);

• The randomness of symbolic execution strategies. By running the same test

with different random seeds, we found that the performance of a strategy can

5



be highly variable.

1.2.3 Using Symbolic Execution to Understand Behavior in Config-

urable Software Systems

Many modern software systems are designed to be highly configurable, which

increases flexibility but can make programs hard to test, analyze, and understand.

We present an initial empirical study of how configuration options affect program

behavior. Our goal is to show that, at certain levels of abstraction, configuration

spaces are far smaller than the worst case, in which every configuration induces

distinct behavior. We studied three configurable software systems: vsftpd, ngIRCd,

and grep. We used symbolic execution to discover how the settings of run-time

configuration options affect line, basic block, edge, and condition coverage for our

subjects under a given test suite. Our results strongly suggest that for these subject

programs, test suites, and configuration options, when abstracted in terms of the

four coverage criteria above, configuration spaces are in fact much smaller than

combinatorics would suggest and are effectively the composition of many small,

self-contained groupings of options.

This is a collaborative work. Apart from developing Otter and its coverage

tracking features, I was also in charge of the analysis on ngIRCd.
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Chapter 2

Otter: A Framework for Symbolic Execution

In this chapter, I will present an overview of symbolic execution, followed by

a detailed discussion of Otter’s design and implementation.

2.1 Background

In the mid 1970’s, King [28] introduced symbolic execution as an extension of

normal execution that can be used to enhance testing. He described basic concepts of

symbolic execution, such as path conditions, “forking” on unresolvable conditionals,

and using ASSUME and ASSERT to specify program properties. King and his

colleagues implemented his ideas as a prototype tool called EFFIGY, which applies

symbolic execution to a small language. King showed that EFFIGY had promise,

but only evaluated EFFIGY on a few small examples. Also, theorem provers were

less powerful at that time, limiting EFFIGY’s potential. For example, it did not

deal with array reads or writes with symbolic indices.

Recent improvements to constraint solvers, both in efficiency and the ability

to solve harder problems, have made symbolic execution a practical method for

program analysis. In particular, researchers have developed powerful SMT solvers

that support theories such as arithmetic, arrays, recursive datatypes and uninter-

preted functions [21, 16]. As a result, one can express richer verification conditions
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in symbolic execution. Recently, seveal symbolic executors [26, 24, 12, 11] that

take advantage of these new capabilities were developed to address challenges in

traditional software testing.

2.2 An Overview of Symbolic Execution

The term symbolic execution has different meanings in different settings. In-

formally, we understand symbolic execution as a way of interpreting programs that

contain symbolic values. A symbolic value is defined by the symbol and the set of

concrete values it can range over. For instance, we can define α to be a symbol

that can range over any value from the set of all 32-bit integers (such a set can be

viewed as the type of the symbol). To perform symbolic execution on C programs,

we let variables store symbolic values (e.g., variable x stores symbol α rather than a

concrete integer like 3). For the ease of comprehension, in the ongoing text we will

use English letters for variables (e.g., x, y, z) and Greek letters for symbolic values

(e.g., α, β, γ). Also, we will use the symbol 7→ to denote assignments of values to

variables (e.g., x 7→ 3, y 7→ β).

To interpret a program with symbolic values, we have to extend the usual

semantics of the program. For example, executing the statement y = x + 3 where

x 7→ α should yield y 7→ (α + 3), a symbolic expression. The symbolic executor

maintains the program state (simply state for short) throughout the execution.

The state comprises two parts: Var, a mapping from variables to values which

include symbolic expressions (e.g., after executing y = x + 3, Var becomes {x 7→
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α, y 7→ (α + 3)}) and a set of constraints on symbolic values. For example, we can

constrain symbols by ranges (e.g., α > 0, 1 ≤ β < 10), or constrain the relationship

between symbols (e.g., α < γ). Constraints on symbols can be provided as part of

the program specification, or can be induced from the execution (we will see this

shortly).

The symbolic executor runs a program in very much the same way as how an

ordinary interpreter does. However, things start becoming different when it comes

to conditionals, where the execution has to branch according to the state. In C,

conditionals correspond to if-statements. An if-statement consists of a condition,

which is an expression, a true branch, which is executed if the condition is evaluated

to true, and a false branch, which is executed otherwise. If the condition is a symbolic

expression, it could be that the condition may evaluate to either true or false, hence

both branches could be feasible. To completely explore all possibilities, the symbolic

executor must conceptually fork the execution to examine both branches. We will

see an example of this branching shortly.

While we cannot avoid exploring both branches in general, we gain information

when executing each branch, which may help us prune branches in the future. When

symbolic execution follows the true branch, we know that the condition has to be

true along the execution; similarly, if it follows the false branch, the condition has

to be false. In other words, we impose constraints on the condition (a symbolic

expression) in either branch. Figure 2.1a illustrates this idea. Suppose x 7→ α where

α is a symbolic signed 32-bit integer. The program begins by testing if x>0 in Line 2.

Since α could be either positive or not, the execution forks and both branches are
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examined. On the true branch, it tests if x==0. Interestingly, we now know that x

cannot be zero, since otherwise we would have followed the false branch. Therefore

we are sure that the condition is evaluated to false, and thus the aborting failure in

Line 4 is unreachable.

There are four paths explored while executing the code in Figure 2.1a symbol-

ically. A path is defined to be a sequence of statements executed from the beginning

of the program to the end. The set of all paths through a program forms a tree.

For instance, the tree corresponding to the example code is shown in Figure 2.1b.

Each node, labelled by the associated statement in the code, corresponds to a state

in the symbolic execution. If a node has more than one child, the outgoing edges

are labelled by the conditions that lead to the branching. The conjunction of all

conditions seen from traversing from the root to a certain node is the path condi-

tion at that node. It describes the constraints that symbolic values must satisfy

for execution to take that path. For example, the path condition at the node 9

associated with Line 9 is (α ≤ 0)∧ (α ≥ −5). Further symbolic execution along the

path rooted at 9 must obey this path condition, e.g., any test of x==c where c is

outside the range [−5, 0] must yield false. Notice that path conditions of different

paths are distinct, since otherwise there would exist some concrete input that drives

the execution to two different paths, which is impossible. Furthermore, these path

conditions partition the input space. For example, the four paths p1, p2, p3 and p4

correspond to input spaces {}, {α > 0}, {α < −5} and {−5 ≤ α ≤ 0}, respectively.

Constraint solvers are used to reason about symbolic expressions automati-

cally. A constraint solver is a procedure that, given a set of constraints over variables,
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1 int x=α; // symbolic
2 if(x>0){
3 if(x==0)
4 abort();
5 return 0;
6 }
7 else if(x<−5)
8 return 1;
9 // etc

(a)

1

2

3

α > 0

4

p1

α = 0

5

p2

α 6= 0

7

α ≤ 0

8

p3

α < −5

9

p4

α ≥ −5

(b)

Figure 2.1: An example and its path condition tree

finds an assignment of the variables that satisfy the constraints. Today, there are

many types of constraint solvers available, and they vary in the problem domains

that they are designed for. The choice of constraint solvers depends on the language

and the nature of the program being executed. For example, to symbolically exe-

cute the program in Figure 2.1a and reason about the unreachability of Line 4, a

Satisfiability Modulo Theories (SMT) solver with the theory of linear arithmetic is

sufficient. To use an SMT solver, the problem to solve is transformed to an SMT

instance that is passed to the solver. For exmaple, to determine if α could equal 0

under the path condition α > 0, we construct the SMT instance (α > 0) ∧ (α = 0)

and let the SMT solver decide if this is satisfiable. It is not, as expected, and thus

we can stop evaluating path p1 during the execution (indicated by the dashed line).

To summarize, symbolic execution, in its simplest form described above, ex-

plores all possible paths in a program that a normal run can execute. No abstraction
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on values is made, and therefore symbolic execution retains complete information

of how values flow through the program. Moreover, in our example, while there are

232 possible assignments to the symbolic value α, the symbolic execution explores

only 3 paths (recall that p1 is unrealizable). This shows an important property of

symbolic execution—the complexity depends on the logic of the program, rather

than the size of the input space, which tends to be astronomically big.

2.3 An Overview of Otter

Otter1 is a symbolic execution for C [42]. Otter is written in OCaml, and

employs the CIL (C Intermediate Language) infrastructure to transform a C pro-

gram into a high-level representation [40]. CIL eliminates redundant C constructs

and leaves a clean, distilled representation in the form of an OCaml data structure.

Otter then performs symbolic execution on the CIL representation. Otter currently

uses STP as the constraint solver [21]. STP is tailored for solving consraints related

to bitvectors and arrays, which captures most expressions from the C language,

and is thus very suitable for the purpose. STP has been used in other symbolic

executors, such as EXE [12] and KLEE [11].

1DART [24] and EXE [12] are two well known symbolic executors. By coincidence, Dart and

Exe are the names of two rivers in Devon, England. The others are the Otter, the Tamar, the

Taw, the Teign, and the Torridge.
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2.4 Architecture

Figure 2.2 diagrams the architecture of Otter and gives pseudocode for its

main scheduling loop. Otter uses CIL to produce a control-flow graph from the

input C program. Then it calls a state initializer to construct an initial symbolic

execution state, which it stores in worklist, used by the scheduler. A state includes

the stack, heap, program counter, and path taken to reach the current position. In

traditional symbolic execution, which we call forward symbolic execution, the initial

state begins execution at the start of main. The scheduler extracts a state from the

worklist via pick and symbolically executes the next instruction by calling step. As

Otter executes instructions, it may encounter conditionals whose guards depend

on symbolic values. At these points, Otter queries STP to see if legal, concrete

representations of the symbolic values could make either or both branches possible,

and whether an error such as an assertion failure may occur. The symbolic executor

will return these outcomes to the scheduler, and those that are incomplete (i.e.,

non-terminal) are added back to the worklist. The call to manage targets is just for

an extension of Otter, called CCBSE, which will be discussed in Section 3.1.2; the

call to manage targets is a no-op for forward symbolic execution.

2.5 Invoking Otter

Otter carries out symbolic execution in exactly the same way we described

in Section 2.1. To visualize the process, we will demonstrate how Otter is used to

symbolically execute the same example discussed in Section 2.1, but made into a
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program 

state

symbolic 
executorCIL

states/errors

STPschedulerstate 
initializer

state

(a) Architecture diagram

1 scheduler()

2 while (worklist nonempty)

3 s0 = pick(worklist)

4 for s ∈ step(s0) do
5 if (s is incomplete)

6 put(worklist,s)

7 manage targets(s)

(b) Scheduling loop

Figure 2.2: The architecture of the Otter symbolic execution engine.

complete C program, as shown in Figure 2.3a. The function SYMBOLIC is an Otter

built-in; it is used to fill a variable (passed with its address) with a purely symbolic

value. Also, abort() is defined as ASSERT(0), another Otter built-in that flags an

error whenever the predicate does not hold (here the predicate is zero—it always

fails).

Figure 2.3b shows Otter’s verbose output. Lines are of the form

[p,c] location: event

which means “on path p whose path condition has c clauses, event happens at

location”, where event is either a statement at location (file name : line number)

being executed, or a message (like “Ask STP...”). Paths are numbered from zero.

When Otter forks a path into two at a conditional if(g), each path will be given a new
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number. Also, each new path conjuncts its path condition with a new clause (g/¬g

for the true/false branch). A clause g can also be unconditionally added into a path

condition by calling ASSUME(g). This is useful if we want to constrain a symbolic

value at the beginning, e.g., ASSUME(x>0) will make sure that the symbolic value

stored in x is positive. The number c reflects the length of the path condition and

hence the depth of the current state in the execution tree.

The execution starts at main as shown in Figure 2.3b. It checks if x > 0. Otter

consults STP since x’s value is symbolic, and STP indicates that the truth value of

x>0 is unknown, meaning that both branches are feasible. Therefore Otter branches

path 0 into paths 1 and 2 at example.c:5. In this demonstration, we use the depth-first

strategy to explore paths: whenever a path forks into two, Otter always goes along

the false branch, until it returns, and then it backtracks and goes along the true

branch. Hence Otter follows path 1 next, executing example.c:10. It again consults

STP and forks path 1 into paths 3 and 4, where path 3 terminates with a return of

2 (example.c:12) and path 4 with a return of 1 (example.c:11). Otter then backtracks

to example.c:5 and explores path 2, the true branch. It consults STP for x==0

(example.c:6). This time STP can tell that the predicate is always false, since path

2’s path condition carries the constraint x>0, and hence example.c:7 is skipped and

path 2 returns 0 (example.c:8). Otter has now finished exploring all feasible paths

(2, 3 and 4), and it reports that three paths ran into completion, and no paths ran

into error.

Suppose we alter example.c:5 so that the comparison on line 5 is x>=0. The

execution trace in Figure 2.3b deviates at Line 18, as shown in Figure 2.3c. Specifi-
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1 #define abort() ASSERT(0)
2 int main() {
3 int x;
4 SYMBOLIC(&x);
5 if(x>0){
6 if(x==0)
7 abort();
8 return 0;
9 }

10 else if(x<−5)
11 return 1;
12 return 2;
13 }

(a) example.c from Figure 2.1a

1 [0,0] example.c:4 : Enter function main: int (void)
2 [0,0] example.c:5 : IF (x > 0)
3 [0,0] example.c:5 : Ask STP...
4 [0,0] example.c:5 : Unknown
5 [0,0] example.c:5 : Branching on x > 0 at example.c:5.
6 [0,0] example.c:5 : Path 1 is the false branch and path 2 is the true branch.
7 [1,1] example.c:10 : IF (x < −5)
8 [1,1] example.c:10 : Ask STP...
9 [1,1] example.c:10 : Unknown

10 [1,1] example.c:10 : Branching on x < −5 at example.c:10.
11 [1,1] example.c:10 : Path 3 is the false branch and path 4 is the true branch.
12 [3,2] example.c:12 : return (2);
13 [3,2] example.c:12 : Program execution finished.
14 [4,2] example.c:11 : return (1);
15 [4,2] example.c:11 : Program execution finished.
16 [2,1] example.c:6 : IF (x == 0)
17 [2,1] example.c:6 : Ask STP...
18 [2,1] example.c:6 : False
19 [2,1] example.c:8 : return (0);
20 [2,1] example.c:8 : Program execution finished.
21

22 3 paths ran to completion; 0 had errors.

(b) Otter’s execution of (a)

16 [2,1] example.c:6 : IF (x == 0)
17 [2,1] example.c:6 : Ask STP...
18 [2,1] example.c:6 : Unknown
19 [2,1] example.c:6 : Branching on x == 0 at example.c:6.
20 [2,1] example.c:6 : Path 5 is the false branch and path 6 is the true branch.
21 [5,2] example.c:8 : return (0);
22 [5,2] example.c:8 : Program execution finished.
23 [6,2] example.c:7 : ASSERT(0);
24 [6,2] example.c:7 : Error ”‘AssertionFailure: 0” occurs at example.c:7.
25 [6,2] example.c:7 : Abandoning path.
26

27 3 paths ran to completion; 1 had errors.

(c) Change in Otter’s Output when Line 5 of (a) is changed to if(x>=0)

Figure 2.3: Invoking Otter
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cally, x==0 becomes satisfiable and Otter forks. Path 6 hits the call to ASSERT(0)

at example.c:7, and Otter prints the error “AssertionFailure: 0” immediately, and

reports that 1 path had error at the end.

2.6 Program States and Memory Model

A program state is a snapshot of the memory during the execution. Otter

closely follows C’s memory model, and therefore a state in Otter consists of the

stack, heap and program counter, plus the path condition that led to it. The stack

consists of stack frames, one for each active function call. A stack frame has a

mapping from local variables to memory blocks (call this mapping VAR−BLOCK),

and a pointer to an instruction in the caller function where the execution continues

after this function returns. There is also one VAR−BLOCK for global variables.

However, memory blocks associated with memory in the heap (i.e., created via calls

to malloc) are not explicited stored in a VAR−BLOCK; their references implicitly exist

as addresses stored in variables and in the heap itself (see Section 2.6.3).

Otter’s program states are purely functional—Otter does not modify state

in-place. Therefore, memory blocks do not directly “store” values. Instead, a pro-

gram state has a mapping from memory blocks to the actual values they carry

(called BLOCK−VAL). Having such design means that evaluating a variable is a

two-step process: we first retrieve from a VAR−BLOCK the memory block associ-

ated with the variable, then retrieve from a BLOCK−VAL the value conceptually

stored in the memory block. For example, with VAR−BLOCK={x 7→ bx, y 7→ by}
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and BLOCK−VAL={bx 7→ 4, by 7→ ADDR(bx, 0)}, x evaluates to 4 and y evaluates to

&x (ADDR(bx, 0) denotes the address of bx with zero offset; this will be discussed

shortly). Note that VAR−BLOCK and BLOCK−VAL together function like Var dis-

cussed in Section 2.2. (The memory model in Section 2.2 was simplified to omit

pointers.)

There are main advantages in having purely function program states. State

creation is faster and uses less memory, thanks to persistent data structures, and

backtracking does not require undoing state changes, thus program reasoning is

easier.

2.6.1 Assumptions

Otter makes several assumptions to keep its design simple. Like most static

analysis tools (e.g., [6]), it assumes that memory blocks are infinitely far apart, and

so pointers cannot jump from one memory block to another. Also, Otter does not

handle de facto standards not officially part of ANSI C, such as the ordering of fields

in structs (although error-prone, we had seen programs relying on that).

2.6.2 Primitive Values

As in C, the byte is the basic unit of values in Otter. For instance, a symbolic

integer comprises 4 symbolic bytes. This enables us to precisely model C memory

operations. Consider the example in Figure 2.4a. Here, the call to SYMBOLIC

assigns n a sequence of 4 symbolic values α0α1α2α3, each αi being a fresh symbolic
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1 int n;
2 char ∗p = (char∗)&n;
3 SYMBOLIC(&n);
4 p[2] = 0;

(a)

1 int a,b;
2 SYMBOLIC(&a);
3 SYMBOLIC(&b);
4 ASSUME(a<0);
5 ASSUME(b>0);
6 ASSERT(a<b);
7 ASSERT((unsigned)a<(unsigned)b);

(b)

Figure 2.4: Examples

byte. Such a 4-byte integer can be viewed as a character array of length 4, so that

each byte can be changed as shown in Line 4. After the execution, n will have value

α0α10α3.

Having values represented by bytes also means that values are untyped. Fig-

ure 2.4b illustrates this idea. In this example, a and b are declared to be (signed)

integers, and are set to hold a negative and positive symbolic integer, respectively.

This is done by calling ASSUME (Lines 4-5) to discard executions that have a ≥ 0

or b ≤ 0 (notice that, although the predicate involves variables, it is the symbolic

values being held by variables that are constrained.) The program continues by

calling ASSERT (Lines 6-7) twice The first assertion checks a<b assuming they are

signed integers. The second assertion checks almost the same thing, but assuming

they are unsigned. Notice that the symbolic values stored in the variables are not

constrained by the casts in the second assertion. However, the casts cause the less-

than comparison to be performed differently, by not treating the operands as signed

numbers. Therefore, the first assertion passes and the second one fails.
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As an optimization, Otter represents constants as OCaml ints, until Otter

needs to break them into byte arrays. For example, an expression of a constant 5 is

stored as CONST(5), instead of a byte array [05, 00, 00, 00] (Otter is little endian).

The constant flows through the execution, until some expression reads/writes a part

of it, in which case it is converted to a byte array.

2.6.3 Symbolic Expressions

Apart from primitive values, Otter also supports several different symbolic

expressions summarized in Figure 2.5. They are:

Data pointers. A data pointer has the form ADDR(b, i), representing a pointer

pointing to an offset i from the base address of the memory block b. The

offset is an integer, which may be symbolic. When a pointer is dereferenced,

the l-value is recovered as a portion of the memory block, determined by the

offset and the type of the expression. Null pointers are represented by zeros

(and they do not correspond to any memory blocks).

Function pointers. Function pointers are represented using a special symbolic ex-

pression FUNPTR(f) dedicated to function pointers, where an OCaml pointer

to the CIL data structure of the function f is embedded and is retrieved when

a function call through the pointer is made.

Operations on values. All unary and binary operators in C are supported. This

is needed when at least one of the operands is symbolic. For example, an

expression x+3 will be evaluated to OP(PLUS, αx, 3) where x 7→ αx. Otherwise,
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the expression will be evaluated as usual (see Section 2.7).

Array reads/writes. Whenever the array to be read/written is a symbolic expres-

sion (i.e., not a concrete byte array), or when the array index is symbolic, a

symbolic expression will be created. For array reads, symbolic expressions are

of the form READ(arr, i, s), denoting “read [i, i + s) from array arr”, where

i is the index, which can be symbolic, and s is the size to be read, which

must be concrete. All units are in bytes. Similarly, array writes are of the

form WRITE(arr, i, s, v), where v is the (possibly symbolic) value written into

arr[i, i+ s).

Note that array reads/writes should not to be confused with pointer deref-

erences:to create the symbolic expression of a[i], Otter first finds the values

stored in the entire array a. This step is basically a dereference which is car-

ried out as usual. Once the value of a is computed (say α), Otter creates

symbolic expressions READ(α, i, s) or WRITE(α, i, s, v).

Conditional Values. A conditional value c is of the form COND(g, e1, e2), where g

is a boolean expression, and e1 and e2 are the expressions c evaluates to when

g is true or false, respectively.

21



e → ~α (Symbols)

| CONST(c) (Constant)

| ADDR(b, i) (Data pointer)

| FUNPTR(f) (Function pointer)

| OP(op, ~e) (Operation)

| READ(e, i, s) (Array read)

| WRITE(e, i, s, v) (Array write)

| COND(g, e1, e2) (Conditional value)

(a) Expression types

op → uop | binop
uop → UMINUS | BNOT | LNOT (Negations)

binop → PLUS | SUB | MULT | DIV | MOD (Arithmetics)

| LT | GT | LE | GE | EQ | NE (Comparisons)

| BAND | BXOR | BOR | LAND | LOR (Bitwise/logical)

| LSL | LSR (Shifts)

(b) Operators

Figure 2.5: Symbolic expressions

2.7 Semantics

2.7.1 Evaluations of Expressions

A primitive operation of Otter is evaluating a (side-effect-free) C expression

(such as a+b or r[i]) under a program state. The output is the value of the expression,

either as a concrete value (e.g., 3) or as a symbolic expression (e.g., OP(PLUS, α, β),

READ(ρ, ι, 4)). Otter recurses on the structure of a C expression when evaluating it.

The C expression structure basically contains
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Constants. E.g., 3, ‘c’. They are evaluated to themselves.

l-values. E.g., x, a[i]. Otter first computes their l-values. An l-value is a triple

(b, i, w), where b is a memory block, i is the offset (possibly symbolic) and w

is the (concrete) size of the l-value (in bytes). From the triple, the value is

computed as READ(BLOCK−VAL(b),i,w).

Operations. E.g., a+b, x==y, which are evaluated to OP(PLUS,eval(a),eval(b)) and

OP(EQ,eval(x),eval(y)), resp. (eval(x) denotes the evaluation of x.)

AddrOf. E.g., &x. Otter computes its l-value (b, i, w), and returns ADDR(b, i).

(Other C expressions, such as sizeof and casts, are trivially handled and thus omit-

ted.)

If an expression involves only concrete values, e.g., summation of two con-

crete integers, or reading a regular array with a concrete index (however the value

being read can be symbolic), Otter simplifies it to a single concrete value (e.g.,

OP(PLUS,3,4) is simplified to 7).

Computing l-values can be very tricky, because it generally involves derefer-

ences of addresses, but STP does not reason about dereferences (see Section 2.8),

Therefore, Otter has to implement this logic. The common case is when the address

to be dereferenced is of the regular form ADDR(b, i), in which case the l-value is

ready recovered (the width w of the l-value comes from the type of the C expres-

sion). Otherwise, Otter issues a failure, indicating that it is unable to reason about

dereferences of non-trivial symbolic expressions, except for the following:
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1. For conditional values, Otter recursively dereferences all leaves in the condi-

tional tree, and returns a conditional l-value (e.g., COND(g, (b1, i1, w1), (b2, i1, w2))).

2. Using the above, an optimization is made to dereferencing a READ(arr, i, s)

expression, by converting it into

COND(i == 0, arr[0],COND(i == 1, arr[1], ...arr[n]...))

i.e., a conditional tree that enumerates all the possible indices.

2.7.2 Executing Instructions

Instructions in C can be divided into control statements, assignments and

function calls. Among control statements, conditional branches (i.e., if-else) are

handled specially. Otter consults the constraint solver for the ternary value (true,

false and unknown) of g = 0 where g is the guard of the conditional. If it is a

known false/true, then the true/false branch will be followed. Otherwise, either

branch is possible, and Otter generates two program states (i.e., it forks): one state

with g = 0 added to the path condition, and the false branch will be followed, and

another state with g 6= 0 added to the path condition, and the true branch will be

followed. These states are put into the scheduler (Figure 2.2a), which decides the

next state to be run.

Assignments involve the evaluation of the expression on the right-hand-side

and the l-value of the left-hand-side, and is carried out via a change to BLOCK−VAL.

For example, given VAR−BLOCK={a 7→ ba, i 7→ bi} and BLOCK−VAL={ba 7→ α, bi 7→

β)}, and an assignment a[i] = 2, Otter evaluates a to α and i to β, and changes
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BLOCK−VAL to {ba 7→ WRITE(α, β, 1, 2), bi 7→ β)}.

Function calls are carried out by creating a frame, which is pushed onto the

call stack. The frame consists of the program state with all formals carrying values

from the evaluations of the arguments, and also a reference to the instruction in the

callee to be run next, right after the function call is returned. Optionally it also

specifies the l-value that is going to receive the returned value.

2.8 Interacting with the Solver

2.8.1 STP: an SMT Solver

STP is an SMT solver developed by Vijay Ganesh [21]. It is aimed at solving

constraints generated by program analysis tools, theorem provers, automated bug

finders, intelligent fuzzers and model checkers. The inputs to STP are formulas over

the theory of bit-vectors and arrays (which captures most expressions from C), and

the output of STP is a single bit of information that indicates whether the formula

is satisfiable or not. If the input is satisfiable, then it can also generate a variable

assignment to satisfy the input formula. STP is the backend constraint solver for

many static analysis tools, including symbolic executors like EXE (co-designed with

STP), KLEE and JPF-SE [5].

2.8.2 Converting Otter Expressions to STP Queries

Thanks to STP’s support of bit-vectors and arrays, converting an Otter ex-

pression to an STP formula is mostly straightforward. For example, an expression
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OP(PLUS, α, β), where α and β are symbolic 32-bit integers (4-byte symbolic arrays),

is converted to an STP formula in the following steps:

1. Say α = α0α1α2α3, where α3 is the most significant byte (under little endian).

Create a bitvector vi of length 8 (size of a byte) for each αi. Create vα =

v3
α @ v2

α @ v1
α @ v0

α where @ denotes concatencation. vα is 32 bits wide. Notice

that the ordering of vectors is inverted due to STP’s “big-endian” nature.

2. Similarly, create vβ for β.

3. Call the STP function BVPLUS(32,vα,vβ); here 32 is the length of the bitvector

operands.

Converting an expresion READ(arr, i, s) to an STP formula requires the use of

STP arrays, which support array reads/writes with symbolic indices. Specifically,

Otter first creates a new array arr with the same length as arr and each cell of length

8 (size of a byte). Then, Otter converts each byte of arr into an STP bit-vector

which is assigned to a cell in arr. Lastly, it creates the STP formula by concatenating

the cells arr[vi] @ ... @ arr[vi+s−1] where vj is the bit-vector of symbolic index j.

Certain Otter symbolic expressions (ADDR(b, i), function pointers, etc.) do

not have STP equivalents. Otter is seldom required to convert these expressions

to STP formulae (Otter handles nullity checks ptr==0 itself, thus does not consult

STP). Should conversion be required, Otter assigns concrete, random and unique

integer “addresses” to memory blocks and functions, and these numbers can be used

in the conversions.
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Otter uses STP to check if a guard expression is satisfiable assuming the path

condition holds. Since the path condition is a conjunction of expressions (e1∧e2∧...)

collected along the path, converting it into an STP formula involves the same steps

as discussed above. Finally, a query to STP is done by asserting the path condition

and querying for the satisfiability of the guard expression.

As discussed earlier, STP does not model pointer dereferences, and therefore

Otter handles dereferences (i.e., computing l-values) itself. More precisely, STP

does handle pointer dereferences if we treat the whole memory as an array (i.e., all

pointers are (symbolic) offsets to the base address of the whole memory). However,

this does not scale well for most programs.

2.9 Error Checking

By design, Otter naturally flags errors when it fails to continue an execution

path. In many cases, failures correspond to bugs, such as dereferencing an integer

zero (i.e., a null pointer), or performing pointer subtraction with two pointers of

different bases. Furthermore, Otter performs bounds checking—whether an index

used to access an array is within the bounds of the array (i.e., it checks for buffer

overflow). Otter does so by consulting STP for the bounding constraints (i.e., for

a[i], the constraint i ≥ 0 ∧ i < |a| where |a| is the length of array a).

Moreover, should there be a partial error, Otter identifies the condition that

causes the error and flags it, and lets the execution continue under the condition of

where no error occurs. For example, suppose arr is an array of length 5 and i is an
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index carrying an unconstrained symbolic value αi. Then, an access arr[i] will cause

the current execution path to split into two:

1. An erroneous path with condition (αi < 0 ∨ αi ≥ 5); this path is abandoned

immediately;

2. Another path with condition (0 ≤ αi < 5), which is added into the path

condition, and the execution continues.

For the second path, it is crucial to add the condition into the path condition, so

that whenever arr[i] appears again in the future, Otter knows that i at that moment

does not cause a buffer overflow.

2.10 Optimizations

Otter implements a range of optimizations. Most of them, as suggested by

other researchers in the literature, aim at using the constraint solver more intelli-

gently, since it demands a lot of computation resources. This is done by avoiding

calling the constraint solver, or by simplifying queries before passing to the solver.

One optimization is relevant path condition extraction suggested by KLEE [11].

We observed that most of the time only a small portion of the path condition is

relevant to the expression to be evaluated. Recall that the path condition is the

conjunction of a list of assumed conditions along a path. To find the relevant path

condition, we construct a graph with conditions and the expression e to be evaluated

as nodes, and add an edge between any two nodes that involve some common sym-

bolic values. Then, the transitive closure rooted at e contains all conditions in the
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relevant path condition. By only asserting the relevant path condition when deter-

mining the feasibility of a guard, we significantly lighten the load on the constraint

solver.

Another optimization that works in conjunction with relevant path condition

extraction is query caching. As its name suggests, we cache the results as true,

false, or unknown of queries of the form (path condition, guard expression). This

drastically improves the performance, as expressions are often evaluated more than

once under the same relevant path condition.

Another optimization technique, which is commonly employed by other sym-

bolic executors, originates from Lisp’s hash cons(tructor), where a structure is con-

structed only once. In Otter, structures are created for symbolic expressions. With-

out hash consing, we would construct an expression such as α+β, and later construct

the same expression but in a fresh structure, e.g., when the C expression a+b is eval-

uated repeatedly. Such duplication increases memory consumption and computation

complexity. With hash consing, however, structures are put into a hash table, and

later when the same structure is needed, instead of constructing a fresh copy of it,

the old one in the hash table will be used. Hash consing improves memory usage (by

not duplicating objects of the same structure), and structural equality essentially

becomes physical (i.e., pointer) equality, which can be checked more quickly. The

trade-off, however, is the overhead of calling a hash function whenever a structure

is created. Nevertheless, this optimization often leads to better performance [11],

and we find this to be the case in our experience.
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2.11 Search Strategies

Search strategies refer to the way a scheduler (Figure 2.2a) assigns priorities to

program states in order to achieve a certain goal (e.g., increase code coverage given

a fixed amount of time). Symbolic execution can be thought as an exploration of

a program’s execution tree (e.g., Figure 2.1b), where nodes correspond to program

states, and a node branches if the associated program state is forked into more

than one state after execution. A search strategy determines in which order such

execution tree is explored.

Unless symbolic execution is used for program verification, i.e., it traverses

the entire execution tree (e.g., JPF-SE [5]), the search strategy determines how

fast a goal is reached. Since almost all programs have unbounded execution trees

in practice, search strategies play an important role in making symbolic execution

practical.

Existing symbolic executors have used a variety of search strategies, each hav-

ing its own rationale. For example, KLEE’s search strategy is a mixture of (1)

random exploration according to path length in the execution tree, and (2) a dis-

tance heuristic biasing towards program states that quickly lead to uncovered code

according to the control flow graph. Thanks to Otter’s search strategies framework,

several state-of-the-art search strategies, such as KLEE and SAGE are implemented

easily in Otter. A detailed discussion of these strategies is presented in Section 2.13.

Under Otter’s search strategies framework, a strategy supports two operations:

to put a program state into the scheduler, and to get the next state to be executed.
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To make strategies composable, e.g., round-robin, where the ith strategy out of n

strategies is used in (kn+ i)-th iteration, each strategy must also support the remove

operation.

Batching. We observe that for a search strategy to be effective, it must be highly

efficient, because it is queried in every iteration (Figure 3.1). A strategy that has

to look at all states in each iteration much too inefficient in practice. One way to

cope with potential inefficiency is called batching, previously employed by KLEE.

With batching, Otter continuously follows a path without considering other paths

(therefore does not consult the search strategy), until the path forks, or the path

is followed for a certain number of steps. This decreases the number of times the

search strategy is consulted and therefore it greatly improves performance (in terms

of the time spent on the search strategy). However, batching alters a strategy, and

it is possible that, with batching, Otter spends too much time on paths that are

not truly interesting, decreasing the strategy’s effectiveness. Hence Otter makes

batching an option to the user.

2.12 Interacting with the Environment

Programs interact with the system enviroment in a variety of ways. Examples

are getting input from the console/files, reading environment variables, and out-

putting to the console/files. The code that facilitates these interactions is usually

provided by the system as a library, such as libc and the POSIX libraries. In order

to symbolically execute a realistic program, a model of the system library (at least,
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a portion of the library used by the program) must be provided2. Thus, to make

Otter convenient to use, we bundle Otter with a default model of system library.

We could either implement our own libc/POSIX, or import an existing imple-

mentation from elsewhere (such as glibc [2]). The advantage of implementing our

own is we have full control of the complexity of the implementation. In particular,

optimizations commonly applied in existing implemenations can actually hurt the

performance when executed symbolically, and optimizations are often complex (e.g.,

different code optimized for different hardwares), making them very hard to port to

Otter. On the other hand, reimplementing our own libraries is a time-consuming and

error-prone task (considering that existing implemntations take many human-hours

to develop and test).

Our solution is to do both. For libc we chose to import an existing imple-

mentation called newlib [41]. newlib is a C library intended for use on embedded

systems. As a result, it is highly portable, and requires very few modifications to

work well with Otter. For POSIX, it is much harder to find a working implemen-

tation, since POSIX includes many system calls that have to be defined in Otter.

Therefore, we implemented a partial model of POSIX system calls. This includes

an in-memory file system (where a file’s content is stored in a char array), and

functions that emulate system calls, such as network I/O, select (synchronous I/O

multiplexing), and a subset of functions defined in unistd.h.

Notice that most of the library code is written purely in C, and therefore Otter

2 Another symbolic execution paradigm, called concolic testing, models the environment differ-

ently. This will be discussed in Section 2.13.
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executes it in the same way as any other source code, e.g., strcpy from newlib copies

characters using a for-loop. A few functions, such as those defined in setjmp.h, require

special supports from Otter (e.g., to implement setjmp, Otter has to remember the

calling environment, which is later used by longjmp to restore the environment).

2.13 Related Work

In this section, I will introduce several symbolic executors from the literature,

and compare them to Otter.

2.13.1 EXE and KLEE

EXE [12] was a symbolic executor developed in 2006 at Stanford Univesity.

EXE instruments C programs by adding code that maintains symbolic constraints

along execution paths, consults a constraint solver (STP) when a conditional is

hit, and calls fork to branch the execution if the conditional is unresolvable. The

instrumented program is then compiled and run natively.

KLEE [11], the successor to EXE, performs symbolic execution in a similar

manner. However, instead of instrumenting the program and running it natively,

KLEE interprets it. The main advantage of this over calling fork is that the latter

requires duplication of memory, which is expensive in both time and space (although

fork does copy-on-write, it is likely that any branch will modify memory, which

triggers the copy). KLEE avoids this by modeling memory as a persistent map so

that portions of the heap can be efficiently shared among multiple executions.
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EXE and KLEE are able to find inputs that crash various programs, including

a DHCP server, a regular expression library, several Linux file systems, and the

GNU Coreutils suite [15].

Otter is similar to KLEE in that it also interprets programs, and it uses STP

as the constraint solver. Several major differences between Otter and KLEE are

Environment modeling. KLEE uses uClibc [54] rather than newlib as the stan-

dard C library. Furthermore, KLEE also comes with an in-memory symbolic

file system, but it only supports a flat, single directory structure (whereas Ot-

ter’s file system supports hierarchical directory structures). It is also closely

tied to the file system: whenever a program maniputes a symbolic file (e.g.,

opens a file given its symbolic name), KLEE creates real files in its sandbox

in the actual file system. One consequence of this design is that the model is

less portable—currently KLEE can only be run on Linux if POSIX support

is required, whereas Otter does not have this limitation. Nevertheless, KLEE

has special supoprt for concrete files: any file system calls with concrete file-

names go directly to the real file system. This leads to much faster execution

on file system calls with common files (e.g., /etc/fstab).

Strategies. KLEE uses a strategy that combines two strategies, called random path

selection and coverage-optimized search, in a round-robin fashion.

• Random path selection(RP) [10] is a probabilistic version of breadth-first

search. RP randomly chooses from the worklist states, weighing a state

with a path of length n by 2−n. Thus, this approach favors shorter paths,
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but treats all paths of the same length equally.

• Coverage-optimized search computes the distance between the end of each

state’s path and the closest uncovered node in the interprocedural control-

flow graph, and then randomly chooses from the set of states weighed

inversely by distance. (To our knowledge, this algorithm has not been

described in detail in the literature; we studied it by examining KLEE’s

source code [29].)

On the other hand, Otter favors flexible strategy deployment, while it is un-

clear if KLEE does. We implemented KLEE’s strategy in Otter, and we

compared it (as well as random path alone) against Otter’s own strategies

(Chapter 3).

Compilation framework. KLEE uses LLVM [34] to compile a C program into

bytecode that is close to an assembly program, while Otter uses CIL to trans-

form a C program to an intermediate representation that is a dialect of C.

Extensions. Otter has several extensions. In particular, one extension, called call-

chain-backward symbolic execution (CCBSE, discussed in Chapter 3), requires

starting symbolic execution in the middle of a program, and therefore requires

support for conditional pointers and lazy initialization. To support these fea-

tures, Otter needs a more sophisticated memory model and execution seman-

tics. KLEE does not support starting symbolic in the middle of a program,

and therefore we believe that KLEE does not support these features.
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2.13.2 Concolic Testing

DART [24] combines random testing and symbolic execution to yield concolic

testing (concrete + symbolic). DART associates each symbolic input with a con-

crete value, and the program is executed natively with these values. At the same

time, DART collects a list of symbolic constraints over the symbolic inputs, one at

each branch point (i.e., conditional) along the concrete execution path. After the

execution finishes, DART picks a branch point and negates the symbolic constraint.

The new list of symbolic constraints is then put into a constraint solver, which

generates a new input that will direct the program to another path with the same

prefix as the previous one, but branching differently at the chosen branch point.

This process is repeated until all branch points on all execution paths have been

chosen, or it reaches maximum number of allowed paths.

DART uses lp solve, which is a linear arithmetic constraint solver that does not

solve constraints with pointers. If such constraints are present, DART simply reverts

to ordinary random testing. CUTE [52] extends DART by improving its handling

of pointer (in)equalities of the form x = y, x 6= y, x = NULL and x 6= NULL,

and is able to discover errors such as memory leaks, segmentation faults and infinite

loops. Hybrid concolic testing [37] further optimizes concolic testing by generating

random inputs in the first phase to bring the symbolic execution to a certain state,

and then, at that point, running concolic testing. The insight is if path explosion

occurs at the very beginning of symbolic execution, ordinary concolic testing will

“get stuck” in a small fraction of branches, those that can be reached using “short”
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executions from the initial state of the program. Thus, hybrid concolic testing can

improve the quality of branch coverage. Along the same lines, another paper [23]

proposes fuzzing domain specific applications. By cooperating with a context-free

constraint solver (which solves for satisfying assignments in the language accepted by

some grammar), it dramatically improve code coverage when testing some Internet

Explorer 7 interpreter modules.

SAGE [26], developed at Microsoft Research, also performs concolic testing.

It has two major improvements over prior concolic testers:

Coverage-guided strategy. SAGE uses a coverage-guided generational search to

explore states in the execution tree. Initially, at the zeroth generation, SAGE

runs with the initial state; whenever the symbolic execution forks, SAGE

chooses a branch at random to continue the execution, and stores the remain-

ing branches into the worklist as the first generation children. After the zeroth

generation finishes, SAGE runs each of the first generation children to comple-

tion, in the same manner as the zeroth generation, but separately grouping the

grandchildren by their first generation parent. After exploring the first gener-

ation, SAGE explores subsequent generations (children of the first generation,

grandchildren of the first generation, etc.) in a more intermixed fashion, using

a block coverage heuristic to determine which generations to explore first.

Constraint solver. SAGE uses Z3 [16], a high-performance SMT solver also de-

veloped at Microsoft Research.

With these improvements, SAGE is reported to be very effective, and used daily by
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Microsoft [26]. SAGE is not available in public.

2.13.2.1 Comparing Concolic Testing and Pure Symbolic Execution

The concolic testing literature refers to KLEE (and would refer to Otter)

as static symbolic execution, while concolic testing itself is categorized as dynamic

symbolic execution [26]. The author, however, does not agree with this classification:

although KLEE and Otter do not natively execute programs, they both interpret

programs without the conservative abstractions found in most static analysis tools.

Furthermore, in theory, KLEE and Otter have the same exploring power as concolic

testing, i.e., they explore the same program execution tree (though with different

search order). In the following, I shall categorize EXE, KLEE and Otter as pure

symbolic execution.

Concolic testing has several advantages over pure symbolic execution. First,

concolic testing does native program execution, which is much faster than program

interpretation, and it avoids the work of engineering an interpreter. It also handles

environment modeling more naturally, since the environment (file system, network,

etc.) is concrete and native. Second, a concolic tester consults its constraint solver

only once per execution path to generate a new input for the next iteration, while

a pure symbolic executor invokes its solver at every conditional that requires res-

olution. Considering that constraint solving is a major performance bottleneck,

concolic testing’s approach can be a great advantage. That said, both KLEE and

Otter employ query caching (Section 2.10) to leverage the cost of frequent solver
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queries. Furthermore, we expect more complex queries are generated from com-

pleted execution paths (required by concolic testing) than queries generated in the

middle of executions (required by eurely symbolic executors).

On the other hand, pure symbolic execution has certain advantages over con-

colic testing. Most importantly, search strategies can be more flexible under pure

symbolic execution. For example, a concolic tester can waste time exploring unin-

teresting paths, because it always executes the program into completion. However,

a pure symbolic executor can pause a path and explore another one, and later come

back to the first one again.

Moreover, since concolic testers run programs natively, they affect the external

world, which makes them tricky to implement correctly and safely (e.g., consider

two paths, one of which reads a file and another writes to the same file). For the

same reason, it is hard for concolic testers to find errors related to edge cases of a

system (e.g., out of memory, out of disk space, network failure, etc.) that do not

normally happen.

Lastly, variants of symbolic execution, in particular CCBSE, are harder to

implement using concolic testing.

2.13.3 Symbolic Execution for Exhausive Search

JPF-SE [5, 45] is a symbolic executor for Java programs. It is an extension

of Java PathFinder (JPF), an explicit state model checking tool [3]. JPF-SE also

performs pure symbolic execution. However, unlike KLEE and Otter, JPF-SE was
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designed to always exhaustively enumerate all execution paths, and is therefore

different from KLEE and Otter by the following:

• To cope with unbounded program executions due to loops and recursive calls,

JPF-SE explores paths up to a certain depth provided by the user. KLEE and

Otter, however, stops executing when reaching the time limit.

• Search strategies do not matter for JPF-SE, since it explores all paths. Cur-

rently, JPF-SE traverses the execution tree in a depth-first manner.

• JPF-SE is described as best for unit testing (instead of whole-program testing),

or for programs that are small or contain no loops or recursive calls.

40



Chapter 3

Directed Symbolic Execution

In this chapter, we study the line reachability problem: given a target line in

the program, can we find a realizable path to that line? Since program lines can

be guarded by conditionals that check arbitrary properties of the current program

state, this problem is equivalent to the very general problem of finding a path that

causes the program to enter a particular state [25]. The line reachability problem

arises naturally in several scenarios. For example, users of static-analysis-based bug

finding tools need to triage the tools’ bug reports—determine whether they corre-

spond to actual errors—and this task often involves checking line reachability. As

another example, a developer might receive a report of an error at some particular

line (e.g., an assertion failure that resulted in an error message at that line) without

an accompanying test case. To reproduce the error, the developer needs to find a

realizable path to the appropriate line. Finally, when trying to understand an unfa-

miliar code base, it is often useful to discover under what circumstances particular

lines of code are executed.

Symbolic execution is an attractive approach to solving line reachability: by

design, symbolic executors are complete, meaning any path they find is realizable.

However, symbolic executors cannot explore all program paths, and hence must

make heuristic choices to prioritize path exploration. In this dissertation, we focus
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on finding paths that reach certain lines in particular, whereas most prior work

has focused on finding paths to increase code coverage [24, 12, 11, 37, 10, 55]. We

are aware of one previously proposed approach, execution synthesis (ESD) [57], for

using symbolic execution to solve the line reachability problem; we compare ESD

to our work in Section 3.3.

We propose two new directed symbolic execution (DSE) search strategies for

line reachability. First, we propose shortest-distance symbolic execution (SDSE),

which prioritizes the path with the shortest distance to the target line as computed

over an interprocedural control-flow graph (ICFG). Variations of this heuristic can

be found in existing symbolic executors—in fact, SDSE is inspired by the heuristic

used in the coverage-based search strategy from KLEE [11]—but, as far as we are

aware, the strategy we present has not been specifically described nor has it been

applied to directed symbolic execution. In Section 3.1.1 we describe how distance

can be computed context-sensitively using PN grammars [50, 20, 48]. We will also

discuss several variants of SDSE.

Second, we propose call-chain-backward symbolic execution (CCBSE), which

starts at the target line and works backward until it finds a realizable path from the

start of the program, using standard forward (interprocedural) symbolic execution as

a subroutine. More specifically, suppose the target line ` is inside function f . CCBSE

begins forward symbolic execution from the start of f , yielding a set of partial

interprocedural paths pf that start at f , possibly call other functions, and lead to `;

in a sense, these partial paths summarize selected behavior of f . Next, CCBSE runs

forward symbolic execution from the start of each function g that calls f , searching
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for paths that end at calls to f . For each such path p, it attempts to continue down

paths p′ in pf until reaching `, adding all feasible extended paths p+ p′ to pg. The

process continues backward up the call chain until CCBSE finds a path from the

start of the program to `. Notice that by using partial paths to summarize function

behavior, CCBSE can reuse the machinery of symbolic execution to concatenate

paths together. This is technically far simpler than more standard approaches that

use some formal language to explicitly summarize function behavior in terms of

parameters, return value, global variables, and the heap (including pointers and

aliasing).

The key insight motivating CCBSE is that the closer forward symbolic exe-

cution starts relative to the target line, the better the chance it finds paths to that

line. If we are searching for a line that is only reachable on a few paths along which

many branches are possible, then combinatorially there is a very small chance that

a standard symbolic executor will make the right choices and find that line. By

starting closer to the line we are searching for, CCBSE explores shorter paths with

fewer branches, and so is more likely to reach that line.

CCBSE imposes some additional overhead, and so it does not always perform

as well as a forward execution strategy. Thus, we also introduce mixed-strategy

CCBSE (Mix-CCBSE), which combines CCBSE with another forward search. In

Mix-CCBSE, we alternate CCBSE with some forward search strategy S. If S en-

counters a path p that was constructed in CCBSE, we try to follow p to see if

we can reach the target line, in addition to continuing S normally. In this way,

Mix-CCBSE can perform better than CCBSE and S run separately—compared to
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CCBSE, it can jump over many function calls from the program start to reach the

paths being constructed; and compared to S, it can short-circuit the search once it

encounters a path built up by CCBSE.

We implemented SDSE, CCBSE, and Mix-CCBSE in Otter. We also extended

Otter with two popular forward search strategies, OtterKLEE and OtterSAGE, from

KLEE [11] and SAGE [26], respectively. And, for a baseline, we implemented a ran-

dom path search (RP) that flips a coin at each branch. We evaluated the effectiveness

of our directed search strategies on the line reachability problem, comparing against

the existing search strategies. We ran each strategy on 10 benchmarks from the

GNU Coreutils programs [15], looking in each program for one line that contains a

previously identified fault. We also compared the strategies on synthetic examples

intended to illustrate the strengths of SDSE and CCBSE.

We found that SDSE and its variants perform extremely well on some pro-

grams, but it can fail completely under certain program patterns. CCBSE has per-

formance comparable to standard search strategies but is often somewhat slower due

to the overhead of checking path feasibility. Mix-CCBSE performs well on some of

the benchmarks, particularly when using OtterKLEE as its forward search strategy,

but it also fails in some cases. Lastly, we found that mixing SDSE with random-path

gives the best strategy in terms of total time used across all benchmarks.

We also generalize our solutions to the line reachability problem to consider

multiple line targets. More specifically, the multi-target line reachability problem

is, given a time limit, find as many of a given set of line targets as possible. We

implemented variants of SDSE, and compared them against other strategies using
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the same set of benchmark programs from Coreutils, with line targets defined as

lines not covered by Coreutils’ test suite. We observe good performances from

Mix-CCBSEs and mixing SDSEs with random-path. These results suggest that

directed symbolic execution is a practical and effective approach to solving the line

reachability problems.

3.1 Directed Strategies and Their Implementation

In this section we present SDSE, CCBSE, and Mix-CCBSE. We will explain

them in terms of their implementation in Otter.

3.1.1 Shortest-Distance Symbolic Execution

The basic idea of SDSE is to prioritize program branches that correspond to the

shortest path-to-target in the interprocedural CFG. To illustrate how SDSE works,

consider the code in Figure 3.1, which performs command-line argument processing

followed by some program logic, a pattern common to many programs. This program

first enters a loop that iterates up to argc times, processing the ith command-line

argument in argv during iteration i. If the argument is ’b’, the program sets b[n] to

1 and increments n (line 8); otherwise, the program calls foo. A potential buffer

overflow could occur at line 8 when more than four arguments are ’b’; we add an

assertion on line 7 to identify when this overflow would occur. After the arguments

are processed, the program enters a loop that reads and processes character inputs

(lines 12 onward).
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1 int main(void) {
2 int argc; char argv[MAX ARGC][1];
3 SYMBOLIC(&argc); SYMBOLIC(&argv);

4 int i, n = 0, b[4] = { 0, 0, 0, 0 };
5 for (i = 0; i < argc; i++) {
6 if (∗argv[i] == ’b’) {
7 ASSERT(n < 4);
8 b[n++] = 1; /∗ potential buf. overflow ∗/

9 } else
10 foo(); /∗ some expensive function ∗/
11 }
12 while (1) {
13 if (getchar()) /∗ get symbolic input ∗/
14 /∗ ...do something... ∗/;
15 }
16 return 0;
17 }

entry

argc=0 argv[0]='b' argv[0]≠'b'

argc=1 argv[1]='b' argv[1]≠'b'

argc=4 argv[4]='b' argv[4]≠'b'

buffer overflow!

Figure 3.1: Example illustrating SDSE’s potential benefit.

Suppose we would like to reason about a possible failure of the assertion. Then

we can run this program with symbolic inputs, which we identify with the calls on

line 3 to the built-in function SYMBOLIC. The right half of the figure illustrates the

possible program paths the symbolic executor can explore on the first five iterations

of the argument-processing loop. Notice that for five loop iterations there is only

one path that reaches the failing assertion out of
∑4

n=0 3× 2n = 93 total paths.

Moreover, the assertion is not reachable once exploration has advanced past the

argument-processing loop.

In this example, random-path (RP) would have only a small chance of finding

the overflow, spending most of its time exploring paths shorter than the one that

leads to the buffer overflow. OtterKLEE and OtterSAGE would focus on increasing

coverage to all lines, wasting significant time exploring paths through the loop at

the end of the program, which does not influence this buffer overflow.
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In contrast, SDSE works very well in this example, with line 7 set as the target.

Consider the first iteration of the loop. Otter will branch upon reaching the loop

guard, and will choose to execute the first instruction of the loop, which is two lines

away from the assertion, rather than the first instruction after the loop, which can

no longer reach the assertion. Next, on line 6, the symbolic executor takes the true

branch, since that reaches the assertion immediately. Then, determining that the

assertion is true, it will run the next line, since it is only three lines away from the

assertion and hence closer than paths that go through foo (which were deferred by

the choice to go to the assertion). Then Otter will return to the loop entry, repeating

the same process for subsequent iterations. As a result, SDSE explores the central

path shown in bold in the figure, and thereby quickly finds the assertion failure.

Implementation. SDSE is implemented as a pick function from Figure 2.2. As men-

tioned, SDSE chooses the state on the worklist with the shortest distance to target.

Within a function, the distance is just the number of edges between statements in

the control flow graph (CFG). To measure distances across function calls, we count

edges in an interprocedural control-flow graph (ICFG) [33], in which function call

sites are split into call nodes and return nodes, with call edges connecting call nodes

to function entries and return edges connecting function exits to return nodes. For

each call site i, we label call and return edges by (i and )i, respectively. Figure 3.2a

shows an example ICFG for a program in which main calls foo twice; here call i to

foo is labeled fooi.

We define the distance-to-target metric to be the length of the shortest path
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main

x = 1

)foo1)foo0(foo0 (foo1

entry call foo0 return foo0 exitcall foo1 return foo1

entry exit

foo

(a) Example PN -path in an interprocedural CFG.

PN → P N

P → S P

| )i P

| ε

N → S N

| (i N

| ε

S → (i S )i

| S S

| ε

(b) Grammar of PN paths.

Figure 3.2: SDSE distance computation.

in the ICFG from an instruction to the target, such that the path contains no

mismatched calls and returns. Formally, we can define such paths as those whose

sequence of edge labels form a string produced from the PN nonterminal in the

grammar shown in Figure 3.2b. In this grammar, developed by Reps [50] and

later named by Fähndrich et al [20, 48], S-paths correspond to those that exactly

match calls and returns; N -paths correspond to entering functions only; and P -paths

correspond to exiting functions only. For example, the dotted path in Figure 3.2a

is a PN -path: it traverses the matching (foo0 and )foo0 edges, and then traverses

(foo1 to the target. Notice that we avoid conflating edges of different call sites by

matching (i and )i edges, and thus we can statically compute a context-sensitive

distance-to-target metric.

PN -reachability was previously used for conservative static analysis [20, 48,

30]. However, in SDSE, we are always asking about PN -reachability from the cur-

rent instruction. Hence, rather than solve reachability for an arbitrary initial P -

path segment (which would correspond to asking about distances from the current
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instruction in all calling contexts of that instruction), we restrict the initial P -path

segment to the functions on the current call stack. For performance, we statically

pre-compute N -path and S-path distances for all instructions to the target and

combine them with P -path distances on demand.

Variants. We consider several variants of SDSE:

SDSE-intra. (Intraprocedural SDSE) In this variant, we ignore call-chains: if the

target is not in the current function, then the distance-to-target is ∞. By

comparing this variant to regular SDSE, we can see if interprocedurality of

distances is crucial for SDSE’s effectiveness.

SDSE-pr. (Probabilistic SDSE) In each iteration, this strategy picks a state with

probability inversely proportional to the corresponding distance to the target.

The rationale is, by randomizing the choice, it is less likely to get stuck in a

path which does not lead to the target.

RR(RP,SDSE). (Round-robin of random-path and SDSE) Inspired by KLEE, this

strategy alternates between random-path and SDSE, using one strategy for

each iteration. We observe that SDSE is much more likely to get stuck in the

search than random-path, therefore mixing the two ensures that the search

always makes progress. However, It is possible that SDSE might be effective

on a program, but RR(RP,SDSE) becomes twice as slow on the same program

because only half of the time is spent on SDSE.
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1 void main() {
2 int m, n, i;
3 SYMBOLIC(&m, sizeof(m), ”m”);
4 SYMBOLIC(&n, sizeof(n), ”n”);
5

6 for (i=0;i<1000;i++)
7 if (m == i) f(m, n);
8 }

10 void f(int m, int n) {
11 int i, a, sum=0;
12 for (i=0;i<6;i++) {
13 a = n%2;
14 if (a) sum += a+1;
15 n/=2;
16 }
17 while(1) {
18 if (sum==0 && m==7)
19 ASSERT(0);
20 }
21 }

entry

m==0 m==1 m==999

f(m, n)

sum==0 && m==7

a0

sum+=a0+1

a1

sum+=a1+1

a5

sum+=a5+1

assert(0)

Figure 3.3: Example illustrating CCBSE’s potential benefit.

Moreover, we also consider the batched (Section 2.11) versions of all the vari-

ants of SDSE. Batching potentially lowers SDSE’s overhead, but it can also hurt its

effectiveness.

3.1.2 Call-chain-backward symbolic execution

SDSE is often very effective, but there are cases on which it does not do

well—in particular, SDSE is less effective when there are many potential paths to

the target line, but there are only a few, long paths that are realizable. In these

situations, CCBSE can sometimes work better.

To see why, consider the code in Figure 3.3. This program initializes m and n

to be symbolic and then loops, calling f(m, n) when m == i for i ∈ [0, 1000). For non-

negative values of n, the loop in lines 12–16 iterates through n’s least significant bits

(stored in a during iteration), incrementing sum by a+1 for each non-zero a. Finally,

if sum == 0 and m == 7, the failing assertion on line 19 is reached. Otherwise, the

program falls into an infinite loop, as sum and m are never updated in the loop.
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RP, OtterKLEE, OtterSAGE, and SDSE all perform poorly on this example.

SDSE gets stuck at the very beginning: in main’s for-loop, it immediately steps into

f when m == 0, as this is the “fastest” way to reach the assertion inside f according

to the ICFG. Unfortunately, the guard of the assertion is never satisfied when m

is 0, and therefore SDSE gets stuck in the infinite loop. SAGE is very likely to

get stuck, because the chance of SAGE’s first generation (Section 2.13.2) entering f

with the right argument (m == 7) is extremely low, and SAGE always runs its first

generation to completion, and hence will execute the infinite loop forever. RP and

OtterKLEE will also reach the assertion very slowly, since they waste time executing

f where m6= 7; none of these paths lead to the assertion failure.

In contrast, CCBSE begins by running f with both parameters m and n set

to symbolic, as CCBSE does not know what values might be passed to f. Hence,

CCBSE will potentially explore all 26 paths induced by the for loop, and one of

them, say p, will reach the assertion. When p is found, CCBSE will jump to main

and explore various paths that reach the call to f. At the call to f, CCBSE will

follow p to short-circuit the evaluation through f (in particular, the 26 branches

induced by the for-loop), and thus quickly find a realizable path to the failure.

Implementation. CCBSE is implemented in the manage targets and pick functions

from Figure 2.2. Otter states s, returned by pick, include the function f in which

symbolic execution started, which we call the origin function. Thus, traditional

symbolic execution states always have main as their origin function, while CCBSE

allows different origin functions. In particular, CCBSE begins by initializing states
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for functions containing target lines.

To start symbolic execution at an arbitrary function, Otter must initialize

symbolic values for the function’s inputs (parameters and global variables). Integer-

valued inputs are initialized to symbolic words, and pointers are represented using

conditional pointers (Section 2.6.3), manipulated using Morris’s general axiom of

assignment [8, 39]. To support recursive data structures, Otter initializes pointers

lazily—we do not actually create conditional pointers until a pointer is used, and

we only initialize as much of the memory map as is required. When initialized,

pointers are set up as follows: for inputs p of type pointer to type T , we construct

a conditional pointer such that p may be null or p may point to a fresh symbolic

value of type T . If T is a primitive type, we also add a disjunct in which p may

point to the beginning of an array of 8 fresh values of type T . This last case models

parameters that are pointers to arrays, and we restrict its use to primitive types for

performance reasons. In our experiments, we have not found this restriction to be

problematic.

To illustrate how this strategy for initializing pointers work, consider a pointer

head of a structure

struct node { struct node∗ next; char∗ s; } head;

When head is initialized, it becomes a conditional pointer that is either null or points

to a fresh symbolic value of type struct node. However, head−>next and head−>s are

uninitialized until they are used. When head−>next is used later, it is initialized

in the same manner as head was; and when head−>s is used, it is initialized to a
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8 manage targets (s)

9 (sf,p) = path(s)

10 if pc(p) ∈ targets

11 update paths(sf, p)

12 else if pc(p) = callto(f) and has paths(f)

13 for p′ ∈ get paths(f)

14 if (p+ p′ feasible)

15 update paths(sf, p+ p′)

16 update paths (sf, p)

17 if not(has paths(sf))

18 add callers(sf,worklist)

19 add path(sf, p);

Figure 3.4: Target management for CCBSE.

conditional pointer which is either null, a pointer to a fresh symbolic char, and a

pointer to the beginning of symbolic char array of length 8.

Notice that this strategy for initializing pointers is unsound in that CCBSE

could miss some targets, but the final paths CCBSE produces are always feasible

since they ultimately connect back to main.

The pick function works in two steps. First, it selects the origin function to

execute, and then it selects a state with that origin. For the former, it picks the

function f with the shortest-length call chain from main. For non-CCBSE the origin

will always be main. At the start of CCBSE with a single target, the origin will be the

one containing the target; as execution continues there will be more choices—picking

the “shortest to main” ensures that we move backward from target functions toward

main. After selecting the origin function f , pick chooses one of f ’s states according to

some forward search strategy. We write CCBSE(S) to denote CCBSE using forward

search strategy S.

The manage targets(s) function is given in Figure 3.4. Recall from Figure 2.2

that s has already been added to the worklist for additional, standard forward
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search; the job of manage targets is to record which paths reach the target line and

to try to connect s with path suffixes previously found to reach the target. The

manage targets function extracts from s both the origin function sf and the (inter-

procedural) path p that has been explored from sf to the current point. This path

contains all the decisions made by the symbolic executor at condition points. If

path p’s end (denoted pc(p)) has reached a target (line 10), we associate p with sf

by calling update paths; for the moment one can think of this function as adding p

to a list of paths that start at sf and reach targets. Otherwise, if the path’s end is

at a call to some function f, and f itself has paths to targets, then we may possibly

extend p with one or more of those paths. So we retrieve f’s paths, and for each one

p′ we see whether concatenating p to p′ (written p + p′) produces a feasible path.

If so, we add it to sf’s paths. Feasibility is checked by attempting to symbolically

execute p′ starting in p’s state s.

Now we turn to the implementation of update paths. This function simply adds

p to sf’s paths (line 19), and if sf did not previously have any paths, it will create

initial states for each of sf’s callers (pre-computed from the call graph) and add these

to the worklist (line 17). Because these callers will be closer to main, they will be

subsequently favored by pick when it chooses states.

CCBSE(SDSE). When using SDSE as the forward search strategy of CCBSE, we

modify SDSE slightly to compute shortest distances to the target line or to the

functions reached in CCBSE’s backward search. This allows SDSE to take better

advantage of CCBSE (otherwise it would ignore CCBSE’s search in determining
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1 void main() {
2 int m, n;
3 SYMBOLIC(&m, sizeof(m), ”m”);
4 SYMBOLIC(&n, sizeof(n), ”n”);
5 foo(); // Some work
6 if (m >= 30) g(m, n);
7 }
8 void g(int m, int n) {
9 int i;

10 for (i=0;i<1000;i++) {
11 baz(); // Some work
12 if (m == i) f(m, n);
13 }
14 }

15 void f(int m, int n) {
16 int i, a, sum=0;
17 for (i=0;i<6;i++) {
18 a = n%2;
19 if (a) sum += a+1;
20 n/=2;
21 }
22 while (1) {
23 if (sum==0 && m==43)
24 ASSERT(0);
25 }
26 }

entry

m==0 m==1 m==30

f(m, n)

m>=30 exit

m==999

sum==0 && m==43

a0

sum+=a0+1

a1

sum+=a1+1

a5

sum+=a5+1

assert(0)

Figure 3.5: Example illustrating Mix-CCBSE’s potential benefit.

which paths to take).

3.1.3 Mixing CCBSE with forward search

While CCBSE may find a path more quickly, it comes with a cost: its queries

tend to be more complex than in forward search, and it can spend significant time

trying paths that start in the middle of the program but are ultimately infeasible.

Consider Figure 3.5, a modified version of the code in Figure 3.3. Here, main calls

function g, which acts as main did in Figure 3.3, with some m >= 30 (line 6), and

the assertion in f is reachable only when m == 43 (line 23). All other strategies fail

in the same manner as they do in Figure 3.3.

However, CCBSE also fails to perform well here, as it does not realize that m

is at least 30, and therefore considers ultimately infeasible conditions 0 ≤ m < 43

in f. With Mix-CCBSE, however, we conceptually start forward symbolic execution

from main at the same time that CCBSE (“backward search”) is run. As before, the

backward search will gets stuck in finding a path from g’s entry to the assertion.
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However, in the forward search, g is called with m ≥ 30, and therefore f is always

called with m ≥ 30, making it hit the right condition m == 43 very soon thereafter.

Notice that, in this example, the backward search must find the path from f’s entry

to the assertion before f is called with m == 43 in the forward search in order for the

two searches to match up (e.g., there are enough instructions to run in line 5). Should

this not happen, Mix-CCBSE degenerates to its constituents running independently

in parallel (plus the overhead of manage targets).

Implementation. We implement Mix-CCBSE with a slight alteration to pick. At

each step, Mix-CCBSE decides whether to use regular forward search or CCBSE

next, splitting the strategies by time spent, i.e., it switches between the two and

maintains a constant ratio between the times spent on them. We tried several ratios

(50%, 60% and 75% of the time dedicated to forward search) on our benchmark

(Section 3.3), and found that Mix-CCBSE with a ratio of 75% gives the best overall

runtime.

3.2 Multi-Target Directed Symbolic Execution

A natural extension to DSE is to generalize it to multi-target DSE, which tries

to reach multiple targets. More specifically, given a set of line targets, extend DSE

to find inputs that drive the program execution to as many targets as possible,

within a time limit. One application of this is to improve code coverage. Suppose

a program comes with a test suite which achieves a certain coverage. Lines not

covered by the test suite are most likely the corner cases where tests are hard or
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time-consuming to derive. We can then treat these lines as targets, and use directed

symbolic execution to find them. Another similar application is to improve the code

coverage of undirected symbolic execution, such as KLEE.

The most straightforward way to carry at multi-target directed symbolic ex-

ecution is to run (single-target) directed symbolic execution once per line target.

But could we do better? In the remainder of this section, we discuss how to extend

the idea of SDSE to multi-target DSE.

Multi-Target SDSE. The generalization from SDSE to multiple targets is mostly

straightforward. We also add one variant of SDSE that is specific to multi-target.

In all variants of SDSE, a target is removed once it is covered, so that strategies will

not spend time reaching the same target again.

SDSE. (Shortest distance of all) Pick the state closest to any one of the targets.

The goal is to reach some target as quickly as possible.

SDSE-pr. Similar to multi-target SDSE, but it picks a state with probability in-

versely proportional to its shorest distance to any target.

SDSE-rr. (Round-robin of line targets1) On the k|T | + ith iteration, pick a state

that is closest to the ith target of of |T | targets. This can be better than

running SDSE in parallel, one for each target, because paths to different targets

might share common prefixes.

1Not to be confused with round-robin of two strategies.
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Just like single-target DSE, we also consider combining SDSE with random-

path. We think such a combination is even more meaningful in the context of

multi-target DSE, because the multi-target line reachability problem lies between

the problems of (1) single-target line reachability and (2) maximizing code coverage

(that random-path tends to be good at). In fact, maximizing code coverage is a

special case of multi-target line reachability where all uncovered lines are targets.

Apart from combining two strategies using round-robin (just like RR(RP,SDSE)

from single-target), we also consider applying strategies one after another. The idea

is that we can divide the exploration into two phases, where in the first phase an

undirected strategy is used to find as many targets as possible. When the coverage

converges and does not increase for a while, it advances to the second phase, which

uses a directed strategy to locate remaining targets. Formally, we define the strategy

Ph(U,D, r):

1. Undirected strategy U is used as long as the following holds: if the ith covered

target is reached at time t, then the (i+1)th covered target should be reached

by time r × t.

2. If it times out waiting for the next covered target, the combined strategy

switches to directed strategy D.

When there is only one target, or when no target has been reached by the search,

Ph(U,D, r) degenerates to U . In the experiment we evaluate batched Ph(OtterKLEE,SDSE,3).
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Multi-Target CCBSE. We leave the generalization of CCBSE to multiple targets

as future work.

3.3 Experiments

3.3.1 Single-Target Directed Symbolic Execution

We evaluated our directed search strategies by comparing their performance to

reach the target lines in the small example programs from Section 3.1, and to reach

lines that manifest 10 bugs reported in 9 programs from GNU Coreutils version 6.10.

These bugs were previously discovered by KLEE [11]. All experiments were run on

a machine with six 2.4Ghz quad-core Xeon E7450 processors and 48GB of memory,

running 64-bit Linux 2.6.26. We ran 16 tests in parallel, observing minimal resource

contention.2 The tests required less than 4 days of elapsed time. Total memory

usage was below 1GB per test.

The results are presented in Table 3.1. Each column represents a strategy, and

each row represents a benchmark program. Strategies include

• The SDSE family: SDSE, SDSE-pr and SDSE-intra, and the batched versions

of SDSE and SDSE-pr (denoted as B(*)). Also, a strategy RR(RP,SDSE) by

round-robin of random-path and SDSE.

• Two variants of CCBSE, using random-path and SDSE as the forward strategy.

2This is determined by running a set of tests in different number of parallel jobs, and observing

the increase in running time per test.

59



• Forward strategies (RP, OtterKLEE and OtterSAGE) implemented in Otter,

both by themselves and mixing with CCBSE(RP) (running forward strategies

75% of the time). We chose CCBSE(RP) because it was the best overall of

the two from part (c), and because RP is the fastest out of the 3 forward-only

strategies (RP is more resistant to getting stuck and is inexpensive to com-

pute). Below, we write Mix-CCBSE(S) to denote the mixed strategy where S

is the forward search strategy and CCBSE(RP) is the backward strategy.

• The original KLEE version r130848 [29].

We did not directly compare against execution synthesis (ESD) [57], a previ-

ously proposed directed search strategy; in Section 5.1 we relate our results to those

reported in the ESD paper.

We found that the randomness inherent in most search strategies and in the

STP theorem prover introduces tremendous variability in the results. Thus, we ran

each strategy/target condition 21 times, using integers 1 to 21 as random seeds for

Otter. (We were unable to find a similar option in KLEE, and so we simply ran it 21

times.) The main numbers in Table 3.1 are the medians of these runs, and the small

numbers are the semi-interquartile range (SIQR). The number of outliers—which

fall 3×SIQR below the lower quartile or above the upper quartile, if non-zero—is

given in parentheses. We ran each test for at most 900 seconds for the synthetic

examples, and at most 1,800 seconds for the Coreutils programs (except for pr and

tac, where tests are given 7,200 seconds to run, as their bugs are more complex than

the others). The median is∞ if more than half the runs timed out, while the SIQR
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Program SDSE SDSE-pr SDSE-intra B(SDSE) B(SDSE-pr) RR(RP,SDSE) B(RR(RP,SDSE))

Figure 3.1 0.2 0.0(5) 0.3 0.0(2) 0.3 0.0(1) 0.3 0.1(0) 0.3 0.1(0) 0.3 0.0(3) 0.3 0.1(0)

Figure 3.3 ∞ 0(0) 147.9 24.3(3) ∞ 0(0) ∞ 0(0) 145.4 40.3(3) 371.5 24.6(4) 209.9 31.8(4)

Figure 3.5 ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0)

mkdir 35.4 ∞ 232.4 42.7(3) 424.9 97.2(6) 127.7 5.5(3) 159.4 332.2(5) ∞ 0(0) ∞ 0(0)

mkfifo 23.2 0.8(9) 1,051.5 ∞ ∞ 0(0) 22.1 0.7(8) 93.4 414.5(4) 451.6 28.5(3) 258.1 35.5(4)

mknod ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) 1,218.0 285.7(3)

paste 18.9 1.3(3) 57.0 13.2(4) 23.7 2.0(2) 21.6 2.4(1) 25.1 2.0(5) 22.1 2.0(4) 21.5 1.7(3)

seq 574.5 108.4(4) 42.3 43.3(4) ∞ 0(0) 407.6 57.7(6) 41.0 10.0(6) 1,731.4 ∞ 674.5 191.8(3)

ptx 439.0 231.2(0) 47.5 522.8(5) 974.8 524.7(0) 31.6 228.3(5) 37.4 4.3(5) 122.9 12.1(4) 97.2 27.1(4)

ptx2 1,729.6 ∞ ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) 293.7 28.0(5) 239.8 28.5(5)

md5sum 25.6 1.7(3) ∞ 0(0) ∞ 0(0) 26.9 1.3(5) ∞ 0(0) 31.5 2.7(2) 33.7 2.3(5)

tac ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) 5,824.6 643.8(4) 131.7 7.0(6) 102.0 9.9(0)

pr 953.9 1,410.4(5) ∞ 0(0) ∞ 0(0) 3,943.9 860.8(0) 3,045.0 948.2(2) ∞ 0(0) ∞ 0(0)

Total 12,800.1 21,230.7 24,823.4 15,381.3 14,626.0 13,584.9 11,644.8

(a) SDSE strategies

KLEE

0.8 0.0(4)

∞ 0(0)

∞ 0(0)

∞ 0(0)

667.0 269.8(7)

656.5 ∞

33.8 22.1(3)

51.6 13.9(1)

313.4 ∞

∞ 0(0)

∞ 0(0)

∞ 0(0)

∞ 0(0)

21,522.3

(b) KLEE

Program CCBSE w/ X= OtterKLEE OtterSAGE RP

SDSE RP Pure w/CCBSE Pure w/CCBSE Pure w/CCBSE

Figure 3.1 0.3 0.1(0) 1.3 0.2(4) 27.9 18.2(4) 23.6 18.2(4) ∞ 0(0) ∞ 0(0) 1.3 0.3(2) 1.4 0.3(2)

Figure 3.3 8.0 0.9(5) 68.1 6.5(1) 407.4 63.9(5) 495.3 53.9(7) ∞ 0(0) ∞ 0(0) 173.1 8.5(7) 246.6 11.8(2)

Figure 3.5 ∞ 0(0) ∞ 0(0) ∞ 0(0) 822.3 ∞ ∞ 0(0) ∞ 0(0) ∞ 0(0) 363.9 29.1(3)

mkdir ∞ 0(0) 148.4 31.9(4) 199.6 35.8(2) 152.4 32.5(1) 337.1 314.1(4) 389.8 464.9(3) 143.9 9.7(3) 125.8 11.9(1)

mkfifo 25.7 1.2(4) 62.2 13.5(0) 57.9 4.8(5) 46.3 6.9(4) 108.4 79.6(5) 102.1 59.0(5) 58.6 3.2(2) 46.3 4.6(1)

mknod ∞ 0(0) 199.1 59.0(0) 182.2 19.3(3) 122.3 16.9(5) 116.4 154.0(5) 126.5 221.7(5) 205.8 11.6(1) 140.5 9.0(2)

paste 22.8 1.4(4) 27.9 1.2(4) 16.6 0.8(4) 21.8 1.7(3) 17.9 3.6(2) 24.5 13.8(3) 20.1 1.0(5) 27.0 1.8(2)

seq 1,791.9 ∞ 407.1 20.1(4) 1,130.6 284.5(5) 138.6 22.0(4) ∞ 0(0) 279.1 ∞ 341.7 26.6(3) 180.4 19.2(5)

ptx 1,010.4 520.5(0) 103.8 10.0(1) 100.8 21.2(4) 168.0 27.8(8) ∞ 0(0) ∞ 0(0) 79.0 3.3(6) 130.9 14.8(3)

ptx2 ∞ 0(0) 665.1 38.4(8) 735.5 38.4(5) 1,062.3 110.0(4) ∞ 0(0) ∞ 0(0) 399.6 16.0(3) 610.4 77.4(0)

md5sum 36.0 1.1(8) ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0)

tac ∞ 0(0) ∞ 0(0) 4,826.6 254.5(4) 6,905.3 ∞ ∞ 0(0) ∞ 0(0) 3,165.7 183.2(4) 4,700.6 433.4(5)

pr ∞ 0(0) ∞ 0(0) ∞ 0(0) ∞ 0(0) 5,729.5 ∞ 6,462.6 ∞ ∞ 0(0) ∞ 0(0)

Total 22,686.8 17,813.5 16,249.7 17,617.1 20,709.2 19,984.6 13,414.5 14,961.9

(c) CCBSE, forward-only and Mix-CCBSE strategies (75% forward)

Table 3.1: Single-target experimental results. For each Coreutils

program and for the total, the fastest two times are highlighted.

Key: Median SIQR(Outliers) ∞ : time out
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is ∞ if more than one quarter of the runs timed out. We highlight the fastest two

times in each row.

3.3.1.1 Synthetic programs

The first three rows in Table 3.1 give the results from the examples in Fig-

ures 3.1, 3.3, and 3.5. In all cases the programs behaved as predicted.

For the program in Figure 3.1, all the SDSE strategies performed very well.

Since the target line is in main, CCBSE(SDSE) is equivalent to SDSE, so it performed

equally well. OtterKLEE took much longer to find the target, whereas OtterSAGE

timed out in all runs. RP was able to find the target, but it took slightly longer

than the SDSEs. Lastly, KLEE performed very well also, although it was still slower

than the SDSEs in this example.

For the program in Figure 3.3, CCBSE(SDSE) found the target line quickly,

while CCBSE(RP) did so in reasonable amount of time. CCBSE(SDSE) was much

more efficient, because with this strategy, after each failing verification of f(m,n)

(when 0 ≤ m < 7), it chose to try f(m+1,n) rather than stepping into f, as f is a

target added by CCBSE and is closer from any point in main than the assertion in

f is. The remaining strategies took much longer to finish or timed out.

For the program in Figure 3.5, Mix-CCBSE(RP) and Mix-CCBSE(OtterKLEE)

performed the best among all strategies, as expected. However, Mix-CCBSE(OtterSAGE)

performed far worse. This is because its forward search (SAGE) got stuck in one

value of m in the very beginning, and therefore it and the backward search did not
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match up. All the remaining strategies timed out.

3.3.1.2 GNU Coreutils

The lower rows of Table 3.1 give the results from the Coreutils programs. The

9 programs we analyzed contain a total of 5.2 kloc and share a common library of

about 30 kloc. (There are two bugs in ptx; we name the benchmarks ptx and ptx2 for

these bugs.) For each bug, Otter reports a target as being reached when an error

(such as buffer overflows and similar errors) occurs at the line target.

The Coreutils programs receive input from the command line and from stan-

dard input. We initialized the command line as in KLEE [11]: given a sequence

of integers n1, n2, · · · , nk, Otter sets the program to have (excluding the program

name) at least 0 and at most k arguments, where the ith argument is a symbolic

string of length ni. All of the programs we analyzed used (10, 2, 2) as the input

sequence, except for mknod (10, 2, 2, 2) since its bug requires 4 input arguments to

manifest, and ptx2 (2, 2), pr (2, 1) and tac (2, 2, 2), to shorten the time needed to

reach the targets. Standard input is modeled as an unbounded stream of symbolic

values. Note that Coreutils programs make extensive use of the C standard library,

which Otter has to model (Section 2.12).

The last row in Table 3.1 totals the median times for the Coreutils programs

for each strategy, counting time-outs as 1,800s (7,200s for pr and tac).

Analysis of SDSEs. We will first look at the SDSE strategies in Table 3.1a. Overall,

these strategies (except SDSE-intra) performed very well on many programs. For
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example, SDSE and B(SDSE) achieve the best running time on mkdir, mkfifo and

md5sum, and close to the best on paste. Interestingly, SDSE-pr and B(SDSE-pr)

performed well on another set of programs, seq and ptx, but it did not do well on

many others. Optimizing SDSE-pr by batching helped a lot (e.g., batching improves

SDSE-pr’s runtime on mkfifo from 1,051.5 to 93.4, and decreases its total runtime

by 31%). However, batching as a heuristic does not always improve performance.

In particular, it increases SDSE’s total runtime by 20%. This makes sense, because

as discussed in Section 2.11, batching could make Otter spend too much time on

unwanted paths. For example, consider the code

1 a=1;
2 if(a) /∗ A lot of work ∗/
3 else /∗ Target ∗/

Both regular and batched SDSEs will direct the search to the conditional. However

regular SDSE will stop at the conditional since the false branch is infeasible, while

batched SDSE will run over the conditional and follow the true branch, hence wastes

time there.

SDSE-intra performed far worse than the other SDSE strategies. This indi-

cates that the inter-procedurality of the distance calculation is crucial for SDSE’s

effectiveness. (Our benchmark programs have a maximum stack depth of 7.)

We notice that both SDSE and SDSE-pr and their batched variants timed

out on mknod. Examining this program, we found it shares a similar structure with

mkdir and mkfifo, sketched in Figure 3.6. These programs parse their command

line arguments with getopt long, and then branch depending on those arguments;

several of these branches call the same function quote(). In mkdir and mkfifo, the
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1 int main(int argc, char∗∗ argv) {
2 while ((optc = getopt long (argc, argv, opts, longopts, NULL)) != −1) { ... } ...

3 if (/∗ some condition ∗/) quote(...);

4 ...

5 if (/∗ another condition ∗/) quote(...);

6 }

Figure 3.6: Code pattern in mkdir, mkfifo and mknod

target is reachable within the first call to quote(), and thus SDSE can find it quickly.

However, in mknod, the bug is only reachable in a later call to quote()—but since

the first call to quote() is a shorter path to the target line, SDSE takes that call

and then gets stuck inside quote(), never returning to main() to find the path to the

failing assertion. SDSE and SDSE-pr and their batched variants also failed entirely

on ptx2.

Given that a pure SDSE strategy can get stuck in the search easily, we were

eager to try RR(RP,SDSE), the strategy of round-robining random-path and SDSE.

We found that the batched version of this strategy, B(RR(RP,SDSE)), gives the best

overall results—it achieved the best total time of 11,644.8s—among all directed

and undirected strategies. However, in many cases it did not achieve the best

performance per program. For example, it timed out in mkdir, but its constituents

did not (B(RR(RP,SDSE)) actually returned in 9 out of 21 runs; see Figure A.6

for its beeswarm plot). Also, in mkfifo, B(RR(RP,SDSE)) ran for 251.8s, which is

longer than both of its constituents (SDSE: 23.2s; RP: 58.6s). These show that two

strategies, when combined in a round-robin fashion, can affect each other and ruin

both’s effectiveness. Lastly, B(RR(RP,SDSE)) did not finish in pr, likely because
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random-path did not finish either.

Analysis of CCBSEs and Mix-CCBSEs. CCBSEs performed less well. CCBSE(SDSE)

timed out on many programs, while CCBSE(RP) timed out on the last 3 programs,

although its performance on the remaining programs is not impressive. This is not

too surprising, because we expect CCBSE will impose too much overhead when

running on its own.

On the other hand, Mix-CCBSEs performed a lot better (except for Mix-

CCBSE(OtterSAGE), possibly because OtterSAGE was ineffective on some pro-

grams). In our prior work on DSE [36] in which the benchmark suite consisted of only

the first 6 Coreutils programs of Table 3.1a. we showed that Mix-CCBSE(OtterKLEE)

was the best strategy in terms of total runtime. While the overall result of these

programs is the same, our implementation has changed. In particular:

• We now use a different algorithm for splitting between forward search and

CCBSE in Mix-CCBSE. Splitting requires measuring time. Our prior work

did not use wallclock time, but instead a “system time” defined as a weighted

sum (50 × number of STP queries + number of steps made by Otter) in favor

of experiment reproducibility. And it split the system time equally between

the forward search and CCBSE. However, we later found that system time did

not split searches evenly in wallclock time for some programs under the new

version of Otter, and so we abandoned it. In the experiment, Mix-CCBSE

spends 75% of wallclock time on the forward search.

• We now use a different version of STP (r1377 versus r1213 used in our prior
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work). Notice that CCBSE/Mix-CCBSE make more complex queries in gen-

eral;

• The experimental setup is different. In our prior work programs were slightly

modified so that bugs were marked explicitly as assert(0); now we specify the

line targets and Otter tracks errors that occur in these lines.

Nevertheless, our results do show that mixing a forward search with CCBSE

can give a significant improvement in some cases—for OtterKLEE and random-

path, the total times are notably less when mixed with CCBSE. This is true for

Mix-CCBSE(OtterKLEE): it ran dramatically faster on seq than either of its con-

stituents (138.6s for the combination versus 1,130.6s for OtterKLEE and 1,791.9s

for CCBSE(RP)), and on mknod (122.3s for the combination versus 182.2s for Ot-

terKLEE and 199.1s for CCBSE(RP)). The case on mknod demonstrates the benefit

of mixing forward and backward search: in the combination, CCBSE(RP) found

the failing path inside of quote() (recall Figure 3.6), and OtterKLEE found the path

from the beginning of main() to the right call to quote().

On the other hand, Mix-CCBSEs took a long time to finish or timed out in

the last 4 programs. This is because their constituents (in particular the undirected

forward strategies) did not do well either.

Summary. Overall, batched RR(RP,SDSE) has the fastest total running time across

all strategies, and although it is not the fastest search strategy per program, it is

subjectively fast enough on these examples. Thus, our results suggest that the best

single strategy option for solving line reachability is batched RR(RP,SDSE).
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3.3.2 Multi-Target Directed Symbolic Execution

We use a similar experimental setup from the single-target DSE in our multi-

target DSE. In particular, for each program we use the same configuration (e.g,

symbolic input size) as in single-target. We also run each (program, strategy) pair

5 times with different random seeds and observe the statistical variance. Here are

the differences:

Choice of targets. We pick our targets by running (natively) Coreutils’ test suite

and picking all the uncovered lines of the programs, according to gcov, a code

coverage analysis tool from GNU. For simplicity, we exclude uncovered code

from Coreutils’ library (e.g., for mkdir we only consider lines in mkdir.c).

Time limit. We set a fixed time limit of 2 hours for each test. We try to see

how many lines a strategy covers given a time period. (As a consequence,

the multi-target experiment takes much longer to run, and therefore we could

not run on our shared benchmarking machine with as many seeds as in the

single-target experiment.)

Upon reaching a target. When a line target is reached, the execution at that

point does not stop (unless the target triggers an error). Instead, the reached

line target is removed from the set of uncovered targets and the execution

keeps going.

Strategies. For SDSE strategies, we only consider the batched versions. We an-

ticipate that batching is likely to help, because longer running time results
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in more states waiting in Otter’s scheduler, thereby increasing the time to

compute SDSE’s heuristic decision.

The multi-target SDSE strategies discussed in Section 3.2 are added for com-

parison. We also include B(RR(RP,SDSE-rr)) in our experiment, however not

B(RR(RP,SDSE-pr)), as B(SDSE-pr)’s evaluation is poor (Table 3.2). SDSE-

intra and CCBSE(SDSE) are removed since they are shown to be ineffective

from the single-target experiment. We leave the comparison with the original

KLEE as future work.

The experiment was run on the same machine as the single-target experiment, and

the same number (16) of tests in parallel. The tests required less than 3 days of

elapsed time.

Results and Discussions. The results of the multi-target experiment are shown in

Table 3.2. For each program, its number of targets is shown in parentheses next to

it. Each program has two rows, one showing the coverage (number of lines covered)

and another showing the time taken to cover that many lines. Similar to Table 3.1,

an entry in the table shows the median, SIQR and number of outliers out of a series

of runs, although we only ran each test 5 times, using seeds from 1 to 5.

The last two lines in Table 3.2 the totals. The two notions of totals we use are

Average coverage (Avg%). This is the average of (number of covered targets)/(number

of targets) over all programs, which has the benefit that no program will dom-

inate the result because it has a lot of targets (e.g., ptx).
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Program B(SDSE) B(SDSE-pr) B(SDSE-rr) B(RR(RP, B(RR(RP, B(Ph(OtterKLEE,

SDSE)) SDSE-rr)) SDSE,3))

mkdir(8) Cov. 5 0(0) 5 0(0) 5 0(0) 8 0(0) 8 0(0) 7 0(0)

Time 32.8 2.0(1) 43.1 4.2(2) 34.7 2.2(1) 255.1 20.0(1) 232.9 20.8(1) 35.1 2.3(2)

mkfifo(11) Cov. 11 0(0) 9 1(0) 11 0(0) 11 0(0) 11 0(0) 9 1(0)

Time 179.3 5.1(1) 1,476.2 1,728.1(0) 240.9 12.3(1) 191.6 8.8(1) 141.8 10.5(1) 43.3 77.4(1)

mknod(23) Cov. 22 0(0) 14 0(0) 21 0(0) 23 0(0) 23 0(0) 15 1(0)

Time 1,947.1 183.1(1) 1,528.6 500.3(1) 4,330.3 246.4(1) 310.3 22.2(1) 212.3 25.4(1) 740.2 178.3(0)

paste(78) Cov. 32 0(0) 32 1(0) 32 9(0) 58 0(0) 60 0(0) 62 0(0)

Time 437.7 75.7(2) 3,701.9 3,039.2(0) 596.2 258.0(2) 2,614.8 108.3(2) 3,922.1 96.9(2) 888.7 344.2(1)

seq(16) Cov. 8 0(0) 7 0(0) 8 0(0) 10 0(0) 10 0(0) 8 1(0)

Time 413.1 26.0(1) 46.1 8.3(0) 43.7 3,409.1(1) 398.0 62.3(0) 44.3 3.3(1) 141.8 19.1(1)

ptx(517) Cov. 109 37(1) 109 2(1) 226 58(0) 237 2(1) 222 2(1) 217 2(1)

Time 124.2 47.3(1) 4,560.4 403.1(2) 1,965.8 842.1(0) 6,314.5 624.8(1) 6,763.5 207.9(2) 6,384.8 180.3(0)

md5sum(65) Cov. 10 0(0) 13 0(0) 19 0(0) 18 0(0) 18 0(0) 3 1(1)

Time 4,612.8 543.4(1) 3,962.4 1,719.2(0) 5,020.6 392.9(1) 4,120.4 211.6(1) 3,974.7 731.7(1) 42.4 7.0(1)

tac(51) Cov. 6 0(0) 5 0(0) 6 0(0) 6 0(0) 6 0(0) 6 0(0)

Time 3,893.1 359.1(0) 1,654.0 140.5(1) 788.8 47.8(1) 491.5 53.5(1) 668.3 33.6(2) 436.6 181.0(1)

pr(92) Cov. 64 0(1) 61 0(0) 64 0(0) 44 0(0) 42 0(0) 33 15(0)

Time 5,250.0 1,008.1(0) 2,072.9 186.2(2) 4,510.9 896.7(0) 5,241.4 875.4(0) 4,706.8 38.3(2) 5,812.4 531.6(1)

Avg % 51.9 45.2 55.5 63.3 63.1 50.9

Agg % 31.0 29.6 45.5 48.2 46.5 41.8

(a) SDSE strategies

Program CCBSE(RP) OtterKLEE OtterSAGE RP

Pure w/CCBSE Pure w/CCBSE Pure w/CCBSE

mkdir(8) Cov. 8 0(0) 8 0(0) 8 0(0) 8 0(0) 8 0(0) 8 0(0) 8 0(0)

Time 93.6 1.8(2) 96.3 8.5(1) 133.8 11.0(2) 395.9 66.1(1) 376.5 332.2(0) 79.3 0.5(2) 106.2 7.3(1)

mkfifo(11) Cov. 11 0(0) 11 0(0) 11 0(0) 11 0(0) 11 0(0) 11 0(0) 11 0(0)

Time 306.2 33.7(0) 534.5 95.1(0) 520.0 183.1(1) 240.4 132.7(0) 458.0 39.1(2) 272.2 3.4(2) 372.6 19.6(1)

mknod(23) Cov. 22 0(0) 22 0(0) 22 0(0) 18 1(0) 21 2(0) 22 0(0) 22 0(0)

Time 797.3 48.9(0) 959.4 231.8(0) 1,039.1 167.5(2) 272.8 31.2(2) 435.8 20.9(2) 753.1 25.3(2) 1,073.4 55.1(2)

paste(78) Cov. 62 1(0) 60 1(0) 62 0(1) 60 0(2) 62 1(1) 62 0(1) 62 0(0)

Time 6,303.9 2,429.3(0) 3,296.0 350.4(2) 5,712.6 517.1(1) 271.1 74.4(1) 3,987.3 52.0(1) 5,314.1 374.7(2) 3,731.6 413.5(1)

seq(16) Cov. 10 0(0) 9 0(0) 10 0(0) 8 1(1) 7 0(1) 9 0(1) 10 0(0)

Time 302.6 17.4(2) 851.1 490.4(1) 1,453.5 545.3(0) 59.6 53.3(1) 6,265.1 3,255.1(0) 257.2 13.5(2) 333.0 35.9(1)

ptx(517) Cov. 246 2(1) 225 1(1) 230 4(0) 248 13(1) 267 10(2) 246 1(0) 251 0(2)

Time 5,621.9 449.9(1) 6,458.0 218.1(2) 7,000.8 218.5(1) 6,316.2 74.5(2) 7,037.0 114.1(1) 6,914.4 188.1(1) 6,191.8 56.0(2)

md5sum(65) Cov. 14 0(0) 15 0(1) 16 0(1) 5 1(2) 13 0(2) 13 0(0) 14 0(0)

Time 1,188.5 90.6(0) 56.6 234.7(1) 65.6 9.0(1) 36.9 11.0(1) 2,212.3 343.8(2) 1,581.0 392.5(1) 671.4 52.3(1)

tac(51) Cov. 7 0(0) 6 0(0) 8 0(0) 6 0(0) 8 0(1) 6 0(0) 8 0(1)

Time 776.4 7.3(2) 280.9 8.0(1) 5,288.9 312.1(1) 276.1 156.4(1) 6,535.0 492.1(1) 646.4 94.8(0) 5,974.2 513.5(1)

pr(92) Cov. 36 0(1) 35 1(0) 38 0(1) 60 3(1) 33 5(1) 35 7(1) 37 2(0)

Time 3,440.6 226.0(1) 5,866.0 619.8(0) 6,337.3 660.5(1) 5,734.0 327.3(1) 6,321.5 1,026.6(1) 3,407.1 1,515.9(1) 6,632.6 1,632.6(1)

Avg % 62.2 60.6 62.6 59.8 59.7 61.0 62.6

Agg % 48.3 45.4 47.0 49.2 49.9 47.9 49.1

(b) CCBSE, forward-only strategies and their mixes with CCBSE(RP)

Table 3.2: Multi-target experimental results. For each Coreutils program, av-

erage and aggregated percentages, the best three strategies are highlighted.

Key: Median SIQR(Outliers) ∞ : time out
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Aggregated coverage (Agg%). This is (number of covered targets of all pro-

grams)/(number of targets of all programs).

We can see from Table 3.2 that most strategies have good coverages on average.

Except for B(SDSE), B(SDSE-pr) and B(Ph(OtterKLEE,SDSE,3)), other strategies

have at least 55% of average coverage/45% of aggregated coverage, although the

magnitude of the differences among them is not large enough for us to draw any

conclusions.

Looking at how quickly each strategy covers those lines, we do see more sig-

nificant differences, however. Figure 3.7 shows the normalized coverage-over-time

for different strategies. The plot summarizes the per-program coverage-over-time

plots shown in Appendix A.2. To create Figure 3.7, we aggregate coverage data as

if the 9 Coreutils programs were run in parallel. And, whenever a strategy finds

a line target in program P at time t (median of 5 runs), its coverage increases by

1/|number of targets in P| at time t. Notice that 9 is the maximum normalized cov-

erage level. Also, a coverage level divided by 9 gives the average coverage (Avg%)

as defined above.

From Figure 3.7 we observe the following. Firstly, undirected strategies RP

and OtterKLEE (and B(Ph(OtterKLEE,SDSE,3)) since it begins by running as Ot-

terKLEE) cover quickly in the beginning, until at the coverage level of 3, B(RR(RP,SDSE-

rr)) begins to catch up, and it remains the fastest strategy towards the end (when the

2-hour time limit has reached). Also, several directed strategies (B(RR(RP,SDSE)),

Mix-CCBSE(RP), Mix-CCBSE(OtterKLEE) and CCBSE(RP)) perform better than
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the undirected strategies since t = 256s. Such observation matches our expectation:

at the beginning when there are many targets, undirected stategies can get lucky

and find them quickly since they have less overhead. However, once the “easy”

targets are covered, directed strategies are more effective in covering the remainder.

That said, we also observe that pure SDSE strategies performed poorly. We specu-

late that this is because SDSEs alone can get stuck more easily. We think this also

explains why B(Ph(OtterKLEE,SDSE,3)) did not perform well, since it runs SDSE

in its second phase.

Hence, we conclude that B(RR(RP,SDSE-rr)) is the best solution for the multi-

target line reachability problem, while many other directed strategies are also good

candidates. We also conjecture that B(Ph(OtterKLEE,RR(RP,SDSE-rr),3)) per-

forms ever better, combining the good characteristics of its constituents OtterKLEE

and B(RR(RP,SDSE-rr)). We leave the proof of our conjecture as future work.

3.3.3 Threats to validity

There are several threats to the validity of our results. First, we were sur-

prised by the wide variability in our running times: the SIQR can be very large—in

some cases for CCBSE(SDSE), OtterKLEE and OtterSAGE, the SIQR exceeds the

median—and there are many outliers.3 This indicates the results are not normally

distributed, and suggests that randomness in symbolic execution can greatly per-

turb the results. To our knowledge, this kind of significant variability has not been

reported well in the literature, and we recommend that future efforts on symbolic

3 See Appendix A.1 for beeswarm distribution plots for each cell in the table [36].
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execution carefully consider it in their analyses.

Second, our implementation of OtterKLEE and OtterSAGE unavoidably dif-

fers from the original versions. The original KLEE is based on LLVM [34], whereas

Otter is based on CIL, and therefore they compute distance metrics over differ-

ent control-flow graphs. Also, Otter uses newlib [41] as the standard C library,

while KLEE uses uclibc [54]. These may explain some of the difference between

OtterKLEE and the original KLEE’s performance in Table 3.1.

Furthermore, the original SAGE is a concolic executor, which runs programs

to completion using the underlying operating system, while Otter’s implementation

of SAGE emulates the run-to-completion behavior by not switching away from the

currently executing path. There are other differences between SAGE and Otter, e.g.,

SAGE only invokes the theorem prover at the end of path exploration, whereas Otter

invokes the theorem prover at every conditional along the path. Also, SAGE suffers

from divergences, where a generated input may not follow a predicted path (possibly

repeating a previously explored path) due to mismatches between the system model

and the underlying system. Otter does not suffer from divergences because it uses

a purely symbolic system model. These differences may make the SAGE strategy

less suited to Otter.

Moreover, our conclusions are certainly limited by our choice of benchmark.

For instance, we concluded in our prior work that Mix-CCBSE(OtterKLEE) was

the best strategy from the first six programs of Table 3.1, but we have a different

conclusion after looking at more programs. We leave expanding the benchmark suite

as future work. Possible candidates of benchmark programs are the ones studied by
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the symbolic execution community, such as BusyBox [1] studied by KLEE.

Finally, we did not obtain as many samples for the multi-target experiment as

for the single-target experiment. Our conclusion on multi-target DSE is therefore

subject to the high variability of symbolic execution (however, we anticipate that

variability is less of an issue for multi-target DSE, since runs are given much longer

time).
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Chapter 4

Using Symbolic Execution to Understand Behavior in Configurable

Software Systems

Otter can be used not just to generate tests, but more generally to exhaus-

tively explore all program executions. In this chapter, we present a study that

uses this capability to efficiently enumerate all paths enabled by the program’s con-

figuration options—program inputs that switch on/off different program features.

For each path, Otter tracks code coverage (line, basic block, edge, and condition

coverage metrics) the path achieves. Then, from this data, we can derive useful

information, including guaranteed coverage (Section 4.3) and minimal covering sets

(Section 4.7.3), that enhance our understanding of configurable software systems

and how best to evaluate them.

Otter generates tens or hundreds of thousands of paths depending on the ap-

plication, but these are just a small fraction of the tens of millions or more runs

that would have been needed had we naively enumerated and tested all configura-

tions. Otter performs this task better than prior related work. Specifially, concolic

testers duplicate work executing common prefixes of paths; KLEE’s use of LLVM to

transform C programs to bytecodes may confuse coverage tracking at source code

level; and JPF-SE appears unable to scale to software systems of the size of those

we studied.
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The remainder of this chapter presents our report of the study previously

published [49]; this chapter includes figures and discussions extracted from that

publication.

Contributions. This chapter presents joint work with the authors of [49]. In this

work, I was in charge of Otter’s implementation and the analysis of ngIRCd, one of

the subject programs in our study.

4.1 Motivation for the Study

Modern software systems include numerous user-configurable options. For ex-

ample, network servers typically let users configure the active port, the maximum

number of connections, what commands are available, and so on. While this flex-

ibility helps make software systems extensible, portable, and achieve good quality

of service, it can also generate a huge number of configurations—in the worst case

every combination of option settings is a distinct configuration. This software con-

figuration space explosion problem presents real challenges to software developers.

It significantly magnifies testing obligations; it makes static analysis much more

difficult, as different configurations can be conflated together; and it generally com-

plicates program understanding tasks. All of this adds to development costs.

We conjecture that at certain levels of abstraction, the software configuration

space is much smaller than combinatorics might suggest. For example, consider a

web server that can be configured to support sequential or concurrent connections

and to enable or disable logging. In this case, the block coverage achieved by all four
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possible configurations might be exactly the same as that achieved by two config-

urations: sequential connections with logging enabled, and concurrent connections

with logging enabled. (Disabling logging would be unlikely to cover any new blocks.)

Thus when considering block coverage, the effective configuration space for our ex-

ample is half the size we would expect. If our conjecture proves true, then in future

work, new techniques and heuristics might be created to partition configuration

spaces in ways that greatly simplify testing, analysis, and program understanding.

To evaluate our conjecture, we studied three configurable subject programs:

vsftpd, ngIRCd, and grep. For each system, we first identified a sizable number

of run-time configuration options to analyze, determined their possible settings,

and created a test suite. Then, we marked the selected configuration options as

symbolic, and we used Otter to enumerate all possible program paths for all possible

settings of the selected configuration options. We next projected the paths onto four

types of structural coverage—line, basic block, edge, and condition coverage—and

used the resulting data to discover interactions among configuration options. We

formally define interactions based on guaranteed coverage, which will be discussed

in Section 4.3.

4.2 Configurable Software Systems

For the purpose of this study, a configurable system is a generic code base

and a set of mechanisms for implementing pre-planned variations in the code base’s

structure and behavior. Here, we are focusing on run-time configuration options,
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1 ... else if (tunable pasv enable &&
2 str equal text(&p sess−>ftp cmd str, ”EPSV”))
3 {
4 handle pasv(p sess, 1);
5 }
6 ... else if (tunable write enable &&
7 (tunable anon mkdir write enable ||
8 !p sess−>is anonymous) &&
9 (str equal text(&p sess−>ftp cmd str, ”MKD”) ||

10 str equal text(&p sess−>ftp cmd str, ”XMKD”)))
11 {
12 handle mkd(p sess);
13 }

(a) Boolean configuration options (vsftpd)

14 else if(Conf OperCanMode) {
15 /∗ IRC−Operators can use MODE as well ∗/
16 if (Client OperByMe(Origin)) {
17 modeok = true;
18 if (Conf OperServerMode)
19 use servermode = true; /∗ Change Origin to Server ∗/
20 }
21 }
22 ...
23 if (use servermode)
24 Origin = Client ThisServer();

(b) Nested conditionals (ngIRCd)

Figure 4.1: Example uses of configuration options (bolded) in subjects.

which are usually given values via configuration files or command-line parameters.

A configuration is a mapping of configuration options to their settings.

Figure 4.1 illustrates several ways that run-time configuration options can

be used, and explains why understanding their usage requires technology such as

symbolic execution. All of these examples come from our subject programs. In this

figure, variables containing configuration options are shown in boldface.

The example in Figure 4.1a shows a section of vsftpd’s command loop, which
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receives a command and then uses a long sequence of conditionals to interpret the

command and carry out the appropriate action. The example shows two such con-

ditionals that also depend on configuration options (all of which begin with tunable

in vsftpd). In this case, the configuration options enable certain commands, and

the enabling condition can either be simply the current setting of the option (as on

line 1) or may involve an interaction between multiple options (as on lines 6–7).

Figure 4.1b shows a different example in which two configuration options are

tested in nested conditionals. This illustrates that it is insufficient to look at tests of

configuration options in isolation; we also need to understand how they may interact

based on the program’s structure. Moreover, in this example, if both options are

enabled then use servermode is set on line 24, and its value is then tested on line 28.

This shows that the values of configuration options can be indirectly carried through

the state of the program.

4.3 Guaranteed Coverage

While Otter generates useful per-path coverage data, this data tells us only a

little about our subject programs unless we further analyze it. By definition, each

path explored for a particular test case is distinct from all the other paths for the

same test case. Thus with no abstraction, every configuration option combination

given by a path is unique.

For example, consider the program in Figure 4.2a. This program includes

boolean input variables a, b, c, d, and input. The first four are intended to represent
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1 int a=α, b=β, c=γ, d=δ; /∗ symbolic ∗/
2 int input = /∗ concrete ∗/;
3 int x = 0;
4 if (a)
5 /∗ Statement 1 ∗/
6 else if (b) {
7 /∗ Statement 2 ∗/
8 x = 1;
9 if (!input) {

10 /∗ Statement 3 ∗/
11 }
12 }
13 int y = c || d;
14 if (x && input) {
15 /∗ Statement 4 ∗/
16 if (y)
17 /∗ Statement 5 ∗/
18 }

(a) Example program

input=1 Settings Coverage

s1 α {1}
s2 ¬α ∧ β ∧ (γ ∨ δ) {2, 4, 5}
s3 ¬α ∧ β ∧ ¬(γ ∨ δ) {2, 4}
s4 ¬α ∧ ¬β ∅

input=0 Settings Coverage

s5 α {1}
s6 ¬α ∧ β {2, 3}
s7 ¬α ∧ ¬β ∅

(b) Option settings and their coverages

Figure 4.2: Example symbolic execution.

run-time configuration options, and so we initialize them on line 1 with symbolic

values α, β, γ, and δ, respectively (via SYMBOLIC (not shown)). The last variable,

input, is intended to represent program inputs other than configuration options.

Thus we leave it as concrete, and it must be supplied by the user (e.g., as part of argv

(not shown)). We have also indicated five statements, numbered 1–5, whose coverage

we are interested in. (We focus on line coverage here for illustration purposes, but

the idea is the same for other forms of coverage.)

Figure 4.2b shows, for each input value, distinct settings of the configuration

options (represented by constraints on the boolean values of the options). Each

setting corresponds to a distinct execution path, and the set of statements covered

by the path is also shown. Thus far, we only know that there are, for example, four
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distinct paths (for settings s1, s2, s3 and s4) if input=1, and that is fewer than the

16 paths we might naively expect. However, if we are interested in more abstract

properties of the program, then paths are no longer unique, and the configuration

space collapses further. For example, suppose we are only interested in covering

statement 2 in Figure 4.2a. Then we can see that settings s1 and s4 are irrelevant,

and either settings s2 or s3 is sufficient.

For this study, we project paths enumerated by Otter onto four commonly

used abstractions of program behavior: line, block, edge, and condition coverage.

The principal tool we use to relate configuration options to coverage is guaranteed

coverage.

Definition 1 Given a particular coverage criterion, we say that a predicate p over

the configuration options guarantees coverage (line, block, edge, condition, etc.) of

X if there exists some test case such that any configuration satisfying p is guaranteed

to cover X.

For example, from Figure 4.2a we can see that any configuration satisfying α =

0 ∧ β = 1 (i.e., a=0, b=1) is guaranteed to cover statement 2, no matter the choice

of γ and δ.

We can use Otter’s per-path coverage to compute the guaranteed coverage

for a predicate p, which we will write Cov(p). We first find CovT (p), the coverage

guaranteed under p by test case T , for each test case; then, Cov(p) =
⋃
T CovT (p).

To compute CovT (p), let pTi be the path conditions from T ’s symbolic execution,

and let CT (pTi ) be the covered lines (or blocks, edges, conditions, etc.) that occur
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in that path. Then CovT (p) is

ConsistentT (p) = {pTi | SAT(pTi ∧ p)}

CovT (p) =
⋂
q∈ConsistentT (p) C

T (q)

In words, first we compute the set of predicates pTi such that p and pTi are

consistent. If this holds for pTi , the items in CT (pTi ) may be covered if p is true.

Since Otter explores all possible program paths, the intersection of these sets for all

such pTi is the set guaranteed to be covered if p is true.

Next, we define interactions among options using guaranteed coverage.

Definition 2 An interaction is a set p of option settings that guarantees coverage

that is not guaranteed by any subset of p. Moreover, the strength of an interaction

is the number of option settings it contains.

For example, since Cov(¬α ∧ β) is a strict superset of Cov(¬α) ∪ Cov(β), ¬α ∧ β

is an interaction. Informally, interactions indicate combinations of options that

are “interesting” because they guarantee some new amount of coverage. Moreover,

¬α ∧ β has strength 2. Lower-strength interactions place fewer requirements on

configurations, whereas higher-strength interactions require more options to be set

in particular ways to achieve their coverage.

Table 4.1 lists some predicates, the coverage (set of statements) they guar-

antee, and whether options within these predicates form an interaction. Note that

we cannot guarantee covering statement 5 without setting three symbolic values

(although we could have picked δ instead of γ).
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p Consistent(p) Consistent(p) Cov(p)
⋃

p′⊂p Cov(p
′) Interaction?

(input = 1) (input = 0) (Strength?)

α s1 s5 {1} ∅ Yes (1)

¬α s2, s3, s4 s6, s7 ∅ ∅ No

β s1, s2, s3 s5, s6 ∅ ∅ No

γ s1, s2, s4 s5, s6, s7 ∅ ∅ No

α ∧ β s1 s5 {1} {1} No

¬α ∧ β s2, s3 s6 {2, 3, 4} ∅ Yes (2)

β ∧ γ s1, s2 s5, s6 ∅ ∅ No

¬α ∧ γ s2, s4 s6, s7 ∅ ∅ No

¬α ∧ β ∧ γ s2 s6 {2, 3, 4, 5} {2, 3, 4} Yes (3)

Table 4.1: Guaranteed coverage of different predicates, and if options within these

predicates form an interaction.

4.4 Tracking Coverage in Otter

The precise definitions of different coverage metrics (line, block, edge, and

condition coverage) demand some elaboration, because Otter runs on CIL’s repre-

sentation of the input program, which is simplified to use only a subset of the full

C language.

Line coverage. Otter records which CIL statements it executes and projects that

back to the original source lines using a mapping maintained by CIL.

Block and edge coverage. Otter groups CIL statements into basic blocks, which

are sequences of statements that start at a function entry or a join point; do

not contain any join point after the first statement; end in a function call,
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return, goto, or conditional; or fall through to a join point.

Normally, CIL expands short-circuiting logical operators && and || into se-

quences of branches. However, for block and edge coverage, we disable that

expansion as long as the right operand has no side effect, so that both operands

are computed in the same basic block. Then to compute block coverage, we

record which basic blocks are executed, and to compute edge coverage, we

compute which control-flow edges between basic blocks are traversed.

Condition coverage. Otter enables expansion of && and ||, so that each part of

a compound condition is always in its own basic block. Otter then computes

how many conditions—that is, how many branches—are taken in the expanded

program.

4.5 Subject Programs

The subject programs for our study are vsftpd, a widely-used secure FTP

daemon; ngIRCd, the “next generation IRC daemon”; and GNU grep, a popular

text search utility. All of our subject programs are written in C. Each has multiple

configuration options that can be set either in system configuration files or through

command-line parameters.

Table 4.2 gives descriptive statistics for each subject program. The top two

rows list the program version numbers and lines of code as computed by sloccount.

The next group of rows lists the number of executable lines, basic blocks, edges, and

conditions; these four metrics are what we measure code coverage against, and they
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vsftpd ngIRCd grep

Version 2.0.7 0.12.0 2.4.2

# Lines (sloccount) 10,482 13,601 9,124

# Lines (executable) 4,112 4,387 3,302

# Basic blocks 4,584 6,742 5,033

# Edges 5,033 7,374 6,332

# Conditions 2,528 3,432 4,094

# Test cases 64 142 113

# Analyzed conf. opts. 30 13 18

Boolean 20 5 14

Integer 10 8 4

# Excluded conf. opts. 65 16 4

Table 4.2: Subject program statistics.

are based on the CIL representation of the program, as discussed in Section 4.4. To

get more accurate measurements, we removed some unreachable code before passing

the sources to CIL. Specifically, we commented out 4 unreachable functions in grep.

We also forced vsftpd to run in single-process mode, as Otter does not support

multiprocess symbolic execution, and correspondingly eliminated 3 files in vsftpd

that are reachable only in two-process mode.

One thing to note is that there are more basic blocks than executable lines

of code in all 3 programs. This occurs because, in many cases, single lines form

multiple blocks. For example, a line that contains a for loop will have at least two

blocks (for the initializer and the guard), and lines with multiple function calls are

broken into separate blocks according to our definition.

The next row in Table 4.2 lists the number of test cases. In creating these
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test cases, we attempted to both cover the major functionality of the system and to

maximize overall line coverage. We stopped creating new tests when the remaining

uncovered code was overwhelmingly devoted to handling low-level system errors such

as malloc() or device read() failures.

vsftpd does not come with its own test suite, so we developed tests to exercise

its major functionality such as logging in; listing, downloading, and renaming files;

asking for system information; and handling invalid commands.

ngIRCd also does not come with its own test suite, so we created tests based

on the IRC functionality defined in RFCs 1459, 2812 and 2813. Our tests cover most

of the client-server commands (e.g., client registration, channel join/part, messaging

and queries) and a few of the server-server commands (e.g., connection establish-

ment, state exchange), with both valid and invalid inputs.

Grep comes with a test suite consisting of hundreds of tests. To build our

test suite for this study, we ran all the test cases in Otter to determine their line

coverage. Then, without sacrificing total line coverage, we selected 70 test cases

from the original suite for our study. Next, we created 43 new test cases to improve

overall line coverage. The final analysis was done using these 113 test cases.

Finally, the last group of rows in Table 4.2 counts the configuration options.

We give the total number of analyzed configuration options, i.e., those that we

treated as symbolic, and also break them down by type (boolean or integer). We

also list the number of configuration options we left as concrete. Our decision to leave

some options concrete was primarily driven by two criteria: whether the option was

likely to expose meaningful behaviors, and our desire to limit total analysis effort.
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This approach allowed us to run Otter numerous times on each program, to explore

different scenarios, and to experiment with different kinds of analysis techniques.

We used default values for the concrete configuration options, except the one used

to force single-process mode in vsftpd. Grep includes a three-valued string option

to control which functions execute the search; for simplicity, we introduced a three-

valued integer configuration option and set the string based on this value.

4.6 Emulating the Environment

This study was carried out prior to the development of Otter’s environment

model (Section 2.12). Thus, this study used much simpler environment emulation,

just sufficient for Otter to run on the subject programs. The emulation includes a

simple in-memory file system, plus code that emulates the network and concurrency.

We discuss two main limitations of the ealier system modeling:

Emulating the network. Since vsftpd and ngIRCd are network programs, they make

use to network system calls to communicate with their clients. In our model, many

of these system calls, such as inet ntoa, return hardcoded constants (e.g., fixed IP

addresses), assuming that these values do not affect code coverage. We emulate a

socket using two files, one containing data to be sent and another being a buffer

for receiving data. Furthermore, ngIRCd uses poll for multiplexing communications

with its clients. To emulate poll, each ngIRCd test was written to precisely define the

sequence of events that ngIRCd will see via poll. A typical test for ngIRCd is shown

in Figure 4.3. In this test, ngIRCd first accepts a client, then receives a sequence of
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1 int client fd1 = create socket();

2 int t = 0;

3 event accept(client fd1,t++);

4 event recv(client fd1,”NICK nick1\r\n”,t++);

5 event recv(client fd1,”USER user1 x x :user\r\n”,t++);

6 event recv(client fd1,”JOIN #ch\r\n”,t++);

7 event recv(client fd1,”WHO #ch\r\n”,t++);

8 event end(t++);

Figure 4.3: An example of ngIRCd test

IRC commands (of the form “<COMMAND> [<parameter1> [<parameter2> ...]]\r\n”)

from the client, who logs on as nick1 (NICK) with some user details (USER), fol-

lowed by a request to JOIN channel #ch and list the people in the channel (WHO).

For example, by calling event recv(client fd1,”NICK nick1\r\n”,t), ngIRCd receives the

message “NICK nick1\r\n” from client fd1 in its t-th call to poll.

Emulating concurrency. Otter does not handle multiple processes. However, mul-

tiple processes are used in vsftpd’s standalone mode and in ngIRCd, To work around

this, for vsftpd, in which fork() spawns a subprocess that handles client commands,

we interpret fork() as driving the program to that subprocess. (The parent process

would simply cycle around a loop and spawn another subprocess, so we ignore it.)

For ngIRCd, where the child process parses an IP address and passes the result

to the parent, we treat fork() as a branching point—we run both subprocesses, but

we ignore the child process’s output, instead supplying the input expected by the

parent process as part of the test case.

89



4.7 Data and Analysis

We ran our test suites in Otter, with symbolic configuration options as dis-

cussed above. We then performed substantial analysis on the results to explore the

configuration space of each subject program. To do this we used the Skoll system,

developed and housed at UMD [44]. Skoll allows users to define configurable QA

tasks and run them across large virtual computing grids. For this work we used

around 40 client machines. The final results reported in this section required about

two weeks of elapsed time.

Table 4.3 summarizes Otter’s runs. The first group of rows shows the total

coverage achieved by the test suites, i.e., the maximum coverage achievable for

these test suites considering all possible configurations, except those options and

values we left concrete. We manually inspected the uncovered lines and found that

approximately another 10% of vsftpd and ngIRCd and 2% of grep comprises code for

handling low-level errors. Also, another 11% of vsftpd (in addition to the three files

we removed) is unreachable in one-process mode. If we adjust for the error handling

and unreachable code, our test suites’ line coverage exceeds 80% for all subject

programs. Covering the remaining code would in many cases have required adding

new mocked libraries, adding further symbolic configuration options, etc. Overall,

however, based on our analysis of these systems, we believe that the test cases

are reasonably comprehensive and are sufficient to expose much of the configurable

behavior of the subject programs.

The next group of rows shows the number of configuration options that appear
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vsftpd ngIRCd grep

Coverage

Line 62% 73% 75%

Block 63% 66% 63%

Edge 56% 61% 58%

Condition 49% 57% 52%

# Examined opts/tot

Line, Block, Edge 22/30 13/13 17/18

Condition 24/30 13/13 17/18

# Paths

Line, Block, Edge 30,304 53,205 625,181

Condition 136,320 95,637 764,201

Average # Paths

Line, Block, Edge 474 375 5,533

Condition 2,130 674 6,763

# Combinations 137,438,953,472 61,834,752 66,650,112

Table 4.3: Summary of symbolic execution.

in at least one path condition (i.e., were constrained in at least one path and thus

distinguish different execution paths) versus the total number of options set sym-

bolic. In grep, the one unused option was only “used” when being printed, which

did not affect any execution path. In vsftpd, there were 6 unused options total. One

case was similar to grep—a configuration option specified a port number, which is

ignored by our mock system. Three other options could have been covered with

additional tests; the remaining two options cannot be touched without changing the

settings of some of the configurations options we left concrete.

Notice that Otter constrains two more options with condition coverage than
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under the other metrics. This occurs because, as discussed in Section 4.4, we expand

logical operators into sequences of conditionals under condition coverage. For exam-

ple, under line, block, and edge coverage, the condition if (x||1) would be treated as a

single branch that Otter would treat as always true. But under condition coverage,

the conditional would be expanded, and Otter would see if (x) first, causing it to

branch on x.

The third group of rows in Table 4.3 shows the number of execution paths

explored by Otter and that number averaged across all test cases for each program.

While Otter found many thousands of paths, recall that these are actually all pos-

sible paths for these test suites under any settings of the symbolic configuration

options. Had we instead naively run each test case under all possible configuration

option combinations1, it would have required a tremendous number of executions

(from 2 to 7 orders of magnitude more than the number of paths) for all the subject

programs, as shown in the last row in Table 4.3.

Notice also that expanding logical operators under condition coverage can

result in many more paths. This effect is most pronounced for vsftpd, which more

than quadruples the number of paths because it contains many logical expressions

that test multiple configuration options at once. For example, if (x||y||z) would yield

at most two paths before expansion, but four paths after.

Figure 4.4 plots the number of paths executed by each test case for each

program, both with unexpanded logical operators (L/B/E) and expanded (C). The

1 For each integer option that can take any integer values, we use the minimum number of

settings that will lead to distinct program behaviors under the test suite.
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Figure 4.4: Number of paths per test case (L/B/E=line/block/edge, C=condition).

x-axis is sorted from the fewest to the most paths, and the y-axis is the percentage of

paths relative to the highest number of paths seen in any test case for the expanded

(C) version of the program.

One interesting feature of Figure 4.4 is that, for vsftpd and grep, the numbers

of paths of different test cases appear to cluster into a handful of groups (indicated

by the plateaus in the graph). This suggests that within a group, the test cases

branch on the configuration options in essentially the same manner (most likely

because the programs employ common segments of code to test the configuration

options). In ngIRCd, this clustering also appears but is less pronounced.

Finally, recall from Table 4.2 that grep, despite still having many fewer paths

than configurations, stands out as having a much larger number of paths than the
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other programs. We believe this is due to grep’s design. In runs of grep with valid

inputs, most of grep’s code is executed. Therefore many of its configuration options

will typically be used, resulting in significant branching in Otter. In contrast, many

of vsftpd and ngIRCd’s options are not necessarily used in every run. This can be

seen clearly in Figure 4.4: only a handful of vsftpd and ngIRCd’s tests exercise more

than 25% of the paths, while only a handful of grep’s tests exercise fewer than 25%.

4.7.1 Interaction Strength

Next, we used our guaranteed coverage analysis to explore which configuration

option interactions (Section 4.3) are actually required to achieve the line, block, edge,

and condition coverage reported in Table 4.3. First, we computed Cov(true), which

we call guaranteed 0-way coverage. These are coverage elements that are guaranteed

to be covered for any choice of options. Here when we refer to t-way coverage, t is

the interaction strength. Then for every possible option setting x = v, we computed

Cov(x = v). The union of these sets is the guaranteed 1-way coverage, and it captures

what coverage elements will definitely be covered by 1-way interactions. Next, we

computed Cov(x1 = v1 ∧ x2 = v2) for all possible pairs of option settings, which is

guaranteed 2-way coverage. Similarly, we continue to increase the number of options

in the interactions until Cov(x1 = v1 ∧ x2 = v2 ∧ ...) reaches the maximum possible

coverage.

For boolean options, the possible settings are clearly 0 and 1. For integer-

valued options, we solved the path conditions discovered by Otter to find possible

94



concrete settings. For example, if the path condition was x>=0, then the solver

might choose x = 0 as a possible concrete setting. Because there are multiple path

conditions, we sometimes found that different concrete settings were generated by

the solver for the same options. In these cases we used our judgement and code

examination to select appropriate values.

Table 4.4 shows the number of interactions at each interaction strength. The

first thing to notice is that the maximum interaction strength is always seven or less.

This is significantly lower than the number of options in each program. We also see

that the number of interactions is quite small relative to total number of interactions

that are theoretically possible. For example, grep has 14 boolean options, which by

themselves lead to (14 choose 2) × 4 = 728 possible 2-way interactions just with

those options alone, yet we see at most 45 2-way interactions for grep.

Also notice that there is not much variation across different coverage criteria—

they have remarkably similar numbers of interactions. We investigated further, and

we found that the majority of interactions are actually identical across all four

criteria. This is an encouraging finding, because it indicates that many interactions

are insensitive to the particular coverage criterion.

For ngIRCd, there are significantly more interactions at higher strength than

for the other subject programs. This is because almost all of ngIRCd’s integer

options can take on many different values across our test suite, magnifying the

number of interactions.

Finally, we can see that the number of interactions peak around t = 4 for

vsftpd, t = 4 or 5 for ngIRCd, and t = 2 or 3 for grep. We believe this corresponds

95



t=1 t=2 t=3 t=4 t=5 t=6 t=7

vsftpd

Line 7 4 3 16 5 6 2

Block 7 4 3 16 6 6 2

Edge 9 4 4 27 7 7 2

Condition 9 4 4 32 14 9 2

ngIRCd

Line 11 17 31 113 144 111 -

Block 15 22 31 118 147 111 -

Edge 17 26 35 118 159 111 -

Condition 17 30 35 124 174 111 -

grep

Line 13 27 36 7 5 - -

Block 14 34 37 7 5 - -

Edge 23 37 45 11 7 - -

Condition 23 45 49 16 9 2 -

Table 4.4: Number of interactions at each interaction strength.

to the number of enabling options in these programs, discussed more in the next

subsection.

4.7.2 Guaranteed Coverage

Figure 4.5 presents the interaction data in terms of coverage. The x-axis is

the t-way interaction strength and the y-axis is the percentage of the maximum

possible coverage. Note that higher-level guaranteed coverage always includes the

lower level, e.g., if a line is covered no matter what the settings are (0-way), then it

is certainly covered under particular settings (1-way or higher). As it turns out, the
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Figure 4.5: Guaranteed coverage versus interaction strength.

trend lines for all four coverage criteria are essentially the same for a given program,

and so the plot shows a region enclosing each set of data points. In ngIRCd, the

only program with some slightly noticeable variation, line coverage corresponds to

the upper boundary of the region, and edge, block, and condition coverage to the

lower boundary. This commonality across coverage criteria echoes the same trend

we saw in Table 4.4.

One thing to notice in this figure is that the right-most portion of each region

adds little to the overall coverage. For these programs and test suites then, high-

strength interactions are not needed to cover most of the code. We can also see from

this plot that vsftpd gains coverage slowly but then spikes with 3-way interactions,

and grep has a similar spike with 1-way interactions. This suggests the presence of

enabling options, which must be set a certain way for the program to exhibit large
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parts of its behavior. For example, for vsftpd (in single-process mode), the enabling

options must ensure local logins and SSL support are turned off, and anonymous

logins are turned on. For grep, either grep or egrep mode must be enabled to reach

most of grep’s code; fgrep mode touches little code. ngIRCd also has enabling

options that account for the increasing coverage up to interaction strength three,

but the effects of these options are less pronounced.

These enabling options also show up in Table 4.4. For example, in that figure

we can see that most of vsftpd’s interactions are strength t = 4 or greater, i.e., they

generally involve the three enabling options plus additional options.

4.7.3 Minimal Covering Configuration Sets

Our results so far show that low-strength interactions can cover most of the

code. Next, we investigated how interactions can be packed together to form com-

plete configurations, which assign values to all the configuration options. For ex-

ample, the 1-way interactions a=0 and b=0 are consistent and can be packed into

the same configuration, but a=0 and a=1 are contradictory and must go in different

configurations.

We developed a greedy algorithm that packs options together, aiming to find

a minimal set of configurations that achieves the same coverage as the full set of

runs. We begin with the empty list of configurations. At each step of the algorithm,

we pick the interaction that (if we also include the coverage of all subsets of that

interaction) guarantees the most as-yet-uncovered lines. Then, we scan through the
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list to find a configuration that is consistent with our pick. We merge the interaction

with the first such configuration we find in the list, or append the interaction to the

list as a new configuration if it is inconsistent with all existing configurations. This

algorithm will always eventually terminate with all lines covered, though it is not

guaranteed to find the actual minimum set.

Table 4.5 summarizes the results of our algorithm. The column labeled 1 shows

how many lines, blocks, edges, or conditions are covered by the first configuration

in the list. Then column n (for n > 1) shows the additional coverage achieved by

the nth configuration over configurations 1..(n − 1). Notice that minimal covering

sets range in size from 5 to 10, which is much smaller than the number of possible

configurations. This suggests that when we abstract in terms of coverage, in fact

the configuration space looks more like a union of disjoint interactions (that can be

efficiently packed together) rather than a monolithic cross-product.

We can also see that each subject program follows the same general trend, with

most coverage achieved by just the first configuration in the set. The last several

configurations in the set very often add only a single additional coverage element.

This last finding hints that not every interaction offers the same level of coverage;

we explore this issue in detail next.

4.7.4 Configuration Space Analysis

To help visualize interactions and to better understand why the minimal cov-

ering sets are so small, we mapped the interactions of each subject program, which
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PredefChannelsOnly=0

MaxConnectionsIP={0,100}

MaxConnectionsIP=2

PongTimeout={20,3600}

MaxNickLength={5,6,8,9,10,100}

ListenIPv4=1

(a) ngIRCd

ssl_enable=0
anonymous_enable=1

local_enable=0

anon_mkdir_
write_enable=1write_enable=1

setproctitle_enable=1

anon_other_write_enable=1

listen=1

run_as_launching_user=0

ascii_download_enable=1

{dual_log_enable=1,
dirmessage_
enable=1,

mdtm_write=1}

(b) vsftpd

match_words=1 match_icase=1

match_icase=0

matcher="fgrep"

matcher={"grep","egrep"}

(c) grep

Figure 4.6: Interactions needed for 95% line coverage. ngIRCd and vsftpd include

some approximations.
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Config # 1 2 3 4 5 6 7 8 9 10

vsftpd

Line 2,521 18 8 1 1 - - - - -

Block 2,853 25 9 1 1 - - - - -

Edge 2,731 50 17 6 1 1 1 - - -

Condition 1,132 71 14 9 2 1 1 1 1 -

ngIRCd

Line 3,148 30 6 6 1 1 1 - - -

Block 4,401 50 8 7 4 1 1 - - -

Edge 4,390 62 14 8 6 2 2 2 - -

Condition 1,881 27 23 6 4 1 1 1 - -

grep

Line 2,218 171 34 20 5 5 3 2 2 -

Block 2,838 231 46 28 5 5 3 1 - -

Edge 3,140 366 51 44 18 9 6 6 4 -

Condition 1,810 231 45 25 11 8 7 6 5 1

Table 4.5: Additional coverage achieved by each configuration in the minimal cov-

ering sets.

are shown in Figure 4.6. These graphs show interactions based on line coverage.

Because the full set of interactions is too large to display easily, we show only

those interactions needed to guarantee 95% of the maximum possible coverage.2 In

these graphs, a node represents one or more option settings; we merged nodes with

common neighbors, listing all settings the node represents. 1-way interactions are

shaded nodes, 2-way interactions are solid edges, and 3-way interactions are cliques

of similarly patterned edges. In Figure 4.6(a), the box denotes a “super node” con-

taining several options, each of which interacts with all three options outside the

2The diagrams of the full set of interactions are presented in Appendix B.
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box. In Figure 4.6(b), the box instead represents a 4-way interaction. The ngIRCd

options are all prefixed with Conf , and similarly the vsftpd options are prefixed with

tunable . We omitted these prefixes from the graph, however, to save space.

To unclutter the presentation and to highlight interesting interaction pat-

terns, we made some additional simplifications. For ngIRCd, we merged two values

for PongTimeout that had similar but not identical neighbor sets, and similarly for

MaxNickLength. For vsftpd, we merged the options in the center node of Figure 4.6(b)

even though they have slightly different neighbors.

The main feature we see in ngIRCd’s graph is the super node in the mid-

dle, which contains ngIRCd’s enabling options. We can even see their progression:

setting ListenIPv4=1 is the first crucial step that lets ngIRCd accept clients, and it

forms a 1-way interaction. Next, setting PongTimeout high enough avoids early ter-

mination of client connections, and therefore this option forms a 2-way interaction

with ListenIPv4=1. The last enabling option, MaxNickLength, forms a 3-way interac-

tion with the previous two. In the full ngIRCd graph, the full set of these enabling

options are similarly connected to most of the nodes in the graph.

Next, considering vsftpd’s graph, we clearly see that all of the interactions in-

volve the enabling options, which appear in the center, shaded node. There are many

interactions involving just one additional option setting, such as the three options in

the node at the right middle position. These options control the availability of some

features, e.g., dirmessage enable enables the display of certain messages. Moreover,

notice that we can combine all the settings in the nodes of Figure 4.6(b) into one

configuration. This helps illustrate why the minimal covering set of configurations
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for vsftpd is so small, and why the initial configuration is able to cover so much:

one configuration can enable a range of features (writing files, logging, etc.) all at

once.

For vsftpd, the full graph of interactions is very much like the image shown

here, with a few additional, higher-strength interactions that include the three en-

abling options, plus a few low-strength interactions, including the other settings for

the enabling options, which each guarantee a few additional lines.

Finally, in grep’s graph, notice how few configuration options contributed to

95% of the coverage. These high-coverage interactions of grep have very low in-

teraction strength; there are no interactions with strength higher than two, and

four out of the five nodes have 1-way interactions. Also, all values of the matcher

option appear in this graph, making this the most important option for grep in

terms of coverage. The full configuration space graph of grep contains many more

interactions and, interestingly, the important matcher option only takes part in a

few interactions in the full graph.

While each program exhibits somewhat different configuration space behavior,

we can see that when abstracted in terms of line coverage, many options either do

not interact or interact at low strength, and thus we can combine them together

into larger configurations. This supports our claim that configuration spaces are

considerably smaller than combinatorics might suggest.
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4.7.5 Threats to Validity

Like any empirical study, our observations and conclusions are limited by

potential threats to validity. For example, in this work we used 3 subject programs.

Each is widely used, but small in comparison to some industrial applications. In

order to keep our analyses tractable, we focused on sets of configuration options

that we determined to be important. The size of these sets was substantial, but did

not include every possible configuration option. The program behaviors we studied

included four structural coverage criteria for this study. Other program behaviors

such as data flows or fault detection might lead to different results. Our test suites

taken together have reasonable, but not complete, coverage. Individually the test

cases tend to be focused on specific functionality, rather than combining multiple

activities in a single test case. In that sense they are more like a typical regression

suite than a customer acceptance suite. We intend to address each of these issues

in future work.
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Chapter 5

Other Related Work

In this chapter, I will talk about related work of Chapters 3 and 4.

5.1 Directed Symbolic Execution

ESD [57] is a symbolic execution tool that also aims to solve the line reachabil-

ity problem. It uses a proximity-guided path search that is similar to our SDSE-intra

algorithm, and an interprocedural reaching definition analysis to find intermediate

goals for directing the search. The published results show that ESD works very well

on five Coreutils programs we also analyzed (15s for mkdir, 15s for mkfifo, 20s for

mknod, 25s for paste, and 11s for tac). Since ESD is not publicly available, we were

unable to include it in our experiment directly, and we found it difficult to replicate

from its description. One thing we can say for certain is that the interprocedu-

ral reaching definition analysis in ESD is clearly critical, as our implementation of

SDSE-intra by itself performed quite poorly.

The ESD authors informed us that they did not observe variability in their

experiment, which consists of 5 runs per test program [56]. However, we find this

somewhat surprising, since ESD employs randomization in its search strategy, and

is implemented on top of KLEE whose performance we have found to be highly

variable (Table 3.1).
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There are major differences between Otter and ESD as well as in the experi-

mental setups that make it hard to compare our results. These include the version

of KLEE evaluated (we used the version of KLEE as of April 2011, whereas the ESD

paper is based on a pre-release 2008 version of KLEE), symbolic parameters (our

analysis uses the same symbolic parameters as in KLEE (except tac); the ESD pa-

per did not specify its symbolic parameters used), default search strategy, processor

speed, memory, Linux kernel version, whether tests are run in parallel or sequen-

tially, the number of runs per test program, and how random number generators are

seeded. These differences may also explain a discrepancy between our evaluations

of KLEE: the ESD paper reported that KLEE was not able to find the target bugs

within an hour, but in our experiments KLEE was able to find them (note that

nearly one-third of the runs for mkdir returned within half an hour, which is not

reflected by its median).

Several researchers have proposed general, coverage-based symbolic execution

search strategies, in addition to the ones discussed in Section 2.13. Burnim and Sen

propose several such heuristics, including a distance-based search strategy [10] that

directs searches to uncovered branches. It has a different distance calculation, which

only considers paths formed by the N nonterminal in Figure 3.2b. Xie et al propose

Fitnex, another coverage-based strategy that uses fitness values (a measure of how

close two predicates are) to guide exploration [55]. It would be interesting future

work to compare against these strategies as well; we conjecture that, as these are

coverage-based rather than targeted search strategies, they will not perform as well

as our approach for targeted search.
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Other researchers have proposed different ways to summarize functions to scale

symbolic execution. Compositional concolic testing [22, 4] summarizes a function f

by a constraint pf which is a disjunction of constraints, each relating f ’s input (i.e.,

parameters) and output (i.e., return value). Then, when generating the next input,

any occurence of f can be replaced by pf in the concolic tester’s reasoning, thereby

avoiding re-exploring f . The main difference between CCBSE and composition

concolic testing is that CCBSE uses partial paths to summarize a particular behavior

of a function (e.g., how a function fails), whereas composition concolic testing tries

to summarize the entire function by a (potentially very huge) constraint. Therefore,

such method of summarization does not scale to more complex functions.

Researchers have also used model checkers to solve the line reachability prob-

lem by specifying the target line as the target state in the model. Much like our

work, directed model checking [18] focuses on scheduling heuristics to quickly dis-

cover the target. Edelkamp et al proposed several heuristics based on minimizing

the number of transitions from the current program state to the target state in the

model defined by a finite-state automata [19] or Büchi automata [18]. Groce et al

suggested using structural heuristics such as maximizing code coverage or thread in-

terleavings [27]. Kupferschmid et al borrowed an AI technique based on finding the

shortest distance through a monotonic relaxation of the model in which states are

sets whose successors increase monotonically under set inclusion [32]. In contrast,

SDSE prioritizes exploration based on distance in the ICFG, and CCBSE explores

backwards from the target.

Directed incremental symbolic execution (DiSE [43]), despite its name, solves
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a different problem than Chapter 3 solves. The goal of DiSE is, given the old and

the new versions of a program, indentify the set of program statements si that are

affected by the changes, and enumerate all execution paths that cover each feasible

permutation of si’s exacly once.

5.2 Understanding Configurable Software Systems

Researchers and practitioners have developed several strategies to cope with

the problem of testing configurable systems. One popular approach is combinatorial

testing [13, 9, 38, 14], which, given an interaction strength t, computes a covering

array, a small set of configurations such that all possible t-way combinations of

option settings appear in at least one configuration. The subject program is then

tested under each configuration in the covering array, which will have very few

configurations compared to the full configuration space of the program.

Several studies to date suggest that even low interaction strength (2- or 3-

way) covering array testing can yield good line coverage while higher strengths

may be needed for edge or path coverage or fault detection [9, 17, 31]. However,

as far as we are aware, all of these studies have taken a black box approach to

understanding covering array performance. Thus it is unclear exactly how well and

why covering arrays work. On the one hand, a t-way covering array contains all

possible t-way interactions, but not all combinations of options may be needed for a

given program or test suite. On the other hand, a t-way covering array must contain

many combinations of more than t options, making it difficult to tell whether t-way
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interactions, or larger ones, are responsible for a given covering array’s coverage. Our

work attempts to better understand what specific configuration space characteristics

control system behavior.
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Chapter 6

Future Work

In this chapter, I will briefly sketch some interesting research ideas that will

further improve the usefulness of previously discussed symbolic execution techniques.

6.1 Generalization of CCBSE to Finer Program Units

By design, CCBSE generates paths that begin at function entries, and these

paths are used to shortcut subsequent searches that hit the corresponding function

entries. While in Section 3.3 we saw that shortcutting helps improving runtime

(e.g., Mix-CCBSE(OtterKLEE) runs faster than OtterKLEE and CCBSE(RP) on

mkdir, mkfifo, mknod and seq), we believe that CCBSE can be even more helpful,

if we generalize CCBSE to generate paths that begin at any program points. We

chose to focus on function entries, because ideally functions have well-defined input

(parameters) and output (return value), and naturally become units for composi-

tional analysis like CCBSE. However, for certain reasons, such as poor design of

code, a function may be further decomposed into many logical functions—blocks

of code with clear boundaries. We anticipate that CCBSE (and Mix-CCBSE) will

work better on these logical functions, because these functions are smaller and likely

to induce shorter (and therefore simplier) paths, thus CCBSE will impose smaller

overhead. On the other hand, decomposing a function into logical ones will create
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longer call chains, and therefore it will take longer for CCBSE to go back to main

or meet the forward search for Mix-CCBSE. Thus it is an interesting question of

how to balance these two factors. Furthermore, it is a tricky problem to decide

the program points to split a function (candidates include the boundaries between

outermost loops or conditionals).

6.2 Better Mix-CCBSE merging algorithm

We observe a weakness of Mix-CCBSE: in order for paths found by CCBSE

to be utilized by the forward search, the paths must be found before the forward

search reaches the function calls corresponding to those paths. For example, con-

sider a program where main calls f that contains the target. Mix-CCBSE works by

simultaneously running forward search on main and CCBSE on f. If CCBSE finds

a path p from f’s entry to the target early enough, then once the forward search

reaches the call to f, Mix-CCBSE will try to follow p instead of executing f as usual,

thereby having the benefit of shortcutting. However, if p is not discovered before

the forward search reaches f, the function f will be executed as usual, and p will be

completely ignored for the rest of the execution.

To tackle this issue, we propose a better merging algorithm for Mix-CCBSE.

Continuing with the previous example, suppose the forward search is running f for

a while and p is just discovered. Our proposed algorithm will look for paths in the

forward search that overlap with p. We say a path q overlaps another path p if there

exists a suffix q′ of q, such that q′ is a prefix of p. Suppose p′ is the suffix of p by
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removing q′ from p. Then if such path q does exists in the forward search, we can

shortcut the execution on q by trying to follow p′, thereby making p partially useful.

A challenge is to make this algorithm efficient. However, we speculate the new

algorithm will greatly improve the effectiveness of Mix-CCBSE, and therefore we

think this idea is worth pursuing.

6.3 Sequential Line Reachability Problem

In Section 3.2 we generalize DSE to multi-target DSE, which finds inputs that

drive the execution to multiple targets. We also see another generalization of DSE:

given a sequence of line targets, extend DSE to find an input that drive the execution

to the targets in the given order. This generalization arises naturally in reproducing

execution that follows a given stack trace (e.g., from an error report). In fact, this is

the actual problem that ESD [57] tried to solve; instead, ESD reduced the problem

to single-target line reachability, by ignoring intermediate function calls in the stack

trace. The consequence is ESD may find a different bug than the one that yielded

the provided stack trace.

We may solve this problem naively by searching for the first target, and once it

is reached we search for the next target, and so on. We anticipate that this strategy

will not work well in practice, since each iteration will eliminate a large fraction of

feasible answers, leaving no feasible answers to the end. Another naive strategy is

to keep searching for paths to the last targets, and for each path found, verify if it

traverses the given sequence of targets in order. This might work well for “common”
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stack traces; otherwise, the probability of success is low.

We conjecture that CCBSE will work well on this problem. By generalizing

CCBSE to start symbolic execution at any program point (Section 6.1), we can run

CCBSE from the second last target and search for the last target, and repeat the

process, until we go back to the first target.
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Chapter 7

Conclusions

In this dissertation, I discussed about the architecture and implementation of

Otter, a symbolic execution framework for C programs. I also demonstrated how

Otter can be used to solve the line reachability problem and to assist the study of

configurable software systems.

The line reachability problem arises in automated debugging and in triaging

static analysis results, among other applications. We introduced two new directed

search strategies, SDSE and CCBSE, that use two very different approaches to

solve line reachability. We also discussed Mix-CCBSE, a method for combining

CCBSE with any forward search strategy, to get the best of both worlds. We im-

plemented these strategies and a range of state-of-the-art forward search strategies

(OtterKLEE, OtterSAGE, and random-path) in Otter, and studied their perfor-

mance on finding 10 bugs from GNU Coreutils and on three synthetic programs.

The results indicate that both SDSE and Mix-CCBSE(OtterKLEE) performed very

well in some cases, but they did perform badly sometimes, whereas mixing SDSE

with random-path achieves the best overall running time across all strategies. We

also generalized our solutions to the line reachability problem to consider multiple

line targets, and observed good performance from Mix-CCBSEs and batching the

combinations of SDSEs and random-path. In summary, our results suggest that
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directed symbolic execution is a practical and effective approach to line reachability.

Furthermore, we have presented an initial experiment using symbolic execution

to study the interactions among configuration options for three software systems.

Keeping existing threats to validity in mind, we drew several conclusions. All of

these conclusions are specific to our programs, test suites, and configuration spaces;

further work is clearly needed to establish more general trends. First, we found that

we could achieve maximum coverage without executing anything near all the possible

configurations. Most coverage was accounted for by lower-strength interactions,

across all of line, basic block, edge, and condition coverage. Second, if we packed

interactions into configurations greedily, it took only five to ten configurations to

achieve this maximal coverage. Third, we also found that in fact it only took

one configuration to get the vast majority of the maximum coverage. Finally, by

mapping the interactions we gained some insight into why the minimal covering sets

are so small. We observed that many options either did not interact or interacted

at low strength, and it is often possible to combine different interactions together

into a single configuration. Taken together, our results strongly suggest our main

hypothesis—that in practical systems, configuration spaces are significantly smaller

than combinatorics suggest, and they can be understood from the composition of a

small number of interactions.
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Appendix A

Tables and Graphs for Directed Symbolic Execution

A.1 Beeswarm distribution plots of benchmark results

A.1.1 Grouped by strategy

The following plots are beeswarm distribution plots generated in R [46] using

the beeswarm [47] package. Each set of plots corresponds to a strategy, and each

subplot to a benchmark program from our experiment (Section 3.3). Each point

corresponds to the time it takes for a single run to complete. The points are plotted

vertically along the y axis, which is scaled to the slowest run that did not time out for

each strategy across all benchmark programs, and randomly dispersed horizontally

to avoid overlap. Runs that timed out are plotted just above the upper limit of y

axis.

A.1.2 Overlaid Pure(S), CCBSE(RP), Mix-CCBSE(S)

To compare Mix-CCBSE strategies against its components, each of the follow-

ing plots overlays three beeswarm distribution plots: Pure(S), which is the standard

forward strategy S, CCBSE(RP), and Mix-CCBSE(S).
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Figure A.1: SDSE
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Figure A.2: B(SDSE)
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Figure A.3: SDSE-pr
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Figure A.4: B(SDSE-pr)
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Figure A.5: RR(RP,SDSE)
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Figure A.6: B(RR(RP,SDSE))
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Figure A.7: SDSE-intra
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Figure A.8: KLEE
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Figure A.9: CCBSE(SDSE)
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Figure A.10: CCBSE(RP)
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Figure A.11: OtterKLEE
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Figure A.12: Mix-CCBSE(OtterKLEE)
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Figure A.13: OtterSAGE
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Figure A.14: Mix-CCBSE(OtterSAGE)
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Figure A.15: RP
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Figure A.16: Mix-CCBSE(RP)
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A.1.3 Analysis

Many of the distributions in Appendix A.1.1 are bimodal, which can be seen

as two distinct clusters of run times. Since the distributions are observably non-

normal, it is inappropriate to summarize our experimental results using mean and

standard deviation statistics. Thus, in Tables 3.1 and 3.2, we report the median

and SIQR, which are non-parametric (distribution-agnostic) statistics.

Bimodal distribution in CCBSE(RP). CCBSE(RP) is distinctly bimodal for mkdir,

mkfifo and mknod. We analyzed these runs and found that, for the faster clusters,

CCBSE(RP) found paths from quote to the target line that are also realizable from

main. When CCBSE eventually works backwards to main, the search then short-

circuits from main through quote to the target line. Thus, these cases demonstrate

the advantages of CCBSE.

For the slower clusters, CCBSE(RP) found paths originating from quote that

are ultimately not realizable from main. Here, CCBSE(RP) degenerates to pure

random-path with overhead: it works backwards to main (which is the overhead),

and then finds a different path to the target. Looking at the random-path plot in

Appendix A.1.2, we can see that it is indeed the case that the slower cluster in

CCBSE(RP) is slightly slower than random-path.

Bimodal distributions due to time outs. The distributions of several other strat-

egy/program test conditions are also bimodal in that runs either finish quickly or

time out. KLEE as well as strategies involving OtterSAGE seem to exhibit this
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Figure A.17: Overlaying pure OtterKLEE, CCBSE(RP), and Mix-

CCBSE(OtterKLEE)
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Figure A.18: Overlaying pure OtterSAGE, CCBSE(RP), and Mix-

CCBSE(OtterSAGE)
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Figure A.19: Overlaying pure RP, CCBSE(RP), and Mix-CCBSE(RP)
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issue. For OtterSAGE, we speculate that this is due to its strongly coverage-based

heuristic: if a run happens to explore paths that cover many of the same lines as the

path to the target, the coverage heuristic may then penalize the path to the target,

making it more likely to time out. As a result, the timed-out cluster becomes more

distinctly separated from the timely clusters, as seen in the plots.

We observe a much weaker bimodal distribution in OtterKLEE. We believe

this is due to OtterKLEE’s random-path constituent that helps reducing the penal-

izing effect. As discussed in Section 3.3.3, OtterKLEE and KLEE are unavoidably

different. But in general, randomness in a strategy can lead to exploration that never

reaches the target in certain programs, therefore creating two clusters of timely and

timed-out runs. This explains the bimodal distribution observed in KLEE.

Mix-CCBSE. In Section 3.1.3, we explained that we mix strategies with CCBSE

in order to get the best of both worlds, but it can as well degenerate to being worse

than either. The plots in Appendix A.1.2 show some examples of the former.

For OtterKLEE and random-path, Mix-CCBSE (as shown by green crosses)

tends to be located towards the middle to the bottom of the distribution for each

program; in the case of Mix-CCBSE(OtterKLEE) for mknod and seq, it is located

at the bottom, i.e., Mix-CCBSE(OtterKLEE) performs better than either of its

constituents alone.

The analysis for OtterSAGE is less positive: Mix-CCBSE(OtterSAGE) seems

to be as bad as OtterSAGE alone. We speculate that this is because OtterSAGE

will always run a path to completion, even if the path has reached a point in the
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program where the target is no longer reachable, and Mix-CCBSE(OtterSAGE) can

no longer take advantage the partial paths found by CCBSE.

A.2 Coverage-over-time Plots in Multi-target Experiment

Figures A.20-A.28 show, for each Coreutils program, the coverage over time for

different strategies studied in multi-target DSE (Section 3.2). To prepare a plot for

each program, we first compute the median time each strategy uses to cover a target,

then we sort the targets according to their discovery times for each strategy. The

result is a strictly increasing curve, where the ith point marks the time a strategy

takes to cover the ith target. The time axis is shown in log scale.

Notice that curves in the same plot are not strictly comparable, in the sense

that different strategies may find different subsets of targets, or find the targets in

different orders. Nevertheless, we find these plots very useful for showing cover-

age rates of different strategies, especially if we assume that targets are of equal

importance.

We analyze and comment on the trend of coverage of different strategies for

each program. Our general observation is that, while undirected strategies (KLEE,

SAGE and RP) might cover targets faster in the beginning, certain directed strate-

gies (in particular B(RR(RP,SDSE)), B(RR(RP,SDSE-rr)) and Mix-CCBSE strate-

gies) made gradual progress and achieved higher coverage than undirected strategies

in the end. This shows that directed strategies are useful in solving multi-target line

reachability problem.
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Figure A.20: mkdir (8 targets). Many strategies achieved the full cover-

age. RP and OtterKLEE reached the full coverage first, while CCBSE(RP),

Mix-CCBSE(RP) and Mix-CCBSE(OtterKLEE) achieved the same coverage

slightly slower. B(RR(RP,SDSE)), B(RR(RP,SDSE-rr)), OtterSAGE and Mix-

CCBSE(OtterSAGE) were able to achieve the same coverage within reasonable time.

Notice, however, that B(Ph(OtterKLEE,SDSE,3)) found the first 7 targets much

earlier than other strategies (including OtterKLEE).
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Figure A.21: mkfifo (11 targets). OtterKLEE and RP found the first 6 targets

slightly earlier than other strategies. OtterKLEE was able to maintain the pace up

to the 10th target, However, B(RR(RP,SDSE-rr)) and later B(RR(RP,SDSE)) and

B(SDSE) caught up and reached full coverage earlier than the undirected strategies.
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Figure A.22: mknod (23 targets). We observe that B(Ph(OtterKLEE,SDSE,3)),

OtterKLEE and RP led in the race in the beginning, but B(RR(RP,SDSE-rr)) grad-

ually increased its coverage, and together with B(RR(RP,SDSE)) they were the only

strategies achieving full coverage.
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Figure A.23: paste (78 targets). Many strategies achieved the same highest cover-

age, however B(Ph(OtterKLEE,SDSE,3)) was the fastest strategy that achieved it.

On the other hand, pure SDSE strategies performed poorly.
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Figure A.24: ptx (517 targets). Mix(OtterSAGE) performed very well here. Ot-

terSAGE and the batched SDSEs covered quickly in the beginning. However, only

Mix(OtterSAGE) kept increasing coverage and obtained the highest coverage in the

end.
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Figure A.25: pr (92 targets). We observe that SDSE strategies dominated oth-

ers. While they were slow in the beginning, B(SDSE) and B(SDSE-rr) caught

up quickly and achieved the highest coverage in the end. B(RR(RP,SDSE)) and

B(RR(RP,SDSE-rr)) performed far worse, showing that random-path affects SDSEs

and ruins their effectiveness.
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Figure A.26: seq (16 targets). OtterKLEE was leading in the beginning, but

B(RR(RP,SDSE-rr))’s caught up and won in the end.
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Figure A.27: md5sum (65 targets). RP and OtterKLEE were mostly leading in

the beginning, but then B(SDSE-rr), B(RR(RP,SDSE)) and B(RR(RP,SDSE-rr))

achieved more coverage. B(SDSE-rr) got the highest coverage in the end.
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Figure A.28: tac (51 targets). All the strategies did not good very good coverage.

But comparing among themselves, Mix-CCBSE strategies performed better, while

the SDSE strategies had average performance. We observe that, all the undirected

strategies (OtterKLEE, OtterSAGE and random-path) performed better than their

Mix-CCBSE versions in the beginning, however these undirected strategies did not

make further progress, while the Mix-CCBSE strategies gradually made progress

and finally achieved good coverage.

139



Appendix B

Interactions due to Line Coverage

The figures below depict the entire set of interactions due to line coverage for

each of our subject programs: ngIRCd, grep, and vsftpd. In these graphs, a node

is shaded if it guarantees coverage on its own, black edges represent interactions

involving just two nodes, and interactions involving more than two nodes are cliques

of similarly patterned and similarly colored edges. Nodes represent one or more

option settings; we merged nodes with common neighbors, listing all settings the

node represents. The ngIRCd options are all prefixed with Conf , and similarly the

vsftpd options are prefixed with tunable ; we omit these prefixes to save space.

In each of our programs, there were some settings that were involved in many

interactions. In ngIRCd, this is

ListenIPv4=1; in vsftpd, it is a 3-way interaction among

ssl enable=0, local enable=0, and anonymous enable=1; and in grep, it is a 2-way inter-

action between match words=0 and match lines=0. For vsftpd and grep, we grouped

this key interaction into a single node. Then, to help keep the graphs legible, we

omitted the edges incident on these key nodes for interactions involving more than

one other node. Instead, in Figure B.1, interactions involving the key node are

marked by thin edges while others are marked by thick edges; Figures B.2 and B.3

have the roles of thick and thin edges reversed.
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ngIRCd is depicted differently than grep and vsftpd; many of ngIRCd’s option

settings have nearly identical neighbors as some other settings, so most options

are depicted as a single node which contains all of the possible values for that

option. When multiple values of an option interact with the same other settings,

a single edge is used to represent all such interactions, with the set of values for

these interactions enclosed together in a subnode of the option’s node. For example,

the thin black edge connecting the MaxNickLength node to the values 20 and 3600

of PongTimeout represents 10 different 3-way interactions: the interaction among

ListenIPv4=1 (indicated by the line being thin), each of the 5 values of MaxNickLength,

and each of PongTimeout=20 and

PongTimeout=3600. (The colors of the subnodes of

MaxNickLength are only to help distinguish the subnodes one from another.)

Two options, UID and ListenIPv4, are not depicted with a single node containing

all the values because both options’ settings have very few edges in the graph, so

this would not have helped keep the graph sparse.

While the graphs are intended to give a rough sense of what options interact

and how, they are difficult to decipher, even with our attempts to keep them tidy.

Therefore, we also list the interactions themselves in Figures B.4 through B.7.

Finally, in Figure B.8, we list the entire set of options we set symbolic during

our tests. For the non-boolean options, some had constraints on what values they

could take, either implicitly in the program, or imposed by us (in an attempt to

maximize coverage while keeping symbolic evaluation practical); the figure lists their

possible values. The remaining options were integer-valued options on which we put
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ListenIPv4=1

{ListenIPv4=0,
OperCanMode={0,1},
OperServerMode={0,1},

UID=0}

ConnectRetry={5,60}

GID=0UID=4096

MaxNickLength

0 5

10{8,9,100}6

PongTimeout

1

20 3600

MaxConnectionsIP

1 {0,2,100}

PredefChannelsOnly
0 1

NoDNS

0 1

PingTimeout

1 {120,3600}

MaxJoins={1,2,100}

Figure B.1: All line-coverage interactions for ngIRCd. Thin-edge cliques implicitly

include ListenIPv4=1.
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match_words=1

match_icase={0,1}

matcher="fgrep"

matcher={"grep","egrep"}

count_matches=1

done_on_match=0
done_on_match=1

list_files=1

list_files=-1

match_lines=1

no_filenames=0out_after=0

{out_after=1,out_byte=1}

out_before=0

out_before=1

out_file=1

out_invert=0

out_invert=1

out_line=1

match_lines=0

match_words=0

out_quiet=0

out_quiet=1

suppress_errors=0

with_filenames=1

Figure B.2: All line-coverage interactions for grep. Thick-edge cliques implicitly

include match words=0,match lines=0.

no constraints during symbolic evaluation. For these unconstrained options, we

manually selected the values to use in the guaranteed coverage calculations and in

Figures B.1 through B.3, as described in section 4.7.1.
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run_as_launching_user=1

anon_mkdir_write_enable=1ssl_enable=0

local_enable=0

anonymous_enable=1

write_enable=1

setproctitle_enable=1

anon_other_write_enable=1

listen=1

run_as_launching_user=0

ascii_download_enable=1

mdtm_write=1

dual_log_enable=1

connect_timeout=1

{tunable_accept_timeout=1,
tunable_port_promiscuous=0,

tunable_dirmessage_enable={0,1},
tunable_delay_successful_login=1,
tunable_data_connection_timeout=1,
tunable_tilde_user_enable={0,1},
tunable_dual_log_enable=0}

local_enable=1

ssl_enable=1

anonymous_enable=0

listen=0

lock_upload_files=1

trans_chunk_size={2048,4096}

Figure B.3: All line-coverage interactions for vsftpd. Thick-edge cliques implicitly

include ssl enable=0,local enable=0,anonymous enable=1.
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{ListenIPv4=0,OperCanMode={0,1},OperServerMode={0,1},UID=0}
ListenIPv4=1

NoDNS=0

NoDNS=1

PredefChannelsOnly=0

PredefChannelsOnly=1

GID=0:UID=4096

ListenIPv4=1:NoDNS=0

ListenIPv4=1:PongTimeout=1

ListenIPv4=1:PongTimeout=20

ListenIPv4=1:PongTimeout=3600

MaxNickLength=0:PongTimeout=20

MaxNickLength=0:PongTimeout=3600

MaxNickLength=5:PongTimeout=20

MaxNickLength=5:PongTimeout=3600

MaxNickLength=6:PongTimeout=20

MaxNickLength=6:PongTimeout=3600

MaxNickLength={8,9,100}:PongTimeout=20

MaxNickLength={8,9,100}:PongTimeout=3600

ListenIPv4=1:ConnectRetry={5,60}:PongTimeout=1

ListenIPv4=1:MaxConnectionsIP={0,2,100}:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP={0,2,100}:PongTimeout=3600

ListenIPv4=1:MaxConnectionsIP=1:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP=1:PongTimeout=3600

ListenIPv4=1:MaxNickLength=0:PongTimeout=20

ListenIPv4=1:MaxNickLength=0:PongTimeout=3600

ListenIPv4=1:MaxNickLength=10:PongTimeout=20

ListenIPv4=1:MaxNickLength=10:PongTimeout=3600

ListenIPv4=1:MaxNickLength=5:PongTimeout=20

ListenIPv4=1:MaxNickLength=5:PongTimeout=3600

ListenIPv4=1:MaxNickLength=6:PongTimeout=20

ListenIPv4=1:MaxNickLength=6:PongTimeout=3600

ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=20

ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=3600

ListenIPv4=1:NoDNS=0:PongTimeout=1

ListenIPv4=1:NoDNS=0:PongTimeout=20

ListenIPv4=1:NoDNS=0:PongTimeout=3600

ListenIPv4=1:NoDNS=1:PongTimeout=20

ListenIPv4=1:NoDNS=1:PongTimeout=3600

ListenIPv4=1:PingTimeout=1:PongTimeout=20

ListenIPv4=1:PingTimeout=1:PongTimeout=3600

ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=0:PongTimeout=20

ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=0:PongTimeout=3600

ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=10:PongTimeout=20

ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=10:PongTimeout=3600

ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=5:PongTimeout=20

ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength=5:PongTimeout=3600

ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength={8,9,100}:PongTimeout=20

ListenIPv4=1:ConnectRetry={5,60}:MaxNickLength={8,9,100}:PongTimeout=3600

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PongTimeout=3600

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=5:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=5:PongTimeout=3600

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=3600

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PongTimeout=3600

ListenIPv4=1:MaxConnectionsIP={0,2,100}:PingTimeout=1:PongTimeout=20

Figure B.4: ngIRCd interactions
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ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=10:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=6:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength={8,9,100}:PongTimeout=20

ListenIPv4=1:MaxNickLength=10:PingTimeout={120,3600}:PongTimeout=20

ListenIPv4=1:MaxNickLength=10:PingTimeout=1:PongTimeout=20

ListenIPv4=1:MaxNickLength=10:PingTimeout=1:PongTimeout=3600

ListenIPv4=1:MaxNickLength=10:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxNickLength=10:PongTimeout=20:PredefChannelsOnly=1

ListenIPv4=1:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=1

ListenIPv4=1:MaxNickLength=5:PingTimeout=1:PongTimeout=20

ListenIPv4=1:MaxNickLength=5:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxNickLength=5:PongTimeout=20:PredefChannelsOnly=1

ListenIPv4=1:MaxNickLength=5:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxNickLength=5:PongTimeout=3600:PredefChannelsOnly=1

ListenIPv4=1:MaxNickLength=6:PingTimeout={120,3600}:PongTimeout=20

ListenIPv4=1:MaxNickLength=6:PingTimeout=1:PongTimeout=20

ListenIPv4=1:MaxNickLength=6:PingTimeout=1:PongTimeout=3600

ListenIPv4=1:MaxNickLength=6:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxNickLength=6:PongTimeout=20:PredefChannelsOnly=1

ListenIPv4=1:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=1

ListenIPv4=1:MaxNickLength={8,9,100}:PingTimeout={120,3600}:PongTimeout=20

ListenIPv4=1:MaxNickLength={8,9,100}:PingTimeout=1:PongTimeout=20

ListenIPv4=1:MaxNickLength={8,9,100}:PingTimeout=1:PongTimeout=3600

ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=20:PredefChannelsOnly=1

ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=1

ListenIPv4=1:ConnectRetry={5,60}:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=20

ListenIPv4=1:ConnectRetry={5,60}:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=3600

ListenIPv4=1:ConnectRetry={5,60}:MaxConnectionsIP={0,2,100}:PingTimeout=1:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PingTimeout={120,3600}:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=1

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PingTimeout={120,3600}:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=1

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PingTimeout={120,3600}:PongTimeout=20

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=1

ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=10:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=6:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength={8,9,100}:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=10:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=5:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=5:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=6:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength={8,9,100}:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxJoins={1,2,100}:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxNickLength=10:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxNickLength=6:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxNickLength={8,9,100}:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxJoins={1,2,100}:MaxNickLength=10:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxJoins={1,2,100}:MaxNickLength=6:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxJoins={1,2,100}:MaxNickLength={8,9,100}:PongTimeout=3600:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=10:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=1

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength=6:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=1

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP={0,2,100}:MaxNickLength={8,9,100}:PingTimeout={120,3600}:PongTimeout=20:PredefChannelsOnly=1

ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=10:PingTimeout=1:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=5:PingTimeout=1:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength=6:PingTimeout=1:PongTimeout=20:PredefChannelsOnly=0

ListenIPv4=1:MaxConnectionsIP=1:MaxNickLength={8,9,100}:PingTimeout=1:PongTimeout=20:PredefChannelsOnly=0

Figure B.5: ngIRCd interactions, continued
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count matches=1

done on match=0

matcher={“grep”,“egrep”}
matcher=“fgrep”

match icase={0,1}
no filenames=0

out invert=0

out invert=1

out line=1

suppress errors=0

with filenames=1

count matches=1:no filenames=0

count matches=1:out file=1

count matches=1:with filenames=1

done on match=1:out invert=0

matcher={“grep”,“egrep”}:match icase={0,1}
matcher={“grep”,“egrep”}:match lines=0

matcher={“grep”,“egrep”}:match lines=1

matcher={“grep”,“egrep”}:match words=0

matcher={“grep”,“egrep”}:match words=1

matcher=“fgrep”:match icase={0,1}
matcher=“fgrep”:match lines=0

matcher=“fgrep”:match lines=1

list files=-1:out invert=0

list files=1:out invert=0

list files=-1:out invert=1

list files=1:out invert=1

match lines=0:match words=0

out invert=0:out quiet=0

out invert=1:out quiet=0

done on match=0:out before=1:out invert=0

done on match=0:out before=1:out quiet=1

done on match=0:out invert=0:out line=1

done on match=0:out line=1:out quiet=1

match lines=0:match words=0:matcher={“grep”,“egrep”}
matcher={“grep”,“egrep”}:match lines=0:match words=1

match lines=0:match words=0:matcher=“fgrep”

matcher=“fgrep”:match lines=0:match words=1

match lines=0:match words=0:list files=1

match lines=0:match words=0:out invert=1

match lines=0:match words=0:out quiet=0

match lines=1:out before=1:out invert=0

match lines=1:out before=1:out quiet=1

match lines=1:out invert=0:out line=1

match lines=1:out line=1:out quiet=1

match words=1:out before=1:out invert=0

match words=1:out before=1:out quiet=1

match words=1:out invert=0:out line=1

match words=1:out line=1:out quiet=1

no filenames=0:out invert=1:out quiet=0

{out after=1,out byte=1}:out invert=0:out quiet=0

{out after=1,out byte=1}:out invert=1:out quiet=0

out before=1:out invert=0:out quiet=0

out before=1:out invert=1:out quiet=0

out before=1:out invert=1:out quiet=1

out file=1:out invert=0:out quiet=0

out file=1:out invert=1:out quiet=0

out invert=0:out line=1:out quiet=0

out invert=0:out quiet=0:with filenames=1

out invert=1:out line=1:out quiet=0

out invert=1:out line=1:out quiet=1

out invert=1:out quiet=0:with filenames=1

match lines=0:match words=0:done on match=1:out invert=0

match lines=0:match words=0:{out after=1,out byte=1}:out quiet=0

match lines=0:match words=0:out before=1:out quiet=0

match lines=0:match words=0:out file=1:out quiet=0

match lines=0:match words=0:out line=1:out quiet=0

match lines=0:match words=0:out quiet=0:with filenames=1

match lines=0:match words=0:done on match=0:out before=0:out line=1

match lines=0:match words=0:out after=0:out before=1:out quiet=0

match lines=0:match words=0:out before=0:out invert=1:out line=1

match lines=0:match words=0:out before=1:out invert=0:out quiet=0

match lines=0:match words=0:out before=1:out invert=1:out quiet=0

Figure B.6: grep interactions
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anonymous enable=0

connect timeout=1

local enable=1

run as launching user=0

setproctitle enable=1

ssl enable=0

ssl enable=1

listen=0:ssl enable=0

listen=1:ssl enable=0

local enable=0:ssl enable=0

local enable=1:ssl enable=0

anonymous enable=0:local enable=0:ssl enable=0

anonymous enable=1:local enable=0:ssl enable=0

listen=1:setproctitle enable=1:ssl enable=0

anonymous enable=1:local enable=0:ssl enable=0:{accept timeout=1,data connection timeout=1,delay successful login=1,

dirmessage enable={0,1},dual log enable=0,port promiscuous=0,tilde user enable={0,1}}
anonymous enable=1:local enable=0:ssl enable=0:connect timeout=1

anonymous enable=1:local enable=0:ssl enable=0:dual log enable=1

anonymous enable=1:local enable=0:ssl enable=0:listen=1

anonymous enable=1:local enable=0:ssl enable=0:mdtm write=1

anonymous enable=1:local enable=0:ssl enable=0:run as launching user=0

anonymous enable=1:local enable=0:ssl enable=0:run as launching user=1

anonymous enable=1:local enable=0:ssl enable=0:setproctitle enable=1

anonymous enable=1:local enable=0:ssl enable=0:anon mkdir write enable=1:write enable=1

anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:write enable=1

anonymous enable=1:local enable=0:ssl enable=0:ascii download enable=1:run as launching user=0

anonymous enable=1:local enable=0:ssl enable=0:dual log enable=1:run as launching user=0

anonymous enable=1:local enable=0:ssl enable=0:lock upload files=1:run as launching user=0

anonymous enable=1:local enable=0:ssl enable=0:anon mkdir write enable=1:dual log enable=1:write enable=1

anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:dual log enable=1:write enable=1

anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:mdtm write=1:write enable=1

anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:run as launching user=0:write enable=1

anonymous enable=1:local enable=0:ssl enable=0:ascii download enable=1:run as launching user=0:trans chunk size={2048,4096}
anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:mdtm write=1:run as launching user=0:write enable=1

anonymous enable=1:local enable=0:ssl enable=0:anon other write enable=1:mdtm write=1:run as launching user=1:write enable=1

Figure B.7: vsftpd interactions
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Name vsftpd ngIRCd grep

Booleans

anon mkdir write enable ListenIPv4 count matches

anon other write enable NoDNS done on match

anon upload enable OperCanMode filename mask*

anonymous enable OperServerMode match icase

ascii download enable PredefChannelsOnly match lines

ascii upload enable* match words

delete failed uploads* no filenames

dirmessage enable out byte

dual log enable out file

listen out invert

local enable out line

lock upload files out quiet

mdtm write suppress errors

pasv addr resolve* with filenames

port promiscuous

run as launching user

setproctitle enable

ssl enable

tilde user enable

write enable

Other

accept timeout ConnectRetry ∈ {5,60} list files ∈ {-1,0,1}
chown upload mode* GID matcher ∈ {“grep”,“egrep”,“fgrep”}
connect timeout MaxConnectionsIP out after ∈ {0,1}
data connection timeout MaxJoins out before ∈ {0,1}
delay successful login MaxNickLength

ftp data port* PingTimeout ∈ {1,20,3600}
listen port* PongTimeout ∈ {1,20,3600}
max clients UID

max per ip

trans chunk size

Figure B.8: Symbolic configuration options. Asterisks indicate options that never

led to branching during symbolic evaluation.

149



Bibliography

[1] Busybox. http://busybox.net/.

[2] Gnu c library. http://www.gnu.org/s/libc/.

[3] The java pathfinder wiki. http://babelfish.arc.nasa.gov/trac/jpf.

[4] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven com-
positional symbolic execution. In Proceedings of the Theory and practice of soft-
ware, 14th international conference on Tools and algorithms for the construc-
tion and analysis of systems, TACAS’08/ETAPS’08, pages 367–381, Berlin,
Heidelberg, 2008. Springer-Verlag.

[5] Saswat Anand, Corina S. Pasareanu, and Willem Visser. Jpf-se: A symbolic
execution extension to java pathfinder. In International Conference on Tools
and Algorithms for Construction and Analysis of Systems (TACAS 2007), pages
134–138, Braga, Portugal, March 2007.

[6] Thomas Ball and Sriram K. Rajamani. The SLAM Project: Debugging System
Software via Static Analysis. In POPL, pages 1–3, 2002.

[7] D. L. Bird and C. U. Munoz. Automatic generation of random self-checking
test cases. IBM Systems Journal, 22(3):229 –245, 1983.

[8] Richard Bornat. Proving pointer programs in Hoare logic. In International
Conference on Mathematics of Program Construction (MPC), pages 102–126,
2000.

[9] R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing of AT&T PMX/S-
tarMAIL using OATS. AT&T Technical Journal, 71(3):41–7, 1992.

[10] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation.
In ASE, pages 443–446, 2008.

[11] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, pages 209–224, 2008.

[12] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Daw-
son R. Engler. EXE: automatically generating inputs of death. In CCS, pages
322–335, 2006.

[13] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG
system: an approach to testing based on combinatorial design. TSE, 23(7):437–
44, 1997.

150

http://busybox.net/
http://www.gnu.org/s/libc/
http://babelfish.arc.nasa.gov/trac/jpf


[14] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Col-
bourn. Constructing test suites for interaction testing. In ICSE, pages 38–48,
2003.

[15] Coreutils - GNU core utilities. http://www.gnu.org/software/coreutils/.

[16] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: Efficient SMT solver.
In TACAS, volume 4963/2008 of LNCS, pages 337–340, 2008.

[17] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallo ws, and A. Iannino.
Applying design of experiments to software testing. In ICSE, pages 205–215,
1997.

[18] Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente. Directed explicit-
state model checking in the validation of communication protocols. Software
Tools for Technology Transfer, 5(2):247–267, 2004.

[19] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Trail-directed
model checking. Electrical Notes Theoretical Computer Science, 55(3):343–356,
2001.

[20] Manuel Fähndrich, Jakob Rehof, and Manuvir Das. Scalable context-sensitive
flow analysis using instantiation constraints. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 253–263, 2000.

[21] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In CAV, pages 519–531, 2007.

[22] Patrice Godefroid. Compositional dynamic test generation. In POPL, pages
47–54, 2007.

[23] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based
whitebox fuzzing. In PLDI, pages 206–215, 2008.

[24] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated
random testing. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 213–223, 2005.

[25] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Active property
checking. In EMSOFT, pages 207–216, 2008.

[26] Patrice Godefroid, Michael Y. Levin, and David A Molnar. Automated white-
box fuzz testing. In NDSS, 2008.

[27] Alex Groce and Willem Visser. Model checking Java programs using structural
heuristics. In ISSTA, pages 12–21, 2002.

[28] James C. King. Symbolic execution and program testing. CACM, 19(7):385–
394, 1976.

151

http://www.gnu.org/software/coreutils/


[29] The KLEE Symbolic Virtual Machine. http://klee.llvm.org.

[30] John Kodumal and Alex Aiken. The set constraint/CFL reachability connection
in practice. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 207–218, 2004.

[31] D. Kuhn and M. Reilly. An investigation of the applicability of design of
experiments to software testing. In NASA Goddard/IEEE Software Engineering
Workshop, pages 91–95, 2002.

[32] Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann.
Adapting an AI planning heuristic for directed model checking. In Antti Val-
mari, editor, SPIN, volume 3925 of LNCS, pages 35–52. Springer Berlin / Hei-
delberg, 2006.

[33] William Landi and Barbara G. Ryder. Pointer-induced aliasing: a problem
taxonomy. In Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 93–103, 1991.

[34] Chris Lattner and Vikram Adve. LLVM: a compilation framework for lifelong
program analysis transformation. In CGO, pages 75–86, 2004.

[35] London Stock Exchange (LSE) system failure stops trading.
http://www.zdnet.com/blog/projectfailures/london-stock-exchange-lse-
system-failure-stops-trading/472.

[36] Kin-Keung Ma, Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. Directed
symbolic execution. Technical Report CS-TR-4979, UMD-College Park, Apr
2011.

[37] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In ICSE, pages
416–426, 2007.

[38] R. Mandl. Orthogonal Latin squares: an application of experiment design to
compiler testing. Commun. ACM, 28(10):1054–1058, 1985.

[39] Joe M. Morris. A general axiom of assignment. Assignment and linked data
structure. A proof of the Schorr-Waite algorithm. In M Broy and G. Schmidt,
editors, Theoretical Foundations of Programming Methodology, pages 25–51,
1982.

[40] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation of C
programs. In Conference on Compiler Construction (CC), pages 213–228, 2002.

[41] The Newlib Homepage. http://sourceware.org/newlib/.

[42] The Otter Homepage. http://www.cs.umd.edu/projects/PL/Otter/.

152

http://klee.llvm.org
http://sourceware.org/newlib/
http://www.cs.umd.edu/projects/PL/Otter/


[43] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Directed
incremental symbolic execution. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation, PLDI ’11,
pages 504–515, New York, NY, USA, 2011. ACM.

[44] Adam Porter, Cemal Yilmaz, Atif M. Memon, Douglas C. Schmidt, and Bala
Natarajan. Skoll: A process and infrastructure for distributed continuous qual-
ity assurance. TSE, 33(8):510–525, August, 2007.
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