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The computational treatment of cryptography, and indeed any scientific treat-

ment of a problem, is marked by its definitional side and by it constructive side.

Results in this thesis better our understanding of both: on one side, they characterize

the extent to which computational definitions capture the security of the basic task

of symmetric encryption; on the other, they provide explicit bounds on the efficiency

of commitment and secure two-party computation constructions. Specifically:

• We relate the formal and computational treatments of symmetric encryption, ob-

taining a precise characterization of computational schemes whose computational

semantics imply their formal semantics. We prove that this characterization is

strictly weaker than previously-identified notions, and show how it may be realized

in a simpler, more efficient manner.

• We provide lower-bounds on the number of times a one-way permutation needs
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framework). Here, we rely on the assumption that parties have access to a com-

mon reference string; some sort of setup is known to be necessary.
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Chapter 1

Introduction

Things derive their being and nature

by mutual dependence

and are nothing in themselves.

Acharya Nagarjuna, second century

The last three decades have seen cryptography approached from a computational-

centric perspective. On the definitional side, the hallmark of the approach has

been assuming little about the adversarial entity attacking the system beyond its

computational abilities. In particular, definitions do not seek to address specific

strategies that an adversary may employ (within the setting it is allowed to oper-

ate in); this is a desirable formulation, as an adversary will typically attempt to

behave in a manner that was not envisioned during the design of the system. Sym-

metric encryption is a salient example — semantic security [GM84] requires that

no probabilistic polynomial-time algorithm be able to distinguish an encryption of

one message from an encryption of another with more than negligible probability

of success. On the constructive side, modern solutions rely on, and indeed require,

the ability to generate instances of problems that hard for computationally-bounded

algorithms. Turning again to our example, we know that the existence of one-way

functions — functions that are easy to compute but hard to invert for probabilistic,
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polynomial-time algorithms — is sufficient [BM84, GGM86, GL89, HILL99], and

necessary [IL89], for constructing semantically-secure encryption schemes.

In examining the computational approach, it is important to consider the

following questions:

• Definitions: How well do definitions capture the intended security goals?

• Constructions: Does the approach entail any inherent limitations on con-

structions that satisfy these definitions? If so, can we build protocols that

match these limitations?

This thesis presents advances on both fronts. Towards one end, we look outside the

framework and relate computational definitions with their counterparts in an alter-

native, prominent framework. Towards the other end, we look inside the framework

and derive bounds on the efficiency of basic constructions. Below, we provide an

informal, comprehensive account of our contributions.

1.1 What the Definitions Capture: Relating the Formal and Com-

putational Treatments of Symmetric Encryption

A typical computational treatment [BDJR97, BKR00, BR93, BM84, GMW87,

GM84, GMR88, Yao82] models cryptographic operations (or participants in a cryp-

tographic protocol) as efficient algorithms on strings of bits. Security, as mentioned

above, is defined in terms of probabilities of successful attacks by computationally-

bounded adversaries. Such treatment offers concrete procedures for the notions it
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models and provides quantitative guarantees of security; it is, however, typically

complex to model and argue in.

Cryptographic notions have received alternative treatments, the most promi-

nent of which has been the formal one. Here, a typical treatment [AG99, BAN89,

DY83, GM95, Kem89, KMM94, Low96, Mea91, MCF87, MMS97, Pau98, THG99]

features a formal language, in which statements, representing cryptographic enti-

ties and operations, can be made. The security properties of these statements are

usually asserted outside the language, or expressed as syntactic properties of the

statements. The formal treatment is abstract, simple and lends itself promptly to

automated analysis; it does not, however, offer concrete instantiations of the cryp-

tographic notions it models. (Obviously, the lists of references mentioned above are

not exhaustive.)

A significant effort has recently been made to relate the two approaches. To-

wards this end, researchers have been seeking conditions under which computational

notions can be “plugged in” instead of the corresponding formal notions while pre-

serving the formal semantics; and, conversely, conditions under which formal notions

can abstract computational notions such that the computational semantics is main-

tained. For one, this offers a direct means of seeing what aspects of the underlying

natural concern were captured in each treatment, shedding light on our topic of

interest here. In addition, a central motivation has been the promise of bringing

the strengths of one treatment to the other. Specifically, a successful endeavor is

expected to confirm and increase the relevance of formal proofs to concrete compu-

tational instantiations; and allow the application of the high level formal reasoning
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mechanisms to the computational domain.

Related Work. Relating the formal and computational treatments of cryptography

has been a thriving research area in recent years. Initial steps were taken by Abadi

and Rogaway [AR02], building on the work of Aabadi and Jurgens [AJ01]; both deal

with sufficient conditions under which formal semantics for symmetric encryption

implies the computational semantics. Micciancio and Warinschi [MW04a] give a

sufficient condition for the converse. Abadi and Warinschi [AW05] extend that work

to relate the treatments of password-based encryption. Note that all the above deal

with security notions in which the adversary plays a passive role.

A second line of research focuses on notions in which the adversary plays

an active role. Micciancio and Warinschi [MW04b] formalize a setting in which the

treatments of such notions can be related, and give a sufficient condition under which

a symbolic notion of mutual authentication implies a computational one. Canetti

and Herzog [CH04] lift these results to the Universal-Composability framework of

Canetti [Can01], and deal additionally with the notion of key-exchange. Backes

and Pfitzmann [BP05] relate formal and computational notions of secrecy in an

equivalent framework of their design. Micciancio and Panjwani [MP05] extend the

theorem of [AR02] to account for particular active cases and apply it to relate a

formal treatment of multicast key-distribution with a computational one.
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1.1.1 Our Contributions

We focus on relating the formal and computational treatments of symmetric

encryption, completing the characterization initiated by Abadi and Rogaway [AR02].

We begin by reviewing their model and result, using a running example for intuition.

Consider a language of formal expressions, where expressions are built from

symbols that represent bits and keys using symbolic operands that represent pairing

and encryption. For example, the expression E1 = (K1, {0}K2
) represents the pair-

ing of key K1 with an encryption of the bit 0 with key K2. Two semantics are now

defined. In the first, an expression is associated with a syntactic counterpart, the

pattern, which mirrors the expression up to parts that should look “unintelligible”

to an observer; informally, these are parts, defined in syntactic terms, that represent

encryptions with keys that are not recoverable from the expression. In our example,

E1 will be mapped to the pattern E1 = (K1,2), where 2 represents an “unintelligi-

ble” part. Expressions are said to be equivalent in this setting if their patterns are

equal as strings of symbols (up to a consistent renaming of the key symbols). For

example, E1 will be equivalent to E2 = (K8, {(1, 1)}K9
). This constitutes a formal

semantics. In the second definition, an expression is associated with an ensemble

of distributions on strings, obtained by instantiating the key symbols and encryp-

tion operations occurring in the expression with the corresponding components of

a concrete computational encryption scheme (for all security parameters). Two ex-

pressions are said to be indistinguishable in this setting if their associated ensembles

are computationally indistinguishable. This constitutes a computational semantics.
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Within this setup, [AR02] give a soundness result: they show that under

specific, sufficient conditions on the computational encryption scheme, equivalence

of expressions (in the formal semantics) implies their indistinguishability (in the

computational semantics). Our work tightly characterizes the completeness aspect

of this exposition. We identify the following notion:

Definition 1.1.1 (The admittance of WKA-EXP tests for expressions - informal).

We say that a computational encryption scheme admits a weak key-authenticity test

for expressions E1, E2 if there exists an efficient algorithm that distinguishes:

• an encryption of an instantiation of E1, paired with the key used to perform

the encryption; from

• an encryption of an instantiation of E2, paired with a random key,

with a non-negligible probability (as a function of the security parameter used for

the encryption scheme). Say that the scheme admits weak key-authenticity tests for

expressions if it admits a weak key-authenticity test for all expressions E1, E2. ♦

As our main result, we show that:

Theorem 1.1.2 (Admittance of WKA-EXP tests is necessary and sufficient for

formal encryption to be computationally-complete - informal). The admittance of

weak key-authenticity tests is necessary and sufficient for indistinguishability of ex-

pressions (in the computational semantics) to imply their equivalence (in the formal

semantics).
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In proving this result, we provide a novel fixpoint characterization of the syntactic

notion of “intelligible” parts of formal expressions.

Prior to our result, a property of encryption schemes dubbed confusion-freeness

was suggested as sufficient for completeness [AJ01, MW04a]. Roughly speaking, a

confusion-free scheme is one in which the decryption of a ciphertext with a wrong

key fails with almost certainty. The above-mentioned work suggests the use of a full-

fledged authenticated encryption scheme [BN00, KY00] to provide for this property.

As our second result, we show that:

Theorem 1.1.3 (Admittance of WKA-EXP is strictly weaker than related notions -

informal). The requirement that an encryption scheme admits weak key-authenticity

tests for expressions is strictly weaker than the requirement that it be confusion-free

(and certainly weaker than the requirement that it be an authenticated encryption

scheme).

To that effect, we consider a strengthened version of our condition, requiring

the admittance of a single, universal weak key-authenticity test (as opposed to one

per pair of expressions), defined in strict computational terms (i.e., independent of

expressions from the formal language). We say that an encryption scheme admits

a weak key authenticity test if it satisfies this strengthened condition. We present

a simple encryption scheme that admits a weak key-authenticity test but is not

confusion-free. The scheme thus matches our completeness criterion, but not that

of [MW04a]. Furthermore, it meets the soundness criterion of [AR02].

A preliminary version of this work appeared in [HG03].
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1.2 Efficiency of Constructions: Bounds for Generic Commitments

Modern cryptography has had substantial success in identifying the mini-

mal hardness assumptions needed for the construction of various cryptographic

tools and protocols. We now know, for example, that one-way functions are nec-

essary [IL89, Rom90] and sufficient for the construction of pseudorandom gener-

ators (PRGs) [BM84, Yao82, GL89, HILL99], universal one-way hash functions

(UOWHFs) and digital signature schemes [NY89, Rom90], private-key encryption

schemes [GGM84], and commitment schemes [Nao91]. It is the case, unfortunately,

that all of the constructions just referenced are notoriously inefficient, and no con-

structions (based on one-way functions) improving upon the efficiency of these so-

lutions are known. On the other hand, more efficient constructions are known to

exist under stronger (e.g., number-theoretic) assumptions.

The apparent tradeoff between the efficiency of a construction and the un-

derlying hardness assumption used to prove it secure has prompted a recent line

of research aimed at answering the following question: how efficient can construc-

tions based on minimal assumptions be? One way to formalize this question is to

look at so-called “black-box” constructions which use an underlying primitive (e.g.,

a one-way permutation) only as an oracle, and which do not use, e.g., an explicit

circuit computing the primitive in question (see Section 1.2.1 for further discus-

sion). The idea of studying cryptographic constructions in this way was initiated

by Impagliazzo and Rudich [IR89, Rud88] in the context of proving the impos-

sibility of certain constructions, and much additional work in this vein followed
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[Rud91, Sim98, GKM+00, GMR01, Fis02]. (See [RTV04] for rigorous formal defi-

nitions of the Impagliazzo-Rudich model, as well as some variants that have been

used.) Kim, Simon, and Tetali [KST99] were the first to use this model as a means

of studying the efficiency of constructions (rather than their feasibility), with effi-

ciency measured in terms of the number of oracle calls made by the construction.

They show non-tight bounds on the efficiency of constructing UOWHFs from one-

way permutations. Extending their results, Gennaro, et al. [GGKT05] show that

known constructions of UOWHFs based on one-way permutations are in fact opti-

mal; they also show efficiency bounds for the case of PRGs, private-key encryption

schemes, and digital signatures based on one-way permutations, as well as for the

case of public-key encryption schemes based on trapdoor permutations.

Before describing our contributions, we provide a brief overview of the Impagliazzo-

Rudich model and black-box lower bounds. (The following is adapted from [GGKT05],

including only what is directly relevant to the present work. For a more general dis-

cussion, see [GGKT05, RTV04].)

1.2.1 Black-Box Lower Bounds

At the most general level, a construction of a commitment scheme based on

one-way permutations may be viewed as a procedure P which takes as input (a

description of) a permutation π and outputs (a description of) two circuits (S,R)

(here, S represents the sender while R represents the receiver ; see Section 1.2.2

and Section 3.1.2) realizing the desired commitment functionality whenever π is a
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permutation. If the construction is black-box, this means that P relies only on the

input/output behavior of π and not on any internal structure of the implementa-

tion of π; formally, this means that the construction can be described as a pair of

oracle procedures (S(·),R(·)) such that (Sπ,Rπ) realizes the desired functionality of

a commitment scheme for any permutation π.

Besides achieving some desired functionality, a construction of a commitment

scheme should also be “secure” in some sense. There are various ways this can be

formalized (see [RTV04]); we will be interested here in weak black-box constructions

which offer the following guarantee:

If π is a one-way permutation, then the scheme (Sπ,Rπ) is “secure”

against all efficient adversaries (who are not given oracle access to π),

where “secure” in the above refers to some appropriately-defined notions of hiding

and binding. The distinction between whether an adversary is given oracle access

to π or not is important since the above should hold even when π is not efficiently

computable (and so the only way for an efficient adversary to evaluate π, in general,

may be via oracle access to π). Note, however, that a weak black-box construction

suffices to give implementations with meaningful security guarantees in the real

world: in this case, π will be efficiently-computable and furthermore an explicit

circuit for π will be known; hence, it is irrelevant whether an adversary is given oracle

access to π or not. Note also that weak black-box constructions are the weakest type

of black-box construction considered in [RTV04], and hence impossibility results for

weak black-box constructions rule out other black-box constructions as well.
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Although most currently-known constructions are black-box, it is important

to recognize that a number of non-black-box constructions do exist. As an ex-

ample, all known constructions of public-key encryption schemes secure against

chosen-ciphertext attacks based on trapdoor permutations (e.g., [DDN00]) are non

black-box. (See [GGKT05] for additional examples.) Nevertheless, a black-box im-

possibility result is useful in that it indicates the techniques necessary to achieve a

particular result. Furthermore, known non-black-box constructions are much less

efficient than black-box ones, and so a black-box impossibility result can be said to

rule out “practical” constructions.

1.2.2 Our Contributions

With the above in mind, we may now describe our results in fairly formal terms.

An interactive commitment scheme for m-bit messages is a pair of procedures (S,R)

which operates in two phases. In the commitment phase, the sender S takes as input

a message M ∈ {0, 1}m and interacts with the receiver R; we will refer to the view

of R at the conclusion of this phase as a commitment to M . In the decommitment

phase, the sender forwards a decommitment to R which, in particular, reveals M .

Without loss of generality, we will assume that the decommitment simply consists

of M along with the random coins used by S during the commitment phase.

A commitment scheme should guarantee both hiding and binding, where in-

formally these mean that (1) the receiver should have no information about M at

the end of the commitment phase while (2) the sender should be committed to a
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unique message at the end of that phase. More formally, a commitment scheme is

statistically-binding if it satisfies the following:

Hiding: For any M,M ′ ∈ {0, 1}m, the distribution over commitments (by the honest

sender S) to M is computationally indistinguishable from the distribution

over commitments (by S) to M ′, even when S interacts with a malicious (but

computationally bounded) receiver R∗.

(Statistical) binding: The probability (over coin tosses of the honest receiverR) that

there exist distinct M,M ′ and coins s, s′ for S such that the corresponding

commitments to M,M ′ are identical is at most εb. When εb = 0 we say the

scheme is perfectly binding.

Note that the formulation of the binding requirement ensures security even against

an all-powerful sender. Our definition of the binding requirement is somewhat

stronger than the usual one which, roughly speaking, requires only that a computationally-

unbounded sender without knowledge of r be unable to find distinct M,M ′ and coins

s, s′ such that the corresponding commitments are identical (except with some prob-

ability εb). For the case of two-round, public-coin schemes (where the receiver simply

sends a random string and the sender responds with a commitment) and perfectly-

binding schemes, however, the notions are identical. Looking ahead, we remark that

all the constructions we show in Section 3.3 satisfy the strong definition of binding

given above.

Say a permutation π : {0, 1}n → {0, 1}n is one-way with security S if any

circuit of size at most S inverts π on at most a fraction 1/S of its inputs. Our main
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result may be stated as follows:

Theorem 1.2.1 (Bounds on the efficiency of generic, statistically-binding commit-

ments - informal). Any weak black-box construction of a statistically-binding com-

mitment scheme based on a one-way permutation with security S requires

Ω ((m− log(1 + 2m · εb))/ logS)

invocations of the permutation (by the sender and receiver combined for statistically-

binding schemes, and by the sender alone for perfectly-binding schemes).

Formally, we show that any construction beating this bound would imply the

unconditional existence of a statistically-binding commitment scheme; or, put an-

other way, the only way to develop a more efficient construction of a commitment

scheme based on one-way permutations is to construct a commitment scheme from

scratch. Note further that the existence of a commitment scheme implies the exis-

tence of one-way functions (and hence P 6= NP), and so in particular any black-box

construction beating our bound would also imply a proof that P 6= NP . We remark

that beyond the technical ideas used in our proof, our bound is interesting as the

first example of an efficiency bound on a protocol which protects against malicious

participants (the cryptographic primitives considered in [KST99, GGKT05] only in-

volve honest participants, with the adversary being a “passive observer”; indeed,

proving bounds for the case of commitment schemes was left as an explicit open

question there).

For perfectly-binding schemes, our bound translates to Ω(m/ logS); our bound

in this case matches the efficiency achieved by the construction of Blum [Blu82], in-
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stantiated using the Goldreich-Levin hard-core bits of a one-way permutation [GL89].

This is discussed further in Section 3.3, where we also compare our bounds to known

constructions of statistically-binding schemes.

We remark that (a natural adaptation of) our bounds applies also to construc-

tions of commitment schemes based on oracle access to trapdoor permutations (see

[GGKT05] for definitions). For ease of exposition, however, we prefer to work with

one-way permutations.

A preliminary version of this work appeared in [HK05].

1.3 Efficiency of Constructions: Universally Composable Two-Party

Computation in Two Rounds

Round complexity is an important measure of efficiency for cryptographic pro-

tocols, and much research has focused on trying to characterize the round complexity

of various tasks such as zero knowledge [GK96a, GK96b], concurrent zero knowledge

[CKPR01, PRS02], Byzantine agreement [PSL80, FL82, FM97, GM98], Verifiable

Secret-Sharing [GIKR01, FGG+06], and secure two-party/multi-party computation

[Yao86, BMR90, IK00, Lin01, GIKR02, KOS03, KO04]. (Needless to say, this list is

not exhaustive.) We focus on the goal of secure two-party computation. Feasibility

results in this case are clearly of theoretical importance, both in their own right and

because two-party computation may be viewed as the “base case” for secure compu-

tation without honest majority. Results in this case are also of potential practical

importance since many interesting cryptographic problems (zero knowledge, com-
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mitment, and — as we will see — blind signatures) can be solved by casting them

as specific instances of secure two-party computation.

The round complexity of secure two-party computation in the stand-alone

setting has been studied extensively. Yao [Yao86] gave the first constant-round

protocol for the case when parties are assumed to be honest-but-curious. Goldreich,

Micali, and Wigderson [GMW87, Gol04] showed how to obtain a protocol tolerating

malicious adversaries; however, their protocol does not run in a constant number of

rounds. Lindell [Lin01] gave the first constant-round protocol for secure two-party

computation in the presence of malicious adversaries. Katz and Ostrovsky [KO04]

showed a five-round protocol for malicious adversaries, and proved a lower bound

showing that five rounds are necessary. (The lower bound applies to black-box

proofs of security, and assumes parties communicate in alternate rounds.) Two-

round protocols for secure two-party computation, where only a single player receives

output, are studied in [SYY99, CCKM00]; in particular, Cachin et al. [CCKM00]

show a two-round protocol for computing arbitrary, single-output functionalities

assuming a common reference string (CRS) available to all participating parties.

It is by now well known that protocols secure when run in a stand-alone set-

ting may no longer be secure when many copies of the protocol are run concurrently

in an arbitrary manner (possibly among different parties), or when run alongside

other protocols in a larger network. To address this issue, researchers have pro-

posed models and definitions that would guarantee security in exactly such settings

[PW00, Can01]. In this work, we adopt the model of universal composability (UC)

introduced by Canetti [Can01].
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The initial work of Canetti showed broad feasibility results for UC multi-

party secure computation in the presence of a strict majority of honest players.

Unfortunately, subsequent work of Canetti and Fischlin [CF01] showed that even for

the case of two parties, one of whom may be malicious, there exist functionalities that

cannot be securely computed within the UC framework; further characterization of

all such “impossible-to-realize” two-party functionalities is given by [CKL06]. These

impossibility results hold for the “plain” model; in contrast, it is known that these

negative results can be bypassed if one is willing to assume some sort of “trusted

setup” on which all parties can rely. Various forms of trusted setup have been

explored [CF01, BCNP04, HMQU05, CDPW07, Katz07], the most common of which

is the availability of a CRS to all parties in the network. Under this assumption,

universally composable multi-party computation of any (well-formed) functionality

is possible for any number of corrupted parties [CLOS02].

The round complexity of UC two-party computation has not been explored in

detail. The two-party protocol given in [CLOS02] does not run in a constant number

of rounds, though this may be due at least in part to the fact that the goal of their

work was security under adaptive corruptions (where corruptions may happen at

any point during the execution of the protocol, and not necessarily at its outset, as

is the case with passive corruptions). Indeed, it is a long-standing open question to

construct a constant-round protocol for adaptively-secure two-party computation

even in the stand-alone setting. Jarecki and Shmatikov [JS07] recently showed a

four-round protocol, assuming a CRS, for functionalities that generate output for

only one of the parties; they also show a two-round protocol in the random oracle
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model. Using a standard transformation [Gol04], their protocols can be used to

compute two-output functionalities at the cost of an additional round.

1.3.1 Our Contributions

As our main result here, we show the following:

Theorem 1.3.1 (UC two-party computation in two-rounds - informal). UC compu-

tation of any (well-formed) two-party functionality (where both parties may receive

output) can be realized in only two rounds of communication, assuming static cor-

ruptions and the availability of a CRS to all participating parties.

In our work, we allow both parties to simultaneously send a message in any

given round (i.e., when both parties are honest), but prove security against a rushing

adversary who may observe the other party’s message in a given round before sending

his own. Although this communication model is non-standard in the two-party

setting, it matches the convention used in the study of multi-party protocols and

allows for a more accurate characterization of the round complexity. Our result holds

under any one of various standard number-theoretic assumptions, and does not rely

on random oracles. We assume a CRS but, as we have seen, some form of setup is

necessary for two-party computation to be possible (in any number of rounds). We

consider static corruptions only; again, recall that even in the stand-alone setting it

is not known how to achieve adaptive security in constant rounds.

We achieve our result via the following steps:

• We first show a two-round protocol (where only one party speaks in each
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round) for secure computation of any single-output functionality. This proto-

col is similar to that of Cachin et al. [CCKM00], though our protocol is secure

in the UC framework. The protocol relies on Yao’s “garbled circuit” tech-

nique [Yao86], the two-round oblivious transfer protocol of Tauman [Tau05],

and the non-interactive zero-knowledge proofs of De Santis et al. [DDO+01].

Using standard techniques [Gol04, Propositions 7.2.11 and 7.4.4], this imme-

diately implies a three-round protocol (where only one party speaks in each

round) for any two-output functionality.

• As our main result, we show how two instances of our initial protocol can

be run “in parallel” so as to obtain a two-round protocol (where now both

parties speak1 in each round) even if both parties are to receive output. The

challenging aspect of this step is to “bind” the two executions to ensure that

each party enters both executions with a consistent input.

It is not hard to see that one-round secure computation, even if both parties

are allowed to speak simultaneously, is impossible under any reasonable definition

of security and regardless of any global setup assumption; a similar observation

holds for two-round protocols when parties speak in alternate rounds. Thus, inter-

estingly, the round complexity of our protocols is optimal for any setting of secure

computation and not “just” for the setting of universal composability with a CRS.

The low round complexity of our protocols implies round-efficient solutions

for various cryptographic tasks. To give a timely example, we show that blind sig-

1We stress again that our security analysis takes into account a rushing adversary.
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natures [Cha82] can be reduced to secure computation of a particular functionality

(here, we simplify the prior result of [JLO97] to the same effect); thus, as almost an

immediate corollary of our result we obtain a two-round blind signature protocol,

matching a recent result by Fischlin [Fis06] via what is arguably a more intuitive con-

struction. Our result also has certain technical advantages as compared to Fischlin’s

work: our scheme can be applied to any underlying signature scheme and achieves

strong unforgeability “for free” (as long as the underlying signature scheme does);

in contrast, Fischlin’s result applies to a specific signature scheme of his design and

achieves strong unforgeability only with significant additional complications. On

the other hand, Fishlin’s result holds under more general assumptions.

As a second example, we observe that the evaluation of a trust policy, held

by a server, on a set of credentials, held by a client, can be cast as an instance

of two-party computation. Applying our protocol yields a solution that provides

input privacy to both the client and the server in a minimal number of rounds

while preserving security under general composition, a combination of traits not

present in current solutions (e.g., [BHS04, LDB03, NT05, LL06, BMC06, FAL06]

and references therein).

A preliminary version of this work is to appear in [HK07].

19



Chapter 2

Relating the Formal and Computational Treatments of Symmetric

Encryption

Here, we relate the formal and computational treatments of cryptography, as

outlined in Section 1.1. The chapter is organized as follows. In Section 2.1, we de-

scribe the formal treatment of symmetric encryption, and provide a new procedural

characterization of the formal semantics, to be used in the proof of our main theorem.

In Section 2.2, we describe the computational treatment. In Section 2.3, we provide

a necessary and sufficient condition for the computational semantics to imply the

formal one. In Section 2.4, we demonstrate that our condition is strictly weaker

than previously-suggested conditions, and present a simple, efficient construction.

2.1 Formal Treatment of Symmetric Encryption

Here, we present the formal view of symmetric encryption, most closely follow-

ing its formalization in [AR02]. The view consists of a formal language and a formal

semantics. Expressions in the formal language are built from symbols representing

bits and keys, using operands that represent pairing and encryption. Formal seman-

tics is defined in terms of equivalence of expressions, where equivalence is, in loose

terms, syntactic identity up to parts representing encryptions with keys that cannot

be recovered from expressions; we call such parts “unreachable”. Our definitions
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recast those of [AR02] in terms that pertain closely to the syntactic structure of

expressions. In addition, we provide a fixpoint characterization of the “reachable

parts” of expressions that plays an important role in the proof of our main theorem.

2.1.1 Formal Language

2.1.1.1 Expressions

Let Bits be the set {0, 1}; we call 0, 1 bits. Let Keys be a fixed, non-empty

set of symbols, disjoint from Bits; call the elements of Keys keys. Our formal

language consists of the set Exp, defined inductively as follows:

1. (Atomic elements or Atoms:) Bits,Keys ⊆ Exp.

2. (Non-Atomic elements:)

(a) (The Pairing Rule:) If M,N ∈ Exp then (M,N) ∈ Exp. We say that

(M,N) is directly derived from M and N .

(b) (The Encryption Rule:) If M ∈ Exp and K ∈ Keys, then {M}K ∈

Exp. We say that {M}K is directly derived from M .

Elements of Exp are called expressions. We refer to the pairing and the encryption

rules as derivation rules. Informally and as expected, (M,N) represents the pairing

of expressions M and N , while {M}K represents the encryption of expression M

with key K.

Expressions are strings of symbols. The length of an expression E, denoted

|E|, is the number of symbols it is comprised of (count ‘}K ’ as a single symbol).
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We use E1 = E2 to denote that the expressions E1, E2 are identical as strings of

symbols.

It is important to note that every non-atomic expression belongs in Exp by

way of a unique derivation rule and a unique set of expressions it is derived from; we

say that expressions in Exp are uniquely readable to express this property. Formally,

we claim that for two non-atomic expressions E1 and E2, E1 = E2 if (and, clearly,

only if) either:

• E1 = (M1, N1), E2 = (M2, N2) and M1 = M2, N1 = N2; or

• E1 = {M1}K1 , E2 = {M2}K2 and M1 = M2, K1 = K2.

To see this, note first that non-atomic expressions always open and close with match-

ing brackets (be it a ‘(’,‘)’ pair or a ‘{’,‘}K ’ pair), and that expressions have an equal

number of opening and closing brackets; these properties can easily be shown by

induction on the structure of expressions. Also, note that only atomic expressions

have length 1, and that no expression is shorter. Let E1 = E2. As the expres-

sions are identical as strings of symbols, they have the same opening and closing

brackets, and so must be in Exp by way of the same derivation rule. Assume

E1 = (M1, N1) = (M2, N2) = E2 (the argument for E1 = {M1}K1 = {M2}K2 = E2

is similar). If M1 6= M2, then one, say M1, must be a proper prefix of the other.

As |M1| ≥ 1, |M2| > 1, and so M2 must be non-atomic. But a proper prefix of a

non-atomic expression, which closes with a bracket, does not have a balanced num-

ber of brackets and thus cannot be an expression—a contradiction. It follows that

M1 = M2; similarly, N1 = N2.
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2.1.1.2 Derivation Trees

The structure of an expression can be represented naturally in the form of a

tree. A derivation tree TE for an expression E is defined inductively as follows:

1. If E is atomic, then TE consists of a single node, the root, labeled E.

2. If E is non-atomic, then TE consists of a single node, the root, labeled E, and

an ordered list of trees for the expressions from which E is directly derived;

the sets of nodes of these trees are disjoint, and none contains the root of TE.

If E = (M,N), we say that TM and TN are the left and right subtrees of TE,

respectively. The roots of TM and TN are said to be the left and right children

of the root of TE, respectively. Similarly, if E = {M}K then TM is said to be

the subtree of TE; the root of TM is said to be the child of the root of TE.

Informally, the notion of a derivation tree resembles that of the standard parse tree;

the two relate in that a node in a derivation tree is labeled with the yield of the

corresponding node in the parse tree. We let |TE| denote the cardinality of the set

of nodes of TE.

We mention two properties of expressions and their derivation trees that are

relevant to our treatment. First, two expressions are identical as strings of symbols

iff their respective derivation trees are identical. For the only if part, argue induc-

tively on the structure of expressions and rely on the unique-readability property of

expressions; for the if part, argue inductively on the structure of derivation trees.

Second, if |E| = n, then TE consists of at most n nodes; this can be shown by

induction on the length of expressions.
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2.1.1.3 Acyclic Expressions

We consider expressions that contain no encryption cycles, following [AR02].

Say that a key K appears in plain in an expression E if there exists a node in TE

labeled K. We say that the key K1 encrypts key K2 in E if there exists a node v

labeled T{M}K1
in TE (for some expression M) and there exists a node labeled K2 is a

subtree of v. This induces a relation on the keys that appear in plain in E, henceforth

the “encrypts” relation. An expression E is said to be acyclic (respectively, cyclic) if

its associated “encrypts” relation contains no cycles (respectively, contains cycles).

2.1.2 Formal Semantics

The semantics for a formal language involving the encryption operation aims at

capturing privacy guarantees one expects the operation to provide. In particular, the

semantics seeks to express our understanding that parts of expressions, representing

encryptions with keys that are not recoverable from the text, should be unintelligible

(or unreachable) to a viewer. Second, it seeks to capture the understanding that

expressions, differing only in their unintelligible parts, should “look the same” to

a viewer. This is done by mapping each expression to a syntactic counterpart, the

pattern, which mirrors only its reachable parts; and by defining the equivalence of

expressions in terms of the syntactic equality of their respective patterns (up to a

consistent renaming of reachable keys).
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2.1.2.1 Reachable Nodes

Let TE be the derivation tree of an expression E, let V be its node set and let

r ∈ V be its root. A set U ⊆ V is said to contain the reachable nodes of TE if:

1. r ∈ U .

2. For all u ∈ U ,

(a) if u is labeled with an expression of the form (M,N), then both the

children of u in TE (labeled M and N) are in U .

(b) if u is labeled with an expression of the form {M}K , and there exists a

u′ ∈ U labeled K, then the child of u in TE (labeled M) is in U .

For example, the node set V of a derivation tree TE for an expression E contains

the reachable nodes of TE.

For E ∈ Exp of length n, TE consists of at most n nodes, of which there are at

most 2n subsets. It follows that the number of sets containing the set of reachable

nodes of TE is finite. Let R be the intersection of all those sets. It is easy to show

that R itself contains the set of reachable nodes of TE; it is minimal in the sense

that it is contained in all such sets. We call R the set of reachable nodes of TE; we

call a node in R a reachable node. Informally, reachable nodes correspond to parts

of an expression that should be intelligible to a viewer.

Let TE be a derivation tree with root r and a set of reachable nodes R. The

graph induced by TE on R must be a tree rooted at r, and not a forest (otherwise,

let R′ be the set of nodes in the connected component that contains r; R′ is a set
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that contains the set of reachable nodes in TE, contradicting the minimality of R).

We call this tree the tree of reachable nodes, and use TR
E to denote it.

2.1.2.2 Patterns

The definition of a pattern extends that of an expression with the addition of an

atomic symbol, 2. Informally, 2 will appear in parts of a pattern that correspond to

unintelligible parts of the associated expression. Formally, Let Pat be a set, defined

inductively as follows:

1. (Atomic elements or Atoms:) Bits,Keys, {2} ⊆ Pat.

2. (Non-Atomic elements:)

(a) (The Pairing Rule:) If M,N ∈ Pat then (M,N) ∈ Pat. We say that

(M,N) is directly derived from M and N .

(b) (The Encryption Rule:) If M ∈ Pat and K ∈ Keys, then {M}K ∈

Pat. We say that {M}K is directly derived from M .

We call the elements of Pat patterns. We define the length of a pattern and the

equality of patterns as strings of symbols in a similar manner to the respective

definitions for expressions. As there, we associate a derivation tree TP with each

pattern P , and can show that two patterns are identical as strings of symbols iff

their respective derivation trees are identical.

To map expressions to patterns via their respective derivation trees, we will

need an appropriate notion of tree isomorphism. Let T1, T2 be finite, rooted, ordered
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trees with node sets V1, V2 and roots r1 ∈ V1, r2 ∈ V2, respectively. T1, T2 are said

to be isomorphic as rooted, ordered trees if there exists a bijection ϕ : V1 → V2 such

that:

1. ϕ(r1) = r2.

2. For all v ∈ V1, (u1, . . . , uk) are the (ordered) children of v in T1 iff (ϕ(u1), . . . , ϕ(uk))

are the (ordered) children of ϕ(v) in T2.

ϕ is said to be an isomorphism of T1, T2 as rooted, ordered trees.

Let TE be the derivation tree of an expression E, VE its node set, R ⊆ VE

its set of reachable nodes, and TR
E the tree of reachable nodes of E. Let TP be the

derivation tree of a pattern P , VP its node set. We say that expression E has a

pattern P if there exists a ϕ : R→ VP such that:

1. ϕ is an isomorphism of TR
E , TP as rooted, ordered trees.

2. For all v ∈ R,

(a) if v is labeled with a bit, then ϕ(v) is labeled with an identical bit.

(b) if v is labeled with a key, then ϕ(v) is labeled with an identical key.

(c) if v is labeled (M,N), then ϕ(v) is labeled (M ′, N ′).

(d) if v is labeled {M}K and there exists a u ∈ R labeled K, then ϕ(v) is

labeled {M ′}K .

(e) if v is labeled {M}K and there does not exist a u ∈ R labeled K, then

ϕ(v) is labeled 2.
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The corresponding definition of [AR02] amounts to a walk of TR
E and TP that enforces

the above constraints.

We note that the pattern P associated with each expression E is unique. To

see this, notice that the uniqueness of TE implies a unique set of reachable nodes R,

which implies a unique TR
E ; TR

E can then easily be shown to be mapped to a unique

TP under ϕ above, which, in turn, guarantees a unique P . The converse is not true,

however; every pattern has infinitely many expressions that are mapped to it.

2.1.2.3 Equivalence

We proceed with the notion of expression equivalence. Informally, we require

that the derivation trees of patterns corresponding to equivalent expressions be

isomorphic up to key renaming. For i ∈ {1, 2}, let Pi be the pattern of expression

Ei, with a derivation tree TPi
over VPi

. We say that E1 is equivalent to E2, and

write E1
∼= E2, iff there exists a ϕ : VP1 → VP2 and a permutation σ on Keys such

that:

1. ϕ is an isomorphism of TP1 , TP2 as rooted, ordered trees.

2. For all v ∈ VP1 ,

(a) if v is labelled with a bit, then ϕ(v) is labeled with an identical bit.

(b) if v is labeled K, then ϕ(v) is labeled with σ(K).

(c) if v is labeled (M,N), then ϕ(v) is labeled (M ′, N ′).

(d) if v is labeled {M}K , then ϕ(v) is labeled {M ′}σ(K).
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(e) if v is labeled 2, then ϕ(v) is labeled 2.

Composing the definition of the pattern associated with an expression with

the definition of expression equivalence, we obtain the following property of the

equivalence relation.

Claim 2.1.1. For i ∈ {1, 2}, let Ei be an expression with a derivation tree TEi
, a set

of reachable nodes REi
and an induced tree of reachable nodes T

REi
Ei

. Then E1
∼= E2

iff there exist a ϕ : RE1 → RE2 and a permutation σ on Keys such that:

1. ϕ is an isomorphism of T
RE1
E1

, T
RE2
E2

as rooted, ordered trees.

2. For all v ∈ RE1,

(a) if v is labeled with a bit, then ϕ(v) is labeled with an identical bit.

(b) if v is labeled K, then ϕ(v) is labeled with σ(K).

(c) if v is labeled (M,N), then ϕ(v) is labeled (M ′, N ′).

(d) if v is labeled {M}K and there exists a u ∈ RE1 labeled K, then ϕ(v) is

labeled {M ′}σ(K) and ϕ(u) is labeled σ(K).

(e) if v is labeled {M}K and there does not exist a u ∈ RE1 labeled K, then

ϕ(v) is labeled {M ′}K′ and there does not exist a u′ ∈ RE2 labeled K ′.

We sketch the (mostly technical) proof here. For i ∈ {1, 2}, let Pi be the pattern

of Ei, and let ϕi : REi
→ VPi

be as in the definition of a pattern. For the only if

part, let ψ : VP1 → VP2 and σ a permutation on Keys, witness the equivalence

of E1, E2. Then ϕ∗ : RE1 → RE2 such that ϕ∗(v) = ϕ−1
2 (ψ(ϕ1(v))) and σ∗ = σ
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are with properties as required in the claim. For the if part, let ϕ∗ : RE1 → RE2

and σ a permutation on Keys be with properties as specified in the claim. Then

ψ : VP1 → VP2 such that ψ(v) = ϕ2(ϕ
∗(ϕ−1

1 (v))) and σ = σ∗ witness the equivalence

of E1, E2.

2.1.2.4 Properties captured by the formal semantics

We conclude with a brief discussion of some ramifications of the formal seman-

tics we have seen in this section. Our intention is twofold: to point out definitional

choices made in the formal setting, and to highlight aspects that need to be ad-

dressed in the computational setting as well. We observe that under the above

definitions, the encryption operator seeks to:

• “Preserve data privacy”, as seen in the equivalence {0}K ∼= {1}K . Informally,

a ciphertext conceals the underlying plaintext.

• “Conceal plaintext repetitions”, as seen in the equivalence ({0}K , {0}K) ∼=

({0}K , {1}K). Informally, an adversary, given two ciphertexts, cannot tell

whether their underlying plaintexts are identical or not.

• “Conceal key repetitions”, as seen in the equivalence ({0}K1 , {1}K1)
∼= ({0}K7 , {1}K8).

Informally, an adversary, given two ciphertexts, cannot tell whether they were

generated with the same encryption key or not.

• “Conceal plaintext length”, as seen in the equivalence {0}K ∼= {(0, (1, 0))}K .

Informally, the ciphertext conceals the length of the underlying plaintext.
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The definitions of the semantics can be modified to accommodate relaxations of

the above properties. For example, the semantics can be made sensitive to different

plaintext lengths, by introducing an atomic pattern symbol 2n for each size n and

modifying the definition of equivalence appropriately. We stress that the results

of [AR02] and ours can be modified to tolerate such changes.

2.1.3 A Fixpoint Characterization of the Set of Reachable Nodes

The set of reachable nodes of TE for some expression E was defined in Sec-

tion 2.1.2.1 in set-intersection terms. Here, we characterize that set in terms of the

least-fixpoint of an associated operator, OE. Moreover, we show that the fixpoint

can be computed by a applying the operator to its own output a number of times

at most |E|.

Let S be a finite set, and let 2S be the set of all subsets of S. A function O :

2S → 2S is said to be monotonic if for all A,B ∈ 2S, A ⊆ B implies O(A) ⊆ O(B).

A set A ⊆ 2S is said to be a fixpoint of O : 2S → 2S if O(A) = A; A is said to be

the least fixpoint of O if A is a fixpoint of O and for all fixpoints B of O, A ⊆ B.

The following is a weak form of a theorem due to Tarski [Tar55]. For a gen-

eral treatment of Lemma 2.1.2 and Lemma 2.1.3 see [Llo87, Section 1.5]; for an

interesting account of related results, see [LN84].

Lemma 2.1.2. Let S be a finite set, O : 2S → 2S a monotonic function. Then O

has a least fixpoint, denoted lfp(O). Furthermore,

lfp(O) =
⋂ {

X|X ∈ 2S, O(X) ⊆ X
}
.
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Proof. Let A =
⋂ {

X|X ∈ 2S, O(X) ⊆ X
}
.

We first show that O(A) ⊆ A. Let X ∈ 2S be such that O(X) ⊆ X. Clearly

A ⊆ X. By the monotonicity of O, O(A) ⊆ O(X), and so O(A) ⊆ X. It follows

that O(A) ⊆
⋂ {

X|X ∈ 2S, O(X) ⊆ X
}

= A.

Next, we show that A ⊆ O(A). We just proved that O(A) ⊆ A. By the

monotonicity of O, O(O(A)) ⊆ O(A). Therefore O(A) ∈
{
X|X ∈ 2S, O(X) ⊆ X

}
.

By the definition of A, it follows that A ⊆ O(A).

Putting it all together, we conclude that A is a fixpoint of O.

Let B ∈ 2S be any fixpoint of O. Then B ∈
{
X|X ∈ 2S, O(X) ⊆ X

}
. By the

definition of A, it follows that A ⊆ B. A is thus the least fixpoint of O.

Let S be a finite set, O : 2S → 2S a monotonic function. The powers of O are

defined inductively as follows:

O0 = ∅

Oi = O(Oi−1) for all i ∈ N+

We give a characterization of lfp(O) in terms of the powers of O.

Lemma 2.1.3. Let S be a finite set, O : 2S → 2S a monotonic function. Then there

exists an i ≤ |S| such that for all j ≥ i, Oj = lfp(O).

Proof. First note that for all i,

Oi ⊆ lfp(O). (2.1)

This can be shown by induction: clearly, O0 = ∅ ⊆ lfp(O); as for the step, Oi =
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O(Oi−1) ⊆ O(lfp(O)) ⊆ lfp(O) by the induction hypothesis, the monotonicity of O,

and the definition of a fixpoint of O.

Next, observe that for all i,

Oi ⊆ Oi+1. (2.2)

This can be shown again by induction: O0 = ∅ ⊆ O1; Oi = O(Oi−1) ⊆ O(Oi) =

Oi+1, by the induction hypothesis and the monotonicity of O. Using this property,

we can now show that for all j ≥ i,

Oi ⊆ Oj. (2.3)

This, by induction on j: clearly, for j = i, Oi ⊆ Oj; furthermore, Oi ⊆ Oj−1 ⊆ Oj

by the induction hypothesis and Equation 2.2.

Now note that for all i,

if Oi = Oi+1, then Oi = lfp(O). (2.4)

To see this, observe that Oi is a fixpoint of O because Oi = Oi+1 = O(Oi), and so

lfp(O) ⊆ Oi by the definition of a least fixpoint. But by Equation 2.1 we know that

for all i, Oi ⊆ lfp(O). It follows that Oi = lfp(O).

Assume towards a contradiction that there does not exist an i, 0 ≤ i ≤ |S|,

such that Oi = Oi+1. Then we can use induction to show that for all 0 ≤ k ≤ |S|+1,∣∣Ok
∣∣ ≥ k. For the base case, observe that |O0| = |∅| = 0. For the step, note that

Ok−1 6= Ok by our assumption, and that Ok−1 ⊆ Ok by Equation 2.2. It follows that∣∣Ok
∣∣ ≥ ∣∣Ok−1

∣∣ + 1. By the induction hypothesis, we have that
∣∣Ok−1

∣∣ ≥ (k − 1),
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and so
∣∣Ok

∣∣ ≥ k, completing the induction step. But then
∣∣O|S|+1

∣∣ ≥ |S| + 1 — a

contradiction, as S contains only |S| elements.

We conclude that there exists an i, 0 ≤ i ≤ |S|, such that Oi = Oi+1. By Equa-

tion 2.4, we thus have that

Oi = lfp(O). (2.5)

Let j be such that j ≥ i. ThenOi ⊆ Oj ⊆ lfp(O) = Oi by Equation 2.3, Equation 2.1

and Equation 2.5, respectively. It follows that Oj = lfp(O).

Let E be an expression, TE its derivation tree over a set of nodes VE with a

root rE ∈ VE. Let OE : 2VE → 2VE be defined as follows:

OE(A) =



u ∈ VE

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

either:

(a) u = rE ; or

(b) ∃v ∈ A labeled (M,N) with a left child u in TE (labeled M); or

(c) ∃v ∈ A labeled (M,N) with a right child u in TE (labeled N); or

(d) ∃v ∈ A labeled {M}K with a child u in TE (labeled M)

and ∃w ∈ A labeled K.


It is easy to show that OE is monotonic over sets in 2S. Furthermore, we have

the following:

Lemma 2.1.4. For all A ∈ 2VE , OE(A) ⊆ A iff A is a set that contains the set of

reachable nodes of TE.

Proof. Assume OE(A) ⊆ A. First observe that rE ∈ OE(A) ⊆ A, and so rE ∈ A.

Furthermore, if v ∈ A is labeled (M,N) and has a child u in TE, then u ∈ OE(A) ⊆
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A, and so u ∈ A. Similarly, if v ∈ A is labeled {M}K , has a child u in TE and

∃w ∈ A labeled K, then u ∈ OE(A) ⊆ A, and so u ∈ A. It follows that A is a set

that contains the set of reachable nodes of TE.

Conversely, assume A is such a set, and let u be an element of OE(A). Then

either:

• u = rE. Clearly u ∈ A.

• ∃v ∈ A labeled (M,N) with a child u in TE. As A contains the reachable

nodes of TE, u ∈ A.

• ∃v ∈ A labeled {M}K with a child u in TE, ∃w ∈ A labeled K. Again, A

contains the set of reachable nodes of TE, and so u ∈ A.

It follows that OE(A) ⊆ A.

Putting it all together:

Theorem 2.1.5 (A Fixpoint Characterization of the Set of Reachable Nodes). Let

E be an expression of length n, TE its derivation tree over VE, RE ⊆ VE the set of

reachable nodes. Then there exists an i ∈ N, 0 ≤ i ≤ n, such that for all j ≥ i,

Oj
E = lfp(OE) = RE.

Proof. Recall that |VE| ≤ n (see Section 2.1.1.2) and that OE : 2S → 2S is mono-
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tonic; we have that:

RE =
⋂ A

∣∣∣∣∣∣∣∣A ∈ 2VE ,
A contains the set of

reachable nodes of TE

 by def. of RE

=
⋂ {

A
∣∣A ∈ 2VE , OE(A) ⊆ A

}
by lemma 2.1.4

= lfp(O) by lemma 2.1.2

= Oj
E by lemma 2.1.3,

for any j and some particular i such that 0 ≤ i ≤ |VE| ≤ n and j ≥ i.

2.2 Computational Treatment of Symmetric Encryption

Here, we overview the computational treatment of symmetric encryption, fol-

lowing the formalization in [AR02] (for ease of reading our results in the context of

theirs). We begin by defining a computational encryption scheme, discuss a relevant

notion of security, and review methods of achieving such a notion under standard as-

sumptions. We then define computational “instantiations” of expressions, obtained

by replacing keys and the encryption operator in expressions with their counterparts

from an encryption scheme. We define semantics in terms of the computational in-

distinguishability of the instantiated expressions. Our definition of computational

instantiations of expressions recasts that of [AR02] in terms of the derivation trees

of the expressions.

We remark that notions of computational indistinguishability defined in this

section and used in this chapter all consider probabilistic, polynomial-time adver-

saries. Contrast with indistinguishability by polynomial-sized circuit families, used
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in Chapter 3, and with indistinguishability by probabilistic, polynomial-time al-

gorithms taking non-uniform “advice”, used in Chapter 4; see discussion in Sec-

tion 4.1.1. Throughout this section, recall that a function ε : N→ R is negligible if

for every constant c ∈ N there exists an ηc ∈ N such that for all η ∈ N such that

η > ηc, ε(η) ≤ η−c.

2.2.1 Computational Encryption, Security and Tools

2.2.1.1 Encryption Schemes

Let {0, 1}∗ denote the set of all finite binary strings and let |x| denote the length

of x ∈ {0, 1}∗. An encryption scheme Π = (K, E ,D) with a security parameter η ∈ N

consists of three polynomial-time algorithms, as follows:

• K, the key generation algorithm, is a probabilistic algorithm that takes a se-

curity parameter η ∈ N (provided in unary—denoted by 1η) and returns a

key k ∈ {0, 1}∗. We write k
R← K(1η), thinking of k as being drawn from

the probability distribution induced by K(1η) on {0, 1}∗. When used as a

set, we let K(1η) denote the support of that distribution. For ease of exposi-

tion, we make the simple assumption that K distributes keys decently, that is,

Pr[k, k′
R← K(1η) : k 6= k′] is non-negligible (as a function of η).

• E , the encryption algorithm, is a probabilistic algorithm that takes a key k ∈

K(1η) for some η ∈ N and a plaintext x ∈ {0, 1}∗ and returns a ciphertext

c ∈ {0, 1}∗∪{⊥}. As before, we write c
R← Ek(x), thinking of c as being drawn

from the probability distribution induced by Ek(x) on {0, 1}∗. When used as
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a set, we let Ek(x) denote the support of that distribution.

It is common for encryption schemes to restrict the set of strings they are

willing to encrypt; having the encryption algorithm return ⊥ is intended to

allow capturing such restrictions. Call a plaintext x ∈ {0, 1}∗ restricted for

some η ∈ N if for all k ∈ K(1η), Ek(x) = {⊥}. Call x ∈ {0, 1}∗ unrestricted for

η ∈ N if for all k ∈ K(1η), Ek(x) 63 ⊥. We require that x is either restricted

or unrestricted for any given η. Use PlainΠ[η] to denote the set of unrestricted

plaintexts for any η ∈ N. We further require that for any η ∈ N, if x ∈ {0, 1}∗

is unrestricted for η, then all x′ ∈ {0, 1}∗ such that |x′| = |x| are unrestricted

for η.

In addition, we insist that the length of a ciphertext c ∈ Ek(x) depend only on

η and |x| when k ∈ K(1η), for any x and η.

• D, the decryption algorithm, is a deterministic algorithm that takes a key

k ∈ K(1η) for some η ∈ N and a ciphertext c ∈ {0, 1}∗ and returns some

x ∈ {0, 1}∗ ∪ {⊥}. We write x← Dk(c).

Having the decryption algorithm output ⊥ is intended to reflect a rejection of

the given ciphertext.

We require that Π be correct ; that is, for all η ∈ N, for all k ∈ K(1η) and for all

x ∈ PlainΠ[η], Dk(Ek(x)) = x.
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2.2.1.2 Type-0 Security

We consider a notion of security for symmetric encryption that is variation

on the standard notion of indistinguishability under chosen-plaintext attacks (IND-

CPA security, for short) of [GM84, BDJR97], following [AR02]. Informally, and

recalling our discussion of Section 2.1.2.4, the standard notion “preserves privacy”

and “conceals plaintext repetitions”, while the strengthened version “conceals key

repetitions” and “conceals message lengths” as well; the strengthening is necessary

for proving that the formal semantics is computationally sound (see [AR02] for

discussion).

Let Π = (K, E ,D) be an encryption scheme, η ∈ N a security parameter and

A an adversary with access to two oracles (denoted A(·),(·)). Define:

Adv0
Π[η](A) = Pr[k, k′

R← K(1η) : AEk(·),Ek′ (·)(1η) = 1]

− Pr[k
R← K(1η) : AEk(0),Ek(0)(1η) = 1],

where Ek(·) is an oracle that returns c
R← Ek(m) on input m, and Ek(0) is an oracle

that returns c
R← Ek(0) on input m. We say that Π is Type-0 secure (or IND-CPA,

Key-repetition Concealing, Length Concealing secure) [AR02] if for every probabilis-

tic, polynomial-time adversary A, Adv0
Π[η](A) is negligible (as a function of η).

2.2.1.3 Pseudorandom Function Families and Obtaining Type-0 Se-

curity

Let x
R← S denote the sampling of x from a set S under the uniform distri-

bution. Let η ∈ N, l, L be polynomials, Funcl(η)→L(η) the set of all functions from

39



{0, 1}l(n) to {0, 1}L(n), F ⊆ Funcl(η)→L(η) a family of functions indexed by {0, 1}η,

and A an adversary with access to an oracle (denoted A(·)). Define:

Advprf
F [η](A) = Pr[k

R← {0, 1}η : AFk(·)(1η) = 1]

− Pr[f
R← Funcl(η)→L(η) : Af(·)(1η) = 1],

where Fk(·) is an oracle that returns Fk(x) on input x, and f(·) is an oracle that

returns f(x) on input x. We say that F is pseudorandom [GGM86] if for every

probabilistic, polynomial time adversary A, Advprf
F [η](A) is negligible (as a function

of η).

Bellare et. al. [BDJR97] show that the CBC and CTR modes of encryption

with underlying pseudorandom function families are IND-CPA secure. For a de-

scription of how these results extend to achieve type-0 security, see [AR02].

2.2.2 Computational Semantics

Here, we define a computational semantics for the language of expressions

of Section 2.1.1. We first associate with each expression an ensemble of distributions

over bit-strings; each distribution is obtained by “instantiating” the expression with

keys and an encryption operation provided by a computational encryption scheme,

using a particular security parameter. We then define expression indistinguishability

in terms of the computational indistinguishability of the associated ensembles.
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2.2.2.1 Instantiating Expressions

Let E be an expression and let TE be its derivation tree over VE. Say that a key

K appears in E if there exists a node in TE labeled K or {M}K (for some expression

M). Let KeysE be the set of key symbols appearing in E. Let Π = (K, E ,D) be an

encryption scheme with a security parameter η ∈ N. For x1, . . . , xk ∈ {0, 1}∗ and a

tag t from some finite, fixed set of tags, let 〈x1, . . . , xk, t〉 denote an (arbitrary, fixed,

unambiguous, polynomial-time) encoding of x1, . . . , xk, t as a string over {0, 1}∗.

Define the following procedure:

SampleΠ[η](E)

1. For each K ∈ KeysE, let τ(K)
R← K(1η).

2. Assign a sampling label to each v ∈ VE, inductively, as follows:

(a) If v is labeled with a bit b, let its sampling label be 〈b, “bit”〉.

(b) If v is labeled with a key K, let its sampling label be 〈τ(K), “key”〉.

(c) If v is labeled (M,N), its left child in TE has a sampling label m and its

right child in TE has a sampling label n, then let the sampling label of v

be 〈m,n, “pair”〉 if m,n 6= ⊥, ⊥ otherwise.

(d) If v is labeled {M}K and its child in TE has a sampling label m, then let

the sampling label of v be 〈Eτ(K)(m), “ciphertext”〉 ifm 6= ⊥, ⊥ otherwise.

3. Output the sampling label of the root of TE.

Let [[E]]Π(η) denote the probability distribution induced by SampleΠ[η](E) on

{0, 1}∗∪⊥; let [[E]]Π denote the ensemble
{
[[E]]Π(η)

}
η∈N. We write x

R← D to indicate
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that x is sampled from a distributionD. To make our forthcoming definitions robust,

we require that Π is such that for every expression E, there exists an ηE ∈ N such

that for all η ≥ ηE and e
R← [[E]]Π(η), e ∈ PlainΠ[η].

2.2.2.2 Indistinguishability

For i ∈ {1, 2}, let Di = {Di(η)}η∈N be probability distribution ensembles, A

an algorithm. Define:

Advind
D1(η),D2(η)(A) = Pr[x

R← D1(η) : A(1η, x) = 1]

− Pr[x
R← D2(η) : A(1η, x) = 1].

We say that D1, D2 are indistinguishable, and write D1
c
≈ D2, if for every probabilis-

tic, polynomial time algorithm A, Advind
D1(η),D2(η)(A) is negligible (as a function of η).

(Once again, see Section 4.1.1 for comparison with notions of indistinguishability

used in the other chapters.)

Let E1, E2 be expressions. We say that E1, E2 are indistinguishable, and write

E1
Π

≈ E2, iff [[E1]]Π
c
≈ [[E2]]Π.

2.3 Relating the Treatments – Formal Encryption is Computation-

ally Complete

The soundness result of Abadi and Rogaway states that for acyclic expressions

E1, E2 and a Type-0 encryption scheme Π, E1
∼= E2 implies E1

Π

≈ E2. Here, we give a

necessary and sufficient condition for the converse, thereby tightly characterizing the

completeness aspect of the exposition. For any two acyclic expressions, the condition
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involves the admittance of an efficient test that distinguishes a ciphertext and the

key it was encrypted with, from a ciphertext and some random key, with a non-

negligible probability, when the plaintexts are drawn from the ensembles associated

with those expressions. Formally:

Definition 2.3.1 (Weak Key-Authenticity Test/s for Expressions). Let Π = (K, E ,D)

be an encryption scheme with a security parameter η ∈ N, let E1, E2 be acyclic ex-

pressions, A an algorithm. Define:

Advwka-exp
Π[η],E1,E2

(A)

= Pr[e
R← [[E1]]Π(η); k

R← K(1η); c
R← Ek(e) : A(1η, c, k) = 1]

− Pr[e
R← [[E2]]Π(η); k, k

′ R← K(1η); c
R← Ek(e) : A(1η, c, k′) = 1].

We say that Π admits a weak key-authenticity test for E1, E2 (WKA-EXP-(E1, E2)

test, for short), if there exists a probabilistic, polynomial-time algorithm A such

that Advwka-exp
Π[η],E1,E2

(A) is non-negligible (as a function of η).

We say that Π admits weak key-authenticity tests for expressions (WKA-EXP

tests, for short), if for all acyclic expressions E1 and E2, Π admits a weak key-

authenticity test for E1, E2. ♦

Our main result is the following:

Theorem 2.3.2 (The admittance of WKA-EXP tests is necessary and sufficient

for formal encryption to be computationally-complete). Let Π = (K, E ,D) be an

encryption scheme. Then for all acyclic expressions E1 and E2, E1
Π

≈ E2 implies

E1
∼= E2 iff Π admits weak key-authenticity tests for expressions.

We proceed with the proof below.
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2.3.1 Admittance of WKA-EXP Tests is Necessary for Formal En-

cryption to be Computationally-Complete

Here, we prove the only-if part of Theorem 2.3.2. Let E1, E2 be two acyclic ex-

pressions. Consider the expressions M1 = ({E1}K , K), M2 = ({E2}K , K ′) (without

loss of generality, assume K does not appear in E1, E2). M1 6∼= M2, so by the com-

pleteness assumption, we have thatM1 6
Π

≈M2. LetB be such that Advind
[[M1]]Π(η),[[M2]]Π(η)

(B)

is non-negligible. We use B to construct a WKA-EXP-(E1, E2) test A for Π. Define:

A(1η, c, k)
def
= B(1η, 〈〈c, “ciphertext”〉, 〈k, “key”〉, “pair”〉).

We have:

Advwka-exp
Π[η],E1,E2

(A)

= Pr[e
R← [[E1]]Π(η); k

R← K(1η); c
R← Ek(e) : A(1η, c, k) = 1]

− Pr[e
R← [[E2]]Π(η); k, k

′ R← K(1η); c
R← Ek(e) : A(1η, c, k′) = 1]

= Pr

e R← [[E1]]Π(η); k
R← K(1η); c

R← Ek(e) : B

1η,
〈〈c, “ciphertext”〉,

〈k, “key”〉, “pair”〉

 = 1



− Pr

e R← [[E2]]Π(η); k, k
′ R← K(1η); c

R← Ek(e) : B

1η,
〈〈c, “ciphertext”〉,

〈k′, “key”〉, “pair”〉

 = 1


= Pr[e

R← [[({E1}K , K)]]Π(η) : B(1η, e) = 1]

− Pr[e
R← [[({E2}K , K ′)]]Π(η) : B(1η, e) = 1]

= Pr[e
R← [[M1]]Π(η) : B(1η, e) = 1]− Pr[e

R← [[M2]]Π(η) : B(1η, e) = 1]

= Advind
[[M1]]Π(η),[[M2]]Π(η)

(B),
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where the second equality follows from the definition of A, and the third follows

from the definition of SampleΠ[η]. Then A is a weak key-authenticity test for E1, E2,

as required. This completes the necessity part of the proof.

2.3.2 Admittance of WKA-EXP Tests is Sufficient for Formal En-

cryption to be Computationally-Complete

Here, we prove the if part of Theorem 2.3.2. For j ∈ {1, 2}, let Ej be an acyclic

expression, TEj
its derivation tree over VEj

, rEj
∈ VEj

its root, REj
⊆ VEj

its set of

reachable nodes, T
REj

Ej
the tree of reachable nodes. Let η ∈ N be a security parameter

for Π and let e be a sample from either [[E1]]Π(η) or [[E2]]Π(η). We assume that η is

large enough so that e ∈ PlainΠ[η] (cf. Section 2.2.2.1). Let S = VE1 × VE2 × {0, 1}
∗

and let OE1,E2,e : 2S → 2S, TEST : 2S → {true, false} be defined as in Figure 2.1.

The powers of OE1,E2,e are defined as follows:

O0
E1,E2,e = ∅

Oi
E1,E2,e = OE1,E2,e(O

i−1
E1,E2,e) for all i ∈ N+

We note the following simple properties of OE1,E2,e and TEST. It is easy to ver-

ify that OE1,E2,e is monotonic. Also, observe that for all i, Oi
E1,E2,e ⊆ Oi+1

E1,E2,e, by in-

duction: the base case holds trivially; as for the step, Oi
E1,E2,e = OE1,E2,e(O

i−1
E1,E2,e) ⊆

OE1,E2,e(O
i
E1,E2,e) = Oi+1

E1,E2,e, by the hypothesis and the monotonicity of OE1,E2,e. Fi-

nally, note that for all A,B ∈ 2S such that A ⊆ B, if TEST(B) holds then TEST(A)

holds; it is also true that if TEST(A) does not hold, then TEST(B) does not hold.

We prove the contrapositive: we assume that E1 6∼= E2, and show that [[E1]]Π(η) 6
c
≈
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[[E2]]Π(η).

2.3.2.1 Intuition

We begin by sketching the main ideas behind the proof. Assume E1 6∼= E2. To

show that [[E1]]Π(η) 6
c
≈ [[E2]]Π(η), we consider an algorithm that simultaneously parses

its input e — a sample from either [[E1]]Π(η) or [[E2]]Π(η) — and expressions E1, E2,

attempting to construct ϕ, σ that bear witness to the equivalence of the expressions.

By the assumption, this attempt is bound to fail. We show that upon failure, the

algorithm has enough parsed information to predict the origin of the sample with a

non-negligible probability of success. In some cases, the prediction depends on an

application of a weak key-authenticity test for (particular, fixed) expressions to the

amassed information.

Specifically, the algorithm computes the powers of the operator OE1,E2,e, as

long as they satisfy the predicate TEST. Let i ∈ N. Let V i
E1

=
{
v1

∣∣(v1, ·, ·) ∈ Oi
E1,E2,e

}
,

V i
E2

=
{
v2

∣∣(·, v2, ·) ∈ Oi
E1,E2,e

}
. Let j ∈ {1, 2}. Let T

V i
Ej

Ej
denote the subtree in-

duced by V i
Ej

on TEj
. Let OEj

be the operator from the fixpoint characterization

of the set of reachable nodes of TEj
(cf. Theorem 2.1.5). We show that as long as

TEST(Oi
E1,E2,e) holds, it is the case that:

1. V i+1
E1

= Oi+1
E1

and V i+1
E2

= Oi+1
E2

;

2. there exist ϕ, σ consistent with the requirements of Claim 2.1.1 when restricted

to T
V i

E1
E1

, T
V i

E2
E2

, V i
E1

, and V i
E2

(instead of TR
E1

, TR
E2

, RE1 , and RE2).

If TEST does not fail by the max(|E1| , |E2|)’s power of OE1,E2,e, then VE1 , VE2
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OE1,E2,e(A) =

(u1, u2, y)
∈ S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

either:
(a) u1 = rE1 , u2 = rE2 , y = e; or
(b) ∃(v1, v2, x) ∈ A such that:

v1 is labeled (M,N) and has a left child u1 in TE1 ,
v2 is labeled (M ′, N ′) and has a left child u2 in TE2

and x is of the form 〈y, z, “pair”〉; or
(c) ∃(v1, v2, x) ∈ A such that:

v1 is labeled (M,N) and has a right child u1 in TE1 ,
v2 is labeled (M ′, N ′) and has a right child u2 in TE2

and x is of the form 〈y, z, “pair”〉; or
(d) ∃(v1, v2, x) ∈ A and ∃(w1, w2, z) ∈ A such that:

v1 is labeled {M}K and has a child u1 in TE1 ,
v2 is labeled {M ′}K′ and has a child u2 in TE2 ,
x is of the form 〈c, “ciphertext”〉,
w1 is labeled K,
w2 is labeled K ′,
z is of the form 〈k, “key”〉
and y = Dk(c).


TEST(A) =

true if for all (v1, v2, x) ∈ A, either:
(a) v1 is labeled with b ∈ Bits and v2 is labeled b; or
(b) v1 is labeled K, v2 is labeled K ′ and for all (u1, u2, y) ∈ A,

u1 is labeled K iff u2 is labeled K ′; or
(c) v1 is labeled (M,N) and v2 is labeled (M ′, N ′); or
(d) v1 is labeled {M}K , v2 is labeled {M ′}K′ and for all

(u1, u2, y) ∈ A, u1 is labeled K iff u2 is labeled K ′.
false otherwise.

Figure 2.1: Definitions of OE1,E2,e : 2S → 2S, TEST : 2S → {true, false} .
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achieve the sets of reachable nodes of TE1 , TE2 , respectively, by Item 1 above, and

so E1
∼= E2 by Item 2 above, contradicting our assumption. We conclude that TEST

must fail on some lower power of OE1,E2,e; let i∗ ∈ N be the lowest such power.

We use Oi∗
E1,E2,e to make a prediction, based on the reason TEST fails. Here, we

illustrate a case that calls for the use of a weak key-authenticity test for expressions.

Assume TEST fails because there exist (v1, v2, x), (u1, u2, y) ∈ Oi∗
E1,E2,e such that v1

is labeled {M}K , u1 is labeled K, v2 is labeled {M ′}K′ , and u2 is labeled K ′′. An

inductive argument on the powers of our operator shows that x, y are the sampling

labels of either v1, u1, respectively, or v2, u2, respectively, depending on the origin

of e. Let x = 〈c, “ciphertext”〉, y = 〈k, “key”〉. In the first case, c is an encryption

of a sample from [[M ]]Π(η) with the key k; in the second case, c is an encryption of

a sample from [[M ′]]Π(η) with some key, and k is a random key. The WKA-EXP-

(M,M’) test on c and k distinguishes these cases with a non-negligible probability

of success.

We conclude the proof by noting that the above procedure is efficient.

2.3.2.2 The Parsing Lemma

We begin by showing that the powers of OE1,E2,e effectively parse e in a manner

consistent with the structures of E1 or E2.

Lemma 2.3.3 (Parsing lemma). Fix j ∈ {1, 2}. If e
R← [[Ej]]Π(η), then for all i

and for all (u1, u2, y) ∈ Oi
E1,E2,e, y is the sampling label that was assigned to uj by

SampleΠ[η](Ej) in the computation of e.

48



Proof. Assume e
R← [[Ej]]Π(η). Proceed by induction on i. The base case holds

vacuously (as O0
E1,E2,e = ∅). As for the step, assume (u1, u2, y) ∈ Oi+1

E1,E2,e; then

either:

• u1 = rE1 , u2 = rE2 , y = e, as in part (a) of the definition of OE1,E2,e. By the

definition of SampleΠ[η] on Ej, e is indeed the sampling label assigned to uj

while computing e.

• ∃(v1, v2, x) ∈ Oi
E1,E2,e, vj is labeled (M,N), uj is its left child in TEj

and x is

of the form 〈y, z, “pair”〉, as in part (b) of the definition of OE1,E2,e. By the

induction hypothesis, x is the sampling label given to vj by SampleΠ[η](Ej)

while computing e. By the definition of SampleΠ[η] on Ej, y is indeed the

sampling label given to uj while computing e. The symmetric case (as in part

(c) of the definition of OE1,E2,e) is similar.

• ∃(v1, v2, x), (w1, w2, z) ∈ Oi
E1,E2,e such that vj is labeled {M}K , uj is its child

in TEj
, x is of the form 〈c, “ciphertext”〉, wj is labeled K, z is of the form

〈k, “key”〉 and y = Dk(c), as in part (d) of the definition of OE1,E2,e. By the

induction hypothesis, x and z are the sampling labels assigned to vj, wj by

SampleΠ[η](Ej), respectively, while computing e. As the sampling algorithm

consistently assigns computational keys across a derivation tree, k must have

been the key used to encrypt the sampling label of uj when computing c. By

the definition of SampleΠ[η] on Ej, y then is indeed the sampling label given

to uj while computing e.

�
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2.3.2.3 The Isomorphism Lemma

As we proceed, we would like to see what TEST “tells us” when applied to

a power of OE1,E2,e. The following notation, referring to various restrictions of a

power of OE1,E2,e, is instrumental. For all i ∈ N let:

V i
E1

=
{
v1

∣∣(v1, ·, ·) ∈ Oi
E1,E2,e

}
V i

E2
=

{
v2

∣∣(·, v2, ·) ∈ Oi
E1,E2,e

}
ϕi =

{
(v1, v2)

∣∣(v1, v2, ·) ∈ Oi
E1,E2,e

}
Keysi

E1
=

{
K

∣∣∃(v1, ·, ·) ∈ Oi
E1,E2,e such that v1 is labeled K

}
Keysi

E2
=

{
K

∣∣∃(·, v2, ·) ∈ Oi
E1,E2,e such that v2 is labeled K

}
σi =

(K1, K2)

∣∣∣∣∣∣
∃(v1, v2, ·) ∈ Oi

E1,E2,e such that v1 is

labeled K1 and v2 is labeled K2


In addition, for j ∈ {1, 2}, A ⊆ VEj

, let TA
Ej

denote the subgraph induced by A on

TEj
. We claim the following:

Lemma 2.3.4 (Isomorphism lemma). For all i, ϕi : V i
E1
→ V i

E2
is an isomorphism

of T
V i

E1
E1

and T
V i

E2
E2

as rooted, ordered trees. Furthermore, if TEST(Oi
E1,E2,e) holds,

then σi : Keysi
E1
→ Keysi

E2
is a bijection, and for all v ∈ V i

E1
,

1. if v is labeled with a bit, then ϕi(v) is labeled with an identical bit.

2. if v is labeled K, then ϕi(v) is labeled with σi(K).

3. if v is labeled (M,N), then ϕi(v) is labeled (M ′, N ′).

4. if v is labeled {M}K and there exists a u ∈ V i
E1

labeled K, then ϕi(v) is labeled

{M ′}σi(K) and ϕi(u) is labeled σi(K).
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5. if v is labeled {M}K and there does not exists a u ∈ V i
E1

labeled K, then ϕi(v)

is labeled {M ′}K′ and there does not exist a u′ ∈ V i
E2

labeled K ′.

Note the similarity to Claim 2.1.1.

Proof. We prove that for all i, ϕi : V i
E1
→ V i

E2
is an isomorphism of T

V i
E1

E1
and T

V i
E2

E2

as rooted, ordered trees; the rest of the claim follows in a straightforward manner

from the definition of TEST.

First, we show that ϕi is a function, by induction. The base case holds vacu-

ously. As for the step, assume (u1, u2), (u1, u
′
2) ∈ ϕi. Then there exist (u1, u2, y), (u1, u

′
2, y

′) ∈

Oi
E1,E2,e. u1 is either the root of TE1 or has a unique parent v in TE1 . We have that

either:

• u1 = rE1 , u2 = u′2 = rE2 (and y = y′ = e) as in part (a) of the definition of

OE1,E2,e.

• There exists a (v1, v2, x) ∈ Oi−1
E1,E2,e, related to (u1, u2, y) as in part (b) of

the definition of OE1,E2,e, and there exists a (v1, v
′
2, x

′) ∈ Oi−1
E1,E2,e, related to

(u1, u
′
2, y

′) as in part (b) of the definition of OE1,E2,e. In particular, v1 has u1

as a left child in TE1 , and v2, v
′
2 have u1, u

′
2 as left children, respectively, in TE2 .

By the induction hypothesis, ϕi−1 is a function and so v2 = v′2. It follows that

u2 = u′2. The symmetric case (related to part (c) of the definition of OE1,E2,e)

is similar.

• There exist (v1, v2, x), (w1, w2, z) ∈ Oi−1
E1,E2,e, related to (u1, u2, y) as in part (d)

of the definition of OE1,E2,e, and there exist (v1, v
′
2, x

′), (w′
1, w

′
2, z

′) ∈ Oi−1
E1,E2,e
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related to (u1, u
′
2, y

′) as in part (d) of the definition of OE1,E2,e. In particular,

v1 has u1 as a child in TE1 , and v2, v
′
2 have u2, u

′
2 as their respective children in

TE2 . By the induction hypothesis, ϕi−1 is a function and so v2 = v′2. It follows

that u2 = u′2.

The argument for ϕi being one-to-one is completely symmetric.

All that is left to be shown is that v has children (u1, u2, . . . , uk) in T
V i

E1
E1

iff

ϕi(v) has children (ϕi(u1), ϕ
i(u2), . . . , ϕ

i(uk)) in T
V i

E2
E2

. For the only-if part, assume

that both v1, labeled (M,N), and its left child u1 are in T
V i

E1
E1

. By definition, v1, u1 ∈

V i
E1

and so there exist (v1, v2, x), (u1, u2, y) ∈ Oi
E1,E2,e. By definition, ϕi(v1) = v2,

ϕi(u1) = u2, v2, u2 ∈ V i
E2

and are also in T
V i

E2
E2

; we have to show that u2 is the left

child of v2. As (u1, u2, y) ∈ Oi
E1,E2,e, there exists a (v1, v

′
2, x

′) ∈ Oi−1
E1,E2,e related to

it as in part (b) of the definition of OE1,E2,e. In particular, u2 is the left child of v′2.

Now Oi−1
E1,E2,e ⊆ Oi

E1,E2,e, therefore (v1, v
′
2, x

′) ∈ Oi
E1,E2,e. ϕ

i is a function, and so it

must be the case that v2 = v′2. u2 is thus shown to be the left child of v2. Similar

arguments establish the only-if part for a node labeled (M,N) and its right child;

and for a node labeled {M}K and its child. The if part is symmetric. �

2.3.2.4 The Reachable-Sets Lemma

We now relate the powers of OE1,E2,e to the powers of the operators OE1 , OE2 ,

whose fixpoints correspond to the sets of reachable nodes of TE1 , TE2 , respectively.

For j ∈ {1, 2}, let OEj
: 2VEj → 2VEj be the operator from the fixpoint characteriza-

tions of the set of reachable nodes of TEj
(cf. Theorem 2.1.5).
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Lemma 2.3.5 (Reachable-Sets Lemma). For all i ∈ N, if TEST(Oi
E1,E2,e) holds,

then V i+1
E1

= Oi+1
E1

and V i+1
E2

= Oi+1
E2

.

Proof. We prove that for all i ∈ N, if TEST(Oi
E1,E2,e) holds, then V i+1

E1
= Oi+1

E1
; the

proof for V i+1
E2

= Oi+1
E2

is similar.

We proceed with induction on i. For the base case, note that TEST(O0
E1,E2,e)

holds vacuously and that V 1
E1

= O1
E1

= rE1 . As for the step, assume that the claim

holds for (i − 1), and assume that TEST(Oi
E1,E2,e) holds. Note that Oi−1

E1,E2,e ⊆

Oi
E1,E2,e, and so TEST(Oi−1

E1,E2,e) holds as well.

To show that V i+1
E1
⊆ Oi+1

E1
, let u1 ∈ V i+1

E1
. Then there exists a (u1, u2, y) ∈

Oi+1
E1,E2,e. It is the case that either:

• u1 = rE1 , u2 = rE2 , y = e as in part (a) of the definition of OE1,E2,e. But rE1

is also an element of Oi+1
E1

, by the definition of OE1 .

• ∃(v1, v2, x) ∈ Oi
E1,E2,e, related to (u1, u2, y) as in part (b) of the definition

of OE1,E2,e. In particular, v1 is labeled (M,N) and has u1 as a left child in

TE1 . Now v1 ∈ V i
E1

= Oi
E1

by the induction hypothesis, and so u1 ∈ Oi+1
E1

by

the definition of OE1 . The symmetric case (as in part (c) of the definition of

OE1,E2,e) is similar.

• ∃(v1, v2, x), (w1, w2, z) ∈ Oi
E1,E2,e, related to (u1, u2, y) as in part (d) of the

definition of OE1,E2,e. In particular, v1 is labeled {M}K and has u1 as a child

in TE1 , w1 is labeled K. Now v1, w1 ∈ V i
E1

= Oi
E1

by the induction hypothesis,

and so u1 ∈ Oi+1
E1

by the definition of OE1 .

We now show that Oi+1
E1
⊆ V i+1

E1
. Let u1 ∈ Oi+1

E1
. Then either:
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• u1 = rE1 , as in part (a) of the definition of OE1 . By part (a) of the definition

of OE1,E2,e, (rE1 , rE2 , e) ∈ Oi+1
E1,E2,e, and so u1 = rE1 ∈ V i+1

E1
.

• ∃v1 ∈ Oi
E1

such that v1 is labeled (M,N) and has u1 as a left child in TE1 , as in

part (b) of the definition of OE1 . By the induction hypothesis, v1 ∈ V i
E1

. Then

∃(v1, v2, x) ∈ Oi
E1,E2,e. As TEST(Oi

E1,E2,e) holds, it must be the case that v2 is

labeled (M ′, N ′) and so has a left child u2 in TE2 . Now by the Parsing Lemma,

x is the sampling label of either v1 or v2, depending on the origin of e. At any

rate, x is of the form 〈y, z, “pair”〉. By part (b) of the definition of OE1,E2,e,

(u1, u2, y) ∈ Oi+1
E1,E2,e (where u2 is the left child of v2 in TE2). It follows that

u1 ∈ V i+1
E1

. The symmetric case (related to part (c) of the definition of OE1)

is similar.

• ∃v1, w1 ∈ Oi
E1

such that v1 is labeled {M}K and has u1 as a left child in

TE1 , w1 is labeled K, as in part (d) of the definition of OE1 . By the induc-

tion hypothesis, v1, w1 ∈ V i
E1

, and so ∃(v1, v2, x), (w1, w2, z) ∈ Oi
E1,E2,e. As

TEST(Oi
E1,E2,e) holds, it must be the case that v2 is labeled {M ′}K′ and w2 is

labeled K ′. By the Parsing Lemma, x, z are the sampling labels, respectively,

of either v1, w1 or v2, w2, depending on the origin of e. In both cases, x and

z must be of the forms 〈c, “ciphertext”〉 and 〈k, “key”〉, respectively, by the

definition of the sampling procedure. By part (d) of the definition of OE1,E2,e,

(u1, u2,Dk(c)) ∈ Oi+1
E1,E2,e (where u2 is the child of v2 in TE2). It follows that

u1 ∈ V i+1
E1

.

We conclude that V i+1
E1

= Oi+1
E1

. �
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2.3.2.5 Constructing a Distinguisher

We now turn to the main part of our argument. Informally, we use the Reachable-

Sets Lemma and the fixpoint characterization of the set of reachable nodes to show

that if TEST(Oi′
E1,E2,e) holds for a large enough i′ (linear in the sizes of E1, E2), then

V i′
E1
, V i′

E2
achieve the sets of reachable nodes of TE1 , TE2 , respectively. At that point,

the Isomorphism Lemma guarantees that ϕi′ , σi′ witness the equivalence of E1, E2,

in contradiction to our assumption that E1 6∼= E2. Therefore, there must exist an

i∗ ≤ i′ for which TEST(Oi∗
E1,E2,e) fails. We use Oi∗

E1,E2,e and the Parsing Lemma to

construct a distinguisher of [[E1]]Π(η), [[E2]]Π(η).

Formally, recall our assumption that E1 6∼= E2. Towards a contradiction, fur-

ther assume that for all i ∈ N, TEST(Oi
E1,E2,e) holds. Then for all i ∈ N, V i

E1
= Oi

E1

and V i
E2

= Oi
E2

by the Reachable-Sets Lemma (and a straightforward verification

of the case where i = 0). Let |E1| = n1 and let i1 ≤ n1 be such that for all

j ≥ i1, O
j
E1

= RE1 , as guaranteed by the fixpoint characterization of RE1 (cf. Theo-

rem 2.1.5); similarly, for |E2| = n2, let i2 ≤ n2 be such that for all j ≥ i2, O
j
E2

= RE2 .

Without loss of generality, assume i1 ≤ i2. Then for all j ≥ i1, V
j
E1

= Oj
E1

= RE1

(i.e., V j
E1

fixes). But for all such j, V j
E1

is bijected onto V j
E2

via ϕj by the Isomorphism

Lemma; it is also the case that ϕj is an extension of ϕi1 (as Oi
E1,E2,e ⊆ Oj

E1,E2,e for

all i ≤ j). It follows that for all j ≥ i1, V
j
E2

is fixed too, and so V j
E2

= RE2

(cf. Lemma 2.1.2 and Theorem 2.1.5). We conclude that for i12 = min(i1, i2), we

have that V i12
E1

= RE1 and V i12
E2

= RE2 . But then ϕi12 and σi12 (when the latter

is properly extended to a bijection on Keys) witness the equivalence of E1, E2 by
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the Isomorphism Lemma, in contradiction to our assumption.

It follows that if E1 6∼= E2, there must exist an i ≤ min(|E1| , |E2|) such that

TEST(Oi
E1,E2,e) fails. Let i∗ be the smallest such i. We argue that given Oi∗

E1,E2,e, we

have enough information to tell, with non-negligible probability of success, which

of [[E1]]Π(η), [[E2]]Π(η) e originated from. To that effect, we describe a procedure

Predict, that takes η (in unary) and Oi∗
E1,E2,e as inputs, and outputs 1 if it believes

e
R← [[E1]]Π(η), 0 otherwise. The behavior of Predict depends on the reason for which

TEST fails on Oi∗
E1,E2,e, as described below. For every possible reason and conse-

quent action, we analyze Predict’s advantage in distinguishing the above-mentioned

ensembles; the case discussed in Item 7 (and the symmetric one in Item 8) is where

our “thunder” lies — this is where Predict uses a weak key-authenticity test for two

specific expressions, admitted by Π.

The possible reasons for TEST to fail on Oi∗
E1,E2,e, and the corresponding ac-

tions by Predict (with their chances of success) are the following:

1. ∃(v1, v2, x) ∈ Oi∗
E1,E2,e such that v1 is labeled with a bit but v2 is not. If

e
R← [[E1]]Π(η), then x is the sampling label of v1 by the Parsing Lemma, and

is of the form 〈b, “bit”〉 by the labeling of v1 and the definition of Sample.

If e
R← [[E2]]Π(η), then x is the sampling label of v2 and is not of the form

〈b′, “bit”〉. Let Predictcase-1 be 1 if x = 〈b, “bit”〉, 0 otherwise. Clearly,

Advind
[[E1]]Π(η),[[E2]]Π(η)

(Predictcase-1) = 1.

2. ∃(v1, v2, x) ∈ Oi∗
E1,E2,e such that v1 is labeled with a bit b and v2 with b̄ (i.e.,

negated b). As in case (1), we let Predictcase-2 be 1 if x = 〈b, “bit”〉, 0 otherwise.
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Here too we have Advind
[[E1]]Π(η),[[E2]]Π(η)

(Predictcase-2) = 1.

3. ∃(v1, v2, x) ∈ Oi∗
E1,E2,e such that v1 is labeled with a key but v2 is not. As in

case (1), we let Predictcase-3 be 1 if x = 〈k, “key”〉, 0 otherwise. Once again, it

is clear that Advind
[[E1]]Π(η),[[E2]]Π(η)

(Predictcase-3) = 1.

4. ∃(v1, v2, x), (u1, u2, y) ∈ Oi∗
E1,E2,e such that v1 and u1 are labeledK, v2 is labeled

K ′ and u2 is labeled K ′′ (where K ′ 6= K ′′). If e
R← [[E1]]Π(η), then x and y are

the sampling labels of v1 and u1, respectively, by the Parsing Lemma. Since

both are labeled with the same key, Sample computes k
R← K(1η) and assigns

to both nodes a sampling label 〈k, “key”〉. If e
R← [[E2]]Π(η), then x and y

are the sampling labels of v2 and u2, respectively. But since they are labeled

with distinct formal keys, Sample computes k, k′
R← K(1η) and assigns to one

a sampling label 〈k, “key”〉 and to the other a sampling label 〈k′, “key”〉. Let

Predictcase-4 be 1 if x = y = 〈k, “key”〉, 0 otherwise. We have:

Advind
[[E1]]Π(η),[[E2]]Π(η)

(Predictcase-4)

= Pr[e R← [[E1]]Π(η);B ← Oi∗
E1,E2,e : Predictcase-4(1η, B) = 1]

− Pr[e R← [[E2]]Π(η);B ← Oi∗
E1,E2,e : Predictcase-4(1η, B) = 1]

= Pr[k R← K(1η) : k = k]− Pr[k, k′
R← K(1η) : k = k′]

= 1− Pr[k, k′
R← K(1η) : k = k′]

= Pr[k, k′
R← K(1η) : k 6= k′],

which is non-negligible in η as K distributes keys decently.

5. ∃(v1, v2, x), (u1, u2, y) ∈ Oi∗
E1,E2,e such that v2 and u2 are labeledK, v1 is labeled

K ′ and u1 is labeled K ′′ (where K ′ 6= K ′′). As in case (4), we let Predictcase-5
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be 1 if x = 〈k, “key”〉 and y = 〈k′, “key”〉 where k 6= k′, 0 otherwise. As before,

we have that Advind
[[E1]]Π(η),[[E2]]Π(η)

(Predictcase-5) is non-negligible (as a function of

η).

6. ∃(v1, v2, x) ∈ Oi∗
E1,E2,e such that v1 is labeled (M,N) but v2 is not labeled

(M ′, N ′). As in case (1), we let Predictcase-6 be 1 if x = 〈m,n, “pair”〉, 0

otherwise. Clearly, we have that Advind
[[E1]]Π(η),[[E2]]Π(η)

(Predictcase-6) = 1.

7. ∃(v1, v2, x), (u1, u2, y) ∈ Oi∗
E1,E2,e such that v1 is labeled {M}K , v2 is labeled

{M ′}K′ , u1 is labeled K and u2 is labeled K ′′. If e
R← [[E1]]Π(η), then x and

y are the sampling labels of v1 and u1, respectively, by the Parsing Lemma.

Because of their labeling and the consistent assignment of keys by Sample

across a derivation tree, x must be of the form 〈c, “ciphertext”〉, y of the form

〈k, “key”〉 where k
R← K(1η), and c is the encryption of some string with k. If

e
R← [[E2]]Π(η), then x and y are the sampling labels of v2 and u2, respectively.

Because of their labeling and the definition of Sample, x must be of the form

〈c, “ciphertext”〉, y of the form 〈k, “key”〉 where k
R← K(1η), and c is the

encryption of some string with k′ where k′
R← K(1η).

Let A be the WKA-EXP-(M,M ′) test admitted by Π. We let Predictcase-7 be
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1 if A(1η, c, k) = 1, 0 otherwise. We have:

Advind
[[E1]]Π(η),[[E2]]Π(η)

(Predictcase-7)

= Pr[e R← [[E1]]Π(η);B ← Oi∗
E1,E2,e : Predictcase-7(1η, B) = 1]

− Pr[e R← [[E2]]Π(η);B ← Oi∗
E1,E2,e : Predictcase-7(1η, B) = 1]

= Pr[e R← [[M ]]Π(η); k
R← K(1η); c R← Ek(e) : A(1η, c, k) = 1]

− Pr[e R← [[M ′]]Π(η); k, k′
R← K(1η); c R← Ek′(e) : A(1η, c, k) = 1]

= Advwka-exp
Π[η],M,M ′(A),

which is non-negligible (as a function of η) by the definition of the WKA-EXP

test for expressions.

8. ∃(v1, v2, x), (u1, u2, y) ∈ Oi∗
E1,E2,e such that v1 is labeled {M}K′ , v2 is labeled

{M ′}K , u1 is labeled K ′′ and u2 is labeled K. As in case (7), we have x =

〈c, “ciphertext”〉 and y = 〈k, “key”〉. Let A be the WKA-EXP-(M,M ′) test

admitted by Π, and let Predictcase-8 be 1 if A(1η, c, k) = 0, 0 otherwise. As

in case (7), we get that Advind
[[E1]]Π(η),[[E2]]Π(η)

(Predictcase-8) is non-negligible (as a

function of η).

Having covered all possible cases, we conclude that Advind
[[E1]]Π(η),[[E2]]Π(η)

(Predict) is

non-negligible (as a function of η).

Putting it together, a distinguisher DE1,E2 for [[E1]]Π(η), [[E1]]Π(η) will act as

follows:

DE1,E2(1
η, e)

B ← ∅;
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while (TEST(B) holds)

B ← OE1,E2,e(B);

Output Predict(1η, B).

Note that:

Advind
[[E1]]Π(η),[[E2]]Π(η)

(DE1,E2)

= Pr[e
R← [[E1]]Π(η) : DE1,E2(1

η, e) = 1]

− Pr[e
R← [[E2]]Π(η) : DE1,E2(1

η, e) = 1]

= Pr[e
R← [[E1]]Π(η);B ← Oi∗

E1,E2,e : Predict(1η, B) = 1]

− Pr[e
R← [[E2]]Π(η);B ← Oi∗

E1,E2,e : Predict(1η, B) = 1]

= Advind
[[E1]]Π(η),[[E2]]Π(η)

(Predict),

which is non-negligible (as a function of η). Finally, it is simple to verify that D

runs in time polynomial in η. This completes the proof of the sufficiency part of our

main theorem.

2.4 How Weak Key-Authenticity Relates to Other Cryptographic

Notions

Here, we relate the notion of weak key-authenticity with other relevant cryp-

tographic notions. We begin by strengthening the notion of the admittance of weak

key-authenticity tests for expressions; the strengthened flavor considers the admit-

tance of a single, all-purpose test, hereby referred to as the weak key-authenticity

test, that distinguishes any ciphertext and the key it was encrypted with from any
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ciphertext and a random key, with a non-negligible probability. We stress that the

strengthened test is defined in terms that are independent of the formal language

of the preceding sections. We compare the strengthened flavor with the notions of

confusion-freedom and authenticated encryption, previously discussed in the liter-

ature in the context of a computational-completeness result for formal symmetric-

encryption [AJ01, MW04a]. Specifically, we show that the requirement that an

encryption scheme admits a weak key-authenticity test is strictly weaker than the

requirement that it be confusion-free, as defined there (which, in turn, is enough

to show it is strictly weaker than authenticated encryption as well). To that effect,

we present an encryption scheme that admits a weak key-authenticity test but is

not confusion-free. The scheme we present is also Type-0. It therefore satisfies

the soundness criterion of [AR02], our completeness criterion, but not the previous

completeness criterion of [MW04a]. The notions we present and the methods used

to achieve the admittance of a weak key-authenticity test should be of independent

interest.

Informally, confusion-freedom captures the ability of a decryption algorithm

to distinguish a ciphertext and the key it was encrypted with from a ciphertext

and a random key with almost full certainty. In contrast, the weak key-authenticity

test is required to distinguish the two with merely a non-negligible probability. We

will separate the notions in a strong sense, pertaining directly to the gap in their

required distinguishing certainties (as opposed to pertaining to the placement of the

distinguisher—inside or outside the decryption algorithm).

We begin with formal definitions of the notions at hand. Confusion-freedom
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is defined as it appears in the completeness result of [MW04a]; our proofs can be

modified to accommodate the version of [AJ01] as well.

Definition 2.4.1 (Confusion-Freedom). Let Π = (K, E ,D) be an encryption scheme,

η ∈ N a security parameter, and D[η] = {D1[η], . . . , Dl[η]} a series of finite sets of

distributions. For 1 ≤ i ≤ l, define:

Advcf
Π[η],D[η],i = Pr[k, k′

R← K(1η);x
R← Di[η] : Dk′(Ek(x)) 6= ⊥].

We say that Π is confusion-free (CF for short) if for any 1 ≤ i ≤ l, Advcf
Π[η],D[η],i is

negligible (as a function of η). ♦

Next, we define two auxiliary notions that will provide a “middle ground” for

comparing WKA-EXP tests with CF.

Definition 2.4.2 (Strong Key-Authenticity Test, Weak Key-Authenticity Test).

Let Π = (K, E ,D) be an encryption scheme, η ∈ N a security parameter. Let

P1,P2 (hereby referred to as plaintext generators) be probabilistic algorithms that

take a security parameter η (provided in unary), and for sufficiently large η always

return an x ∈ PlainΠ[η]; we write x
R← Pj(1

η) for j ∈ {1, 2}, thinking of x as being

drawn from the probability distribution induced by Pj(1
η) on {0, 1}∗. Let A be an

algorithm. Define:

Advtst
Π[η],P1[η],P2[η](A)

= Pr[x
R← P1(1

η); k
R← K(1η); c

R← Ek(x) : A(1η, c, k) = 1]

− Pr[x
R← P2(1

η); k, k′
R← K(1η); c

R← Ek(x) : A(1η, c, k′) = 1],
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where tst ∈ {ska,wka}. We say that Π admits a strong (resp., weak) key-authenticity

test, SKA (resp., WKA) for short, if there exists a probabilistic, polynomial-time al-

gorithm A such that for all probabilistic, polynomial-time algorithms P1,P2,

Advska
Π[η],P1[η],P2[η](A) (resp., Advwka

Π[η],P1[η],P2[η](A)) is negligibly close to 1 (resp., is

non-negligible) as a function of η. ♦

As for the definition of integrity of plaintext security (INT-PTXT for short),

a flavor of authenticated encryption, we refer the reader to [BN00, KY00] and

to [MW04a].

The following diagram depicts relationships between our notions of interest.

INT-

PTXT
−→ CF −→

Admittance

of an

SKA test

−→

6←−

Admittance

of a

WKA test

−→

Admittance

of

WKA-EXP tests

In the above, A −→ B means that an encryption scheme that meets notion A must

also meet notion B; we call such a relationship an implication. A 6−→ B means that

an encryption scheme that meets notion A does not necessarily meet notion B; we

call such a relationship a separation.

The implications in the diagram are mostly straightforward. For INT-PTXT −→

CF, refer to [MW04a]. For CF −→ SKA, let A(1η, c, k) be an algorithm that outputs

1 if Dk(c) 6= ⊥, 0 otherwise. By noticing that for any x ∈ PlainΠ[η], Dk(Ek(x)) 6= ⊥

by the correctness of Π, and by letting D[η] be {P2(1
η)}, the implication follows.

SKA −→WKA is trivial. As for WKA −→WKA-EXP tests, we let the WKA test
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serve as a WKA-EXP test for any pair of expressions. As we assumed that for any

expression E and for large enough η, e
R← [[E]]Π(η) is such that e ∈ PlainΠ[η], the

implication follows.

The rest of the section is devoted to the separation of WKA from SKA. To that

end, we show an encryption scheme that admits a WKA test but does not admit

an SKA test. We use a standard construction based on a pseudorandom function

family, with an added “weak redundancy”. To simplify the exposition, we use a

single, constant bit as redundancy; see the end of the section for a generalization.

Let F be a pseudorandom family of functions with a security parameter η ∈ N,

key domain {0, 1}η, domain {0, 1}l(η) and range {0, 1}L(η) (where l, L are polynomials

in η); let ε be a negligible function such that Advprf
F [η](A) ≤ ε(η) for any probabilistic,

polynomial-time algorithm A. We use x1x2 · · ·xm to denote the individual bits of

a string x ∈ {0, 1}m. We use ◦ to denote the concatenation operator on strings of

bits, ⊕ to denote the bitwise XOR operator on strings of bits of equal length.

Define an encryption scheme Π∗ = (K∗, E∗,D∗) with a security parameter

η ∈ N as follows:

K∗(1η) E∗k (x = x1x2 · · ·xL(η)−1) D∗k(〈y = y1y2 · · · yL(η), r〉)

k
R← {0, 1}η; r

R← {0, 1}l(η); x′ ← y ⊕ Fk(r);

Output k. y ← (x ◦ 1)⊕ Fk(r); Output x′1x
′
2 · · ·x′L(η)−1.

Output 〈y, r〉.

Note that PlainΠ∗[η] = {0, 1}L(η)−1. Also note that E∗ and D∗ can deduce η from k

(i.e., η = |k|).

Π∗ can easily be shown to be IND-CPA secure based on the pseudorandomness
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of F . For a proof, see [GGM86], or simply think of Π∗ as a degenerate version of

the randomized CTR mode, and rely on [BDJR97]. Using the results of [AR02], it

can further be shown to be Type-0. We have that:

Theorem 2.4.3. Π∗ admits a WKA test.

Proof. Let A be the following algorithm:

A(1η, 〈y = y1y2 · · · yL(η), r〉, k)

x′ ← y ⊕ Fk(r);

If x′L(η) is 1

Output 1;

Otherwise

Output 0.

We show that A is a WKA test for Π∗. (Note that 1η is redundant as an input to

A here, as A takes k as input and |k| = η.)

Let P1,P2 be probabilistic, polynomial-time algorithms that take η ∈ N (in

unary) as input and output x ∈ PlainΠ[η] for large enough η. Then for such η,

Advwka
Π∗[η],P1[η],P2[η](A)

= Pr[x R← P1(1η); k R← K∗(1η); c R← E∗k (x) : A(1η, c, k) = 1]

− Pr[x R← P2(1η); k, k′
R← K∗(1η); c R← E∗k (x) : A(1η, c, k′) = 1]

= Pr[x R← P1(1η); k R← {0, 1}η ; r R← {0, 1}l(η) ;x′ ← (x ◦ 1)⊕ Fk(r)⊕ Fk(r) : x′L(η) = 1]

− Pr[x R← P2(1η); k, k′
R← {0, 1}η ; r R← {0, 1}l(η) ;x′ ← (x ◦ 1)⊕ Fk(r)⊕ Fk′(r) : x′L(η) = 1]

The first term of the last equality above clearly equals 1. Let q(η) denote the second

term; we bound it here via a reduction to the pseudorandomness of F . Let B be
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the following oracle algorithm:

Bg(1η)

x
R← P2(1

η);

r
R← {0, 1}l(η);

y ← (x ◦ 1)⊕ g(r);

k′
R← {0, 1}η;

b← A(1η, 〈y, r〉, k′);

Output b.

Now:

Advprf
F [η](B)

= Pr[k R← {0, 1}η : BFk(·)(1η) = 1]− Pr[f R← Funcl(η)→L(η) : Bf(·)(1η) = 1]

= Pr

 x
R← P2(1η); k, k′

R← {0, 1}η ; r R← {0, 1}l(η) ;

x′ ← (x ◦ 1)⊕ Fk(r)⊕ Fk′(r)
: x′L(η) = 1



− Pr

 x
R← P2(1η); f R← Funcl(η)→L(η); k′ R← {0, 1}η ;

r
R← {0, 1}l(η) ;x′ ← (x ◦ 1)⊕ f(r)⊕ Fk′(r)

: x′L(η) = 1


= q(η)− 1

2
,

where the second term above is 1
2

because x′L(η) is the outcome of XORing a truely

random bit with some other bit. By the pseudorandomness of F , we have that

Advprf
F [η](B) ≤ ε(η) where ε(η) is a negligible function. Note that it must also be the

case that Advprf
F [η](B) ≥ −ε(η) for any A, otherwise an algorithm with an advantage

smaller than −ε(η) can be converted into an algorithm with an advantage greater
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than ε(η) by flipping its output. We conclude that:

1

2
− ε(η) ≤ q(η) ≤ 1

2
+ ε(η).

Putting it all together, we get that:

1

2
− ε(η) ≤ Advwka

Π∗[η],P1[η],P2[η](A) ≤ 1

2
+ ε(η),

which is a non-negligible quantity.

Theorem 2.4.4. Π∗ does not admit an SKA test.

Proof. Let A be a probabilistic algorithm that runs in time t, a function of the

size of its input. Let A(a1, a2, . . . ;w) denote the outcome of running A on inputs

a1, a2, . . . and randomness w. Note that the length of w is bounded by t.

Let U be an algorithm that takes η ∈ N (in unary) as input and outputs a

random, uniformly-selected element of {0, 1}L(η)−1. We have:

Advska
Π∗[η],U [η],U [η](A)

= Pr

 x
R← {0, 1}L(η)−1 ; k

R← {0, 1}η ; r
R← {0, 1}l(η) ;

w
R← {0, 1}t(η) ; y ← (x ◦ 1)⊕ Fk(r)

: A(1η, 〈y, r〉, k;w) = 1



− Pr

 x
R← {0, 1}L(η)−1 ; k, k′

R← {0, 1}η ; r
R← {0, 1}l(η) ;

w
R← {0, 1}t(η) ; y ← (x ◦ 1)⊕ Fk(r)

: A(1η, 〈y, r〉, k′;w) = 1

 ,
where t is a polynomial in η.

Let S1 and A1 ⊆ S1 denote the sample space and event, respectively, depicted

by the first term above. Let S2 and A2 ⊆ S2 be defined similarly with respect to

the second term.
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Let (x0, k0, r0, w0) ∈ A1. Note that for any k ∈ {0, 1}η, if there exists an

x ∈ {0, 1}L(η)−1 such that (x ◦ 1)⊕ Fk(r0) = (x0 ◦ 1)⊕ Fk0(r0), then it must be the

case that (x, k, k0, r0, w0) ∈ A2 (because in this case, A, in the second experiment,

runs on the same input and randomness as in the first experiment). This happens

when x◦1 = (x0◦1)⊕Fk0(r0)⊕Fk(r0), which must happen for at least
(

1
2
− ε(η)

)
·2η

of the keys k ∈ {0, 1}η; otherwise, an adversary that queries its oracle on r0, XORs

the answer with (x0 ◦ 1) and with Fk0(r0), and outputs 1 if the last bit of the result

is different than 1, 0 otherwise—breaks the pseudorandomness of F .

For a given (x0, k0, r0, w0) ∈ A1, we’ve just described a way of counting at least(
1
2
− ε(η)

)
·2η tuples in A2. We would like to argue that for a distinct (x1, k1, r1, w1) ∈

A1, we would be counting different tuples in A2 by employing the same method.

This is clear if k1 6= k0 or r1 6= r0 or w1 6= w0. As for the case that k1 = k0, r1 =

r0, w1 = w0, we would be double-counting a tuple iff

(x0 ◦ 1)⊕ Fk0(r0)⊕ Fk(r0) = (x1 ◦ 1)⊕ Fk1(r1)⊕ Fk(r1) = (x1 ◦ 1)⊕ Fk0(r0)⊕ Fk(r0),

which happens iff x1 = x0.

We conclude that |A2| ≥
(

1
2
− ε(η)

)
·2η ·|A1|. We also know that |S2| = 2η ·|S1|.

Therefore:

Advska
Π∗[η],U [η],U [η](A) =

|A1|
|S1|
− |A2|
|S2|
≤

(
1

2
+ ε(η)

)
· |A1|
|S1|
≤ 1

2
+ ε(η),

which is not negligibly close to 1.

Finally, we note that our construction can be easily generalized to one that

admits a WKA test with an advantage as small as desired, as follows. For any
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c ∈ N+, let Π∗
c be a variation on Π∗ that adds the bit 1 with probability 1

2
+ 1

2c ,

0 with probability 1
2
− 1

2c , as redundancy upon encryption (instead of the fixed 1).

Our proofs easily extend to show that Π∗
c admits a WKA test with advantage at

least 1
2c − ε(η).
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Chapter 3

The Efficiency of Generic Commitments

Here, we demonstrate lower-bounds on the number of times a one-way permu-

tation needs to be invoked (as a “black-box”) in order to construct statistically-

binding commitments, as outlined in Section 1.2. The chapter is organized as

follows. In Section 3.1, we define black-box constructions of statistically-binding

schemes based on one-way permutations, and review tools and results used in our

proof. In Section 3.2 we prove our lower bounds. In Section 3.3 we compare our

bounds with the efficiency of known constructions.

3.1 Definitions and Tools

Our definitions in this chapter use the notion of computational indistinguisha-

bility by polynomial-sized circuits; contrast with indistinguishability by probabilis-

tic, polynomial-time algorithms used in Chapter 2, and with the indistinguishabil-

ity by probabilistic, polynomial-time algorithms taking non-uniform “advice”, used

in Chapter 4; see discussion in Section 4.1.1.

3.1.1 Preliminaries

Let Af denote a circuit A with oracle access to the function f . A function

f : {0, 1}n → {0, 1}n is (S, ε)-one-way if for every circuit A of size at most S we
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have

Pr
x

[Af (f(x)) ∈ f−1(f(x))] ≤ ε.

To reduce the number of parameters, we will call a function S-hard if it is (S, 1/S)-

one way.

Let Πt denote the set of all permutations over {0, 1}t. We will rely on the

following result:

Theorem 3.1.1 ([GGKT05]). For sufficiently large t, a random π ∈ Πt is 2t/5-hard

with probability at least 1− 2−2t/2
.

Let a ◦ b denote the concatenation of strings a and b. For t < n, let Πt,n denote the

subset of Πn such that π ∈ Πt,n iff π(a ◦ b) = π̂(a) ◦ b for some π̂ ∈ Πt (i.e., the last

n− t bits of the input are fixed). A corollary of Theorem 3.1.1 is that if t = 5 logS,

then for any n > t, a randomly chosen π ∈ Πt,n is S-hard with high probability;

more formally:

Corollary 3.1.2 ([GGKT05]). For sufficiently large t and n > t, a random π ∈ Πt,n

is 2t/5-hard with probability at least 1− 2−2t/2
.

We say that two distributions X ,Y are (S, ε)-indistinguishable, and write

X
(S,ε)
≈ Y , if for every circuit Dist of size at most S, we have∣∣∣∣ Pr

x∈X
[Dist(x) = 1]− Pr

x∈Y
[Dist(x) = 1]

∣∣∣∣ ≤ ε.

3.1.2 Commitment Schemes

A commitment scheme for m-bit messages is defined by a pair of probabilistic,

interactive algorithms (S,R) representing a sender and a receiver, respectively. The
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inputs to S are a message M ∈ {0, 1}m and a random tape s, while the input to R is

a random tape r. (S,R) describe a commitment phase of the interaction between the

parties; call C = 〈S (M ; s),R(r)〉 a commitment to M . Without loss of generality,

we assume that the commitment phase is followed by a generic decommitment phase,

in which the sender reveals a message a random tape to the receiver; call these a

decommitment. We say that C as above can be decommitted to a message M ′ if

there exists a string s′ such that 〈S (M ′; s′),R(r)〉 = C.

Let 〈S (M ; s),R∗(r)〉 denote the view of a (possibly malicious) receiver R∗

following an interaction with the sender on the specified inputs; this view consists

of the receiver’s randomness and the messages it receives from the sender during the

interaction (when the receiver makes queries to an oracle, the view also includes the

answers it receives from this oracle). For a message M and receiver R∗, define

〈S (M),R∗〉 def
=

{
s, r

R← {0, 1}∗ : 〈S (M ; s),R∗(r)〉
}

;

i.e., this denotes the view of R∗ following an interaction with the honest sender who

is committing to message M .

We now define the security of a commitment scheme; we deal here with

statistically-binding commitments, as reflected by the definitions below.

Definition 3.1.3. Let (S,R) be a commitment scheme for m-bit messages. We say

that (S,R) is (Sh, εh)-hiding if for every circuit R∗ of size at most Sh and for all

M0,M1 ∈ {0, 1}m, we have

〈S (M0),R∗〉
(Sh,εh)
≈ 〈S (M1),R∗〉.
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We say that (S,R) is εb-binding if

Pr
r

 ∃ distinct M,M ′ ∈ {0, 1}m , s, s′ such that

〈S (M ′; s′),R(r)〉 = 〈S (M ; s),R(r)〉

 ≤ εb.

Note that if (S,R) is εb-binding then even an all-powerful sender cannot commit to a

message M , then later decommit to a different message M ′, except with probability

(at most) εb. We say that (S,R) is εb-binding for an honest sender if for all M ∈

{0, 1}m, we have

Pr
s,r

 ∃M ′ ∈ {0, 1}m \M, s′ such that

〈S (M ′; s′),R(r)〉 = 〈S (M ; s),R(r)〉

 ≤ εb.

Roughly speaking, such a scheme satisfies the following property: if the sender is

honest during the commitment phase (and uses a pre-fixed message M and truly

random coins s) then the sender cannot later decommit to a different message M ′

except with probability (at most) εb. If εb = 0 in either of the above definitions, we

say the scheme is perfectly binding.

Finally, we say that (S,R) is (Sh, εh, εb)-secure (resp., secure for an honest

sender) if (S,R) is (Sh, εh)-hiding and εb-binding (resp., binding for an honest

sender). ♦

We may now define a (weak black-box [RTV04]) construction of a commitment

scheme based on one-way permutations.

Definition 3.1.4. A construction of a commitment scheme for m-bit messages

based on one-way permutations is a pair of oracle algorithms (S(·),R(·)) such that,

for all π ∈ Πn, the resulting (Sπ,Rπ) is a commitment scheme for m-bit messages.
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We say that (S(·),R(·)) is a construction which is (Sp, Sh, εh, εb)-secure (resp., secure

for an honest sender) if (Sπ,Rπ) is εb-binding (resp., binding for an honest sender)

for every π ∈ Πn, and furthermore for every π ∈ Πn that is Sp-hard, (Sπ,Rπ) is

(Sh, εh)-hiding. ♦

3.1.3 Pairwise-Independent Function Families

Let H be a family of functions mapping m-bit strings to m′-bit strings. We

assume that the following can be done in time polynomial in m: (1) selecting a

function h ∈ H uniformly at random; (2) given h ∈ H and x ∈ {0, 1}m, evaluating

h(x); and (3) given h∗, deciding whether h∗ ∈ H or not. We say that H is a

pairwise-independent hash family [CW79] if for any distinct x1, x2 ∈ {0, 1}m and

any y1, y2 ∈ {0, 1}m
′
we have:

Pr
h∈H

[h(x1) = y1 ∧ h(x2) = y2] = 2−2m′
.

Constructions satisfying the above requirements are well known.

3.2 Lower Bounds on the Efficiency of Generic Commitment

Let (S(·),R(·)) be an (Sp, Sh, εh, εb)-secure construction of a commitment scheme

for m-bit messages based on one-way permutations. For εb > 0, we prove that un-

less S and R (combined) make Ω ((m− log(1 + 2m · εb))/ logSp) queries to their

oracle, there exists (constructively) a commitment scheme (S̄, R̄) secure for an hon-

est sender which does not require any oracle access at all (i.e., the scheme is secure

unconditionally). For εb = 0, we show a similar result but where the implication
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holds unless S alone makes Ω (m/ logSp) queries to its oracle. In either case, by

applying a result of Impagliazzo and Luby [IL89] (cf. also Lemma 3.2.1 below), this

implies the unconditional existence of a one-way function, which in turn can be used

to give an unconditional construction of a commitment scheme [Nao91].

We begin with an informal discussion of the key ideas behind our proof, fo-

cusing for ease of exposition on the case where (S(·),R(·)) is perfectly binding. As

in [GGKT05], our starting point is that a random π ∈ Πt,n (for t = Θ(logSp)) is

Sp-hard with all but negligible probability (cf. Corollary 3.1.2). Consider the non-

interactive scheme (S ′,R′) in which S ′ locally runs (S(·),R(·)), simulating a random

π ∈ Πt,n for S,R,1 and then sends the resulting view of R to R′.

It is quite straightforward to show that (S ′,R′) still satisfies hiding. Binding,

however, may not necessarily hold (even when S ′ is honest during the commitment

phase). To see the issue, assume S ′ commits to a message M using coins s for S(·),

coins r for R(·), and coins y to simulate the permutation. Let C denote the resulting

view of R, and let P denote the set of t-bit query/answer prefixes made by S during

the computation. To claim binding, we would need to argue that there does not exist

a message M ′ 6= M along with coins s′, y′, with an associated set of query/answer

prefixes P ′, that produce an identical view C (note that the coins r are fixed, since

r is explicit in C). The most we can claim, though, is that this is true as long as

P ′ = P , since binding is only guaranteed to hold when the permutation π is fixed,

but not when the sender can “change” the permutation after the fact.

1This can be done easily by selecting random t-bit answer-prefixes for any new t-bit query-

prefixes, as needed; see details in the proof of Theorem 3.2.2.
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What we can show is that a weaker form of (honest sender) binding holds for

(S ′,R′). Observe that for any possible P ′ (as defined above), there is at most one

message M ′ to which the sender can successfully decommit by sending M ′, s′, y′ with

associated query/answer set P ′; this is because (S(·),R(·)) is perfectly binding for

any fixed permutation. But this implies that there are at most 22t|P ′| = 22tq different

messages to which the sender can successfully decommit, where q is the total number

of queries made by S (note that the oracle queries/answers of R are already fixed

by the view C). Although this clearly violates binding, it does limit the space of

possible messages to which the sender can decommit, as long as 22tq < 2m.

We now show how to “bootstrap” from the weak form of binding achieved by

(S ′,R′) to construct a non-interactive scheme (S̄, R̄) that achieves “full” binding

(for an honest sender) with noticeable probability. Sender S̄, on input a message

M , proceeds as follows: it first chooses a function h uniformly at random from a

pairwise-independent hash family mapping m-bit strings to m-bit strings. It then

computes the views C1 = S ′(M), C2 = S ′(h(M)), and sends C1 ◦ C2 ◦ h to R̄.

Hiding for this scheme follows easily via a standard hybrid argument and relying

on the fact that (S ′,R′) is hiding. As for binding (for an honest sender), we have

already seen that C1 can be decommitted to a set S1 of at most 22tq < 2m different

messages, and similarly C2 can be decommitted to a set S2 of at most 22tq different

messages. For binding not to hold, there must exist an M ′ 6= M with M ′ ∈ S1 and

h(M ′) ∈ S2. Using the pairwise-independence of h, we can argue that this occurs

with only “small” probability over choice of h. Thus, binding for (S̄, R̄) (for an

honest sender) holds with noticeable probability.
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3.2.1 Honest-Sender Commitment Implies One-Way Functions

We begin by showing that the existence of a commitment scheme secure for

honest senders implies the existence of a one-way function. Although the result can

be derived from [IL89], we give a simple and more direct proof here.

Lemma 3.2.1. Let (S,R) be a commitment scheme for m-bit messages which is

(Sh, εh, εb)-secure for an honest sender. Let SS , SR be the sizes of the circuits com-

puting S,R, respectively. Then there exists an (Sh−SS +SR−O(m), εh +2εb)-one-

way function.

Proof. Let S∗ = Sh − SS + SR − O(m) and ε∗ = εh + 2εb. Define a function f

via f(M, s, r)
def
= 〈S (M ; s),R(r)〉. We claim that f is (S∗, ε∗)-one-way. Assume the

contrary. Then there exists a circuit B of size at most S∗ such that

Succowf
B,f

def
= Pr

M,s,r
[B(f(M, s, r)) ∈ f−1(f(M, s, r))] > ε∗.

We use B to construct a circuit A that violates the hiding property of (S,R). On

input (M0,M1, C), where C is either a commitment to M0 or M1, A computes

(M ′, s′, r′)← B(C) and checks whether f(M ′, s′, r′)
?
= C and whether M ′ ?

= M0. If

both hold, A outputs 0; otherwise, it outputs 1. Note that |A| = |B| + SS + SR +

O(m) ≤ Sh.

Let Bad
def
= {(M, s, r) | ∃M ′ 6= M, s′ : 〈S (M ; s),R(r)〉 = 〈S (M ′; s′),R(r)〉}. In

what follows, note that if (M ′, s′, r′) ∈ f−1(f(M, s, r)) then r′ = r, as r is included

77



in the receiver’s view. We have:

Pr
M0,M1

C∈〈S (M0),R〉

[A(M0,M1, C) = 0]

= Pr
M0,s,r

 (M ′, s′, r′)← B(f(M0, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M0, s, r))
∧

M ′ = M0



≥ Pr
M0,s,r

 (M ′, s′, r′)← B(f(M0, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M0, s, r))
∧

(M0, s, r) 6∈ Bad



= Pr
M0,M1

s,r

 (M ′, s′, r′)← B(f(M0, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M0, s, r))



− Pr
M0,M1

s,r

 (M ′, s′, r′)← B(f(M0, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M0, s, r))
∧

(M0, s, r) ∈ Bad



≥ Pr
M0,s,r

 (M ′, s′, r′)← B(f(M0, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M0, s, r))

− Pr
M0,s,r

[(M0, s, r) ∈ Bad]

≥ Succowf
B,f − εb

= εh + εb.
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Furthermore, we have:

Pr
M0,M1

C∈〈S (M1),R〉

[A(M0,M1, C) = 0]

= Pr
M0,M1

s,r

 (M ′, s′, r′)← B(f(M1, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M1, s, r))
∧
M ′ = M0



≤ Pr
M0,M1

s,r

 (M ′, s′, r′)← B(f(M1, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M1, s, r))
∧

(M1, s, r) ∈ Bad


≤ Pr

M1,s,r
[(M1, s, r) ∈ Bad]

≤ εb.

Putting everything together, we have:∣∣∣∣∣ Pr
M0,M1

C∈〈S (M0),R〉

[A(M0,M1, C) = 0]− Pr
M0,M1

C∈〈S (M1),R〉

[A(M0,M1, C) = 0]

∣∣∣∣∣ > εh.

But this implies that there exist two messages M0,M1 for which A can distinguish

〈S (M0),R〉 from 〈S (M1),R〉 with probability greater than εh, contradicting the

hiding of (S,R).

3.2.2 Lower Bound

We now formalize the intuition that was discussed earlier. We remark that

the proof below is not quite as straightforward as the intuition would suggest, since

some technical work is required to deal with the case of statistical (as opposed than

perfect) binding.

Theorem 3.2.2. Let (S(·),R(·)) be an (Sp, Sh, εh, εb)-secure construction of a com-

mitment scheme for m-bit messages that expects an oracle π ∈ Πn. Let t =
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5 logSp. Assume εh ≤ 1/8 − 2−Sp. If εb > 0 and S and R make a total of

q ≤ (m − 2 − log(1 + 2m+1 · εb))/4t queries to their oracle, or if εb = 0 and S

makes qS ≤ (m−2)/4t queries to its oracle, then there exists a commitment scheme

for m-bit messages which is (Sh, 1/4, 1/4)-secure for an honest sender (without ac-

cess to any oracle).

Applying Lemma 3.2.1, this implies the existence of a one-way function (without

access to any oracle).

Proof. We construct non-interactive commitment scheme (S̄, R̄) for m-bit messages,

following the intuition outlined earlier. The construction makes use of a procedure

SIM that simulates a random permutation in Πt,n as follows: SIMmaintains a list

L which is initially empty. To respond to a query a◦a′, where |a| = t and |a′| = n−t,

procedure SIM first checks whether there exists a value b such that (a, b) ∈ L. If so,

SIM returns b ◦ a′. Otherwise, it picks b ∈ {0, 1}t \
{
b̂ | ∃â : (â, b̂) ∈ L

}
uniformly

at random, adds (a, b) to L, and returns b ◦ a′. We let SIMy denote an execution

of SIM using random coins y.

Let H be a pairwise-independent family of functions from m-bit strings to

m-bit strings. Define S̄ as follows. On input a message M ∈ {0, 1}m, S̄ chooses

uniformly at random h ∈ H and values s1, r1, y1, s2, r2, y2. It then computes C1 =

〈SSIMy1 (M ; s1),RSIMy1 (r1)〉 and C2 = 〈SSIMy2 (h(M); s2),RSIMy2 (r2)〉, and out-

puts C1 ◦ C2 ◦ h.2 Decommitment, as usual, is done by having S̄ reveal M and

2The permutations simulated by SIM in the computations of C1, C2 will, in general, be dif-

ferent. The theorem can be strengthened (improving the bound on εh) by having SIM provide a

consistent simulation for both computations. We forgo this for simplicity.
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all the random coins used during the commitment phase. We claim that (S̄, R̄)

is (Sh, 1/4, 1/4)-secure for an honest sender. This follows from the following two

lemmata.

Lemma 3.2.3. (S̄, R̄) is (Sh, 1/4)-hiding.

Proof (of lemma). The hiding property of (S(·),R(·)) guarantees that for any π ∈ Πn

that is Sp-hard, for any circuit B of size at most Sh, and for any messages M0,M1 ∈

{0, 1}m, we have∣∣∣∣ Pr
C∈〈Sπ(M0),Rπ〉

[B(C) = 0]− Pr
C∈〈Sπ(M1),Rπ〉

[B(C) = 0]

∣∣∣∣ ≤ εh.

A straightforward hybrid argument shows that for any π1, π2 ∈ Πn that are Sp-hard,

for any circuit B of size at most Sh, and for any M0,M1 ∈ {0, 1}m, we have∣∣∣∣∣ Pr
h∈H

C1∈〈Sπ1 (M0),Rπ1 〉
C2∈〈Sπ2 (h(M0)),Rπ2 〉

[B(C1 ◦C2 ◦h) = 0]− Pr
h∈H

C1∈〈Sπ1 (M1),Rπ1 〉
C2∈〈Sπ2 (h(M1)),Rπ2 〉

[B(C1 ◦C2 ◦h) = 0]

∣∣∣∣∣ ≤ 2εh.

Corollary 3.1.2 shows that a random permutation π ∈ Πt,n is Sp-hard except with

probability at most 2−S
5/2
p ≤ 2−Sp . Using a union bound and a simple averaging

argument, we see that for any circuit B of size at most Sh and for any M0,M1 ∈

{0, 1}m,∣∣∣∣∣ Pr
π1,π2∈Πt,n

h∈H
C1∈〈Sπ1 (M0),Rπ1 〉

C2∈〈Sπ2 (h(M0)),Rπ2 〉

[B(C1◦C2◦h) = 0]− Pr
π1,π2∈Πt,n

h∈H
C1∈〈Sπ1 (M1),Rπ1 〉

C2∈〈Sπ2 (h(M1)),Rπ2 〉

[B(C1◦C2◦h) = 0]

∣∣∣∣∣ ≤ 2εh+21−Sp .

Since SIM perfectly simulates a random π ∈ Πt,n, we have∣∣∣∣∣ Pr
y1,y2
h∈H

C1∈〈SSIMy1 (M0),RSIMy1 〉
C2∈〈SSIMy2 (h(M0)),RSIMy2 〉

[B(C1◦C2◦h) = 0]− Pr
y1,y2
h∈H

C1∈〈SSIMy1 (M1),RSIMy1 〉
C2∈〈SSIMy2 (h(M1)),RSIMy2 〉

[B(C1◦C2◦h) = 0]

∣∣∣∣∣
≤ 2εh + 21−Sp .
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But that precisely means that∣∣∣∣∣ Pr
C∈〈S̄ (M0),R∗ 〉

[B(C) = 0]− Pr
C∈〈S̄ (M1),R∗ 〉

[B(C) = 0]

∣∣∣∣∣ ≤ 2εh + 21−Sp ≤ 1/4

for any R∗ and any circuit B of size at most Sh, where the last inequality uses the

assumption that εh ≤ 1/8 − 2−Sp . The hiding property therefore holds as claimed.

�

Lemma 3.2.4. (S̄, R̄) is 1/4-binding for an honest sender.

Proof (of lemma). For ease of notation, let

Com(M, s, r, y)
def
= 〈SSIMy(M ; s),RSIMy(r)〉.

Fix an arbitrary M ∈ {0, 1}m. We are interested in the following probability:

NoBind
def
= Pr

s̄

 ∃M ′ ∈ {0, 1}m \M, s̄′ such that

〈S̄ (M ′; s̄′), R̄〉 = 〈S̄ (M ; s̄), R̄〉



= Pr
h∈H

s1,r1,y1
s2,r2,y2


∃M ′ ∈ {0, 1}m \M,h′, s′1, r

′
1, y

′
1, s

′
2, r

′
2, y

′
2 such that

Com(M ′, s′1, r
′
1, y

′
1) ◦ Com(h′(M ′), s′2, r

′
2, y

′
2) ◦ h′

= Com(M, s1, r1, y1) ◦ Com(h(M), s2, r2, y2) ◦ h



= Pr
h∈H

s1,r1,y1
s2,r2,y2


∃M ′ ∈ {0, 1}m \M, s′1, y

′
1, s

′
2, y

′
2 such that

Com(M ′, s′1, r1, y
′
1) = Com(M, s1, r1, y1)

∧
Com(h(M ′), s′2, r2, y

′
2) = Com(h(M), s2, r2, y2)

 ,

where in the last equality we use the fact that h′, r′1, r
′
2 and h, r1, r2 are explicit in

the view of R̄. Letting

Decom(M, s, r, y)
def
=

M ′ ∈ {0, 1}m

∣∣∣∣∣∣∣∣
∃s′, y′ such that

Com(M ′, s′, r, y′) = Com(M, s, r, y)

 ,
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we may write:

NoBind = Pr
h∈H

s1,r1,y1
s2,r2,y2


∃M ′ ∈ {0, 1}m \M such that

M ′ ∈ Decom(M, s1, r1, y1)
∧

h(M ′) ∈ Decom(h(M), s2, r2, y2)

 .

Let qS (resp., qR) denote the number of queries made by S (resp., R) to its

oracle3, and let q = qS + qR. For any integer q∗, let Permq∗

t denote the set of

“partial permutations” of size q∗ over t-bit strings; formally, Permq∗

t contains all sets

P ⊆ {0, 1}t × {0, 1}t such that P contains exactly q∗ tuples and such that for all a

there exists at most one b with (a, b) ∈ P and at most one b′ such that(b′, a) ∈ P .

Let queries(M, s, r, y) ∈ Permq
t denote the set of query/answer prefixes made by

either S or R to SIM during the computation of Com(M, s, r, y) (i.e., (a, b) ∈

queries(M, s, r, y) iff an oracle query a ◦ a′, by either S or R, is answered by SIM

with b ◦ a′ during the computation of Com(M, s, r, y)). Define queriesS(M, s, r, y)

(resp., queriesR(M, s, r, y)) similarly, where this refers exclusively to queries made

by S (resp., R).

Define r as good for P ∈ Permq
t if there do not exist distinct M ′,M ′′, along

with s′, s′′, y′, y′′, such that

• Com(M ′, s′, r, y′) = Com(M ′′, s′′, r, y′′); and

• queries(M ′, s′, r, y′) = queries(M ′′, s′′, r, y′′) = P .

Say r is good if it is good for all P ∈ Permq
t .

3Without loss of generality, we will assume that exactly qS (resp., qR) queries are always made.
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We first observe that for a good r, the set Decom(M, s, r, y) contains at most

|PermqS
t | < 22tqS messages. Otherwise, by the pigeonhole principle, there exists

a PS ∈ PermqS
t and distinct messages M ′,M ′′ ∈ Decom(M, s, r, y), along with

s′, s′′, y′, y′′, such that Com(M ′, s′, r, y′) = Com(M, s, r, y) = Com(M ′′, s′′, r, y′′) and

queriesS(M ′, s′, r, y′) = queriesS(M ′′, s′′, r, y′′) = PS . Notice also that queriesR(M ′, s′, r, y′) =

queriesR(M, s, r, y) = queriesR(M ′′, s′′, r, y′′), as these queries are explicit in the re-

ceiver’s views Com(M ′, s′, r, y′) = Com(M, s, r, y) = Com(M ′′, s′′, r, y′′). But then r

is not good for P
def
= PS ∪ queriesR(M, s, r, y), contradicting the assumption that r

is good for all P ∈ Permq
t .

Fix some P ∈ Permq
t , and let πP denote an arbitrary extension of P to a

permutation in Πt,n (in the natural way). We have

Pr
r

[r is not good for P ] = Pr
r


∃ distinct M ′,M ′′,∃s′, s′′, y′, y′′ such that

Com(M ′, s′, r, y′) = Com(M ′′, s′′, r, y′′)
∧

queries(M ′, s′, r, y′) = queries(M ′′, s′′, r, y′′) = P



≤ Pr
r

 ∃ distinct M ′,M ′′,∃s′, s′′ such that

〈SπP (M ′; s′),RπP (r)〉 = 〈SπP (M ′′; s′′),RπP (r)〉


≤ εb ,

by the binding property of (S(·),R(·)). Applying a union bound over all elements of

Permq
t , we obtain:

Pr
r

[r is not good] < 22tq · εb.
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We proceed to bound NoBind. We have:

NoBind ≤ Pr
h∈H

s1,r1,y1
s2,r2,y2


∃M ′ ∈ {0, 1}m \M such that

M ′ ∈ Decom(M, s1, r1, y1)

h(M ′) ∈ Decom(h(M), s2, r2, y2)

∣∣∣∣∣∣∣∣∣∣∣∣
r1, r2 good


︸ ︷︷ ︸

LeftTerm

+22tq+1 · εb,

where the right term above represents an upper-bound on the probability that either

r1 or r2 is not good. Continuing with the left term, we have

LeftTerm =
∑

M2∈{0,1}m

Pr
h∈H

s1,r1,y1
s2,r2,y2


∃M ′ ∈ Decom(M, s1, r1, y1) \M,

∃M ′
2 ∈ Decom(M2, s1, r1, y1) such that

h(M) = M2

∧
h(M ′) = M ′

2

∣∣∣∣∣∣∣∣∣∣∣∣
r1, r2 good


=

∑
M2∈{0,1}m

2−2m · max
s1, good r1,y1
s2, good r2,y2

{|Decom(M, s1, r1, y1)| · |Decom(M2, s2, r2, y2)|}

 ,

using the pairwise independence ofH. Applying the bound on the size of Decom(M, s, r, y)

when r is good, we obtain

LeftTerm ≤ 2−2m · 2m · 24tqS = 24tqS−m.

Putting everything together, we have

NoBind ≤ 24tqS−m + 22tq+1 · εb .

If εb = 0 and qS ≤ (m − 2)/4t, it is easy to see that NoBind ≤ 1/4. When εb > 0

and q ≤ (m− 2− log(1 + 2m+1 · εb))/4t, we may observe that 24tqS−m + 22tq+1 · εb ≤

24tq · (2−m + 2εb) and hence NoBind ≤ 1/4 in this case as well. The claim follows. �

This completes the proof of the theorem.
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3.3 Upper Bounds on the Efficiency of Generic Commitment

Here, we briefly describe upper bounds on the efficiency of black-box construc-

tions of commitment schemes based on one-way permutations and compare them

with our lower bounds.

3.3.1 Perfectly-Binding Commitment

A perfectly-binding commitment scheme can be constructed from one-way

permutations using the approach of Blum [Blu82] along with the Goldreich-Levin

hard-core function paradigm [GL89]. Specifically, let h : {0, 1}n → {0, 1}` be a

hard-core function (see [Gol01]) for a one-way permutation π : {0, 1}n → {0, 1}n.

To commit to a message M ∈ {0, 1}m, the sender first divides M into t = dm/`e

blocks N1, . . . , Nt, each of length `. Then, for each block Ni the sender chooses a

random si ∈ {0, 1}n and sends π(si), h(si)⊕Ni to the receiver. Since there exists a

hard-core function with ` = O(logS) for any S-hard π (and large enough n) [GL89]

(see also [Gol01, Section 2.5.3]), this construction requires O(m/ logS) invocations

of π, matching our bound.

3.3.2 Statistically-Binding Commitment for Single-Bit Messages

Naor [Nao91] showed a construction of a statistically-binding commitment

scheme for single-bit messages based on one-way functions. Let G : {0, 1}n →

{0, 1}n+k be a pseudorandom generator. The receiver first chooses a random r ∈

{0, 1}n+k and sends this value to the other party. The sender then commits to a bit
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b as follows: it chooses a random s ∈ {0, 1}n and sends G(s) if b = 0 and G(s)⊕ r

if b = 1. This scheme is binding with εb < 22n/2n+k = 2n−k.

Although a pseudorandom generator can be constructed from one-way func-

tions, we will examine the efficiency of the above scheme when G is based on an

S-hard one-way permutation π : {0, 1}n → {0, 1}n so as to compare the efficiency of

the scheme to our bound. In this case, evaluating G requires O(k/ logS) invocations

of π [Yao82, BM84, GL89]. Viewing n as fixed, this is O(log ε−1
b / logS) invocations

of π (for k polynomial in n).

3.3.3 Statistically-Binding Constructions for Longer Messages

There are a number of ways to extend the Naor scheme described above for

the case of m-bit messages. One obvious approach is to simply run the basic Naor

scheme in parallel for each bit of the message, having the sender/receiver use the

same value r for all these commitments. This gives a scheme which is binding with

εb < 2n−k as before, but where the number of invocations of π required is now

O(mk/ logS).

A better approach, suggested in [Nao91], is to have the sender use the above

idea to commit to an n-bit seed s, and then additionally send G′(s) ⊕M (where

M is the sender’s message and G′ : {0, 1}n → {0, 1}m is another pseudorandom

generator). This is still binding with εb < 2n−k as before; the number of invocations

of π required, however, is O(nk/ logS+(m−n)/ logS) which is more efficient than

the previous approach when m > n.
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A third approach, suggested in [Nao91] as well, utilizes asymptotically good

error-correcting codes to extend the basic scheme. We present a simpler construction

here which achieves the same efficiency and which (to the best of our knowledge) has

not appeared before. Let G : {0, 1}n → {0, 1}` be a pseudorandom generator, where

` will be fixed later. The receiver begins by choosing random r1, . . . , rm ∈ {0, 1}`

and transmitting these to the sender. The sender chooses a random s ∈ {0, 1}n and

responds with
(⊕

i:Mi=1 ri

)
⊕ G(s) (where Mi is the ith bit of M). As in the basic

Naor scheme, hiding follows easily from the pseudorandomness of G. As for binding,

we have

Pr
r1,...,rm

 ∃M 6= M ′, s, s′ such that(⊕
i:Mi=1 ri

)
⊕G(s) =

(⊕
i:M ′

i=1 ri

)
⊕G(s′)



= Pr
r1,...,rm

 ∃M 6= M ′, s, s′ such that⊕
i:Mi⊕M ′

i=1 ri = G(s)⊕G(s′)



= Pr
r1,...,rm

 ∃N 6= 0m, s, s′ such that⊕
i:Ni=1 ri = Gπ(s)⊕Gπ(s′)


≤

∑
ŝ,ŝ′

N̂ 6=0m

Pr
r1,...,rm

 ⊕
i:N̂i=1

ri = Gπ(ŝ)⊕Gπ(ŝ′)


< 2m · 22n · 2−`.

Setting ` = n + m + k, we obtain a scheme that binds except with probability

εb < 2n−k (as previously) and which requires only O((m + k)/ logS) invocations of

an S-hard permutation π.
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Chapter 4

Universally-Composable Two-Party Computation in Two Rounds

Here, we give a tight characterization of the round complexity of secure two-

party computation in the UC framework, as outlined in Section 1.3. The chapter

is organized as follows. In Section 4.1, we give an overview the UC framework,

and recall tools and assumptions used in our constructions. In Section 4.2, we

present a two-round, UC two-party computation protocol for the setting in which

parties may speak simultaneously in any given round; and a three-round protocol

for the task when parties take turns in transmitting their protocol messages. At

the end of the section, we observe that the protocols are round-optimal in their

respective communication models. In Section 4.3, we discuss how our results can be

applied to obtain a round-optimal UC blind signature scheme. In Section 4.4, we

briefly compare the application of our main protocol to evaluating policies on sets

of credentials with other approaches to the task.

4.1 Framework, Tools, and Assumptions

4.1.1 Preliminaries

In this chapter, we consider computational-indistinguishability by probabilis-

tic, polynomial-time algorithms taking non-uniform “advice”. The notion can easily

be shown equivalent to the notion of computational-indistinguishability by polynomial-
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sized circuit families, used in Chapter 3. It may also be shown to be strictly stronger

than the notion of computational-indistinguishability by polynomial-time algorithms

used in Chapter 2; see [Gol01, Section 3.2.4] for a discussion.

Let X = {X(k, z)}k∈N,z∈{0,1}∗ denote an ensemble of binary distributions,

where X(k, z) represents the output of a probabilistic, polynomial time (PPT) algo-

rithm on a security parameter k and advice z (the ensemble may be parameterized

by additional variables, and the algorithm may take additional inputs). We say that

ensembles X, Y are computationally indistinguishable, and write X
c
≈ Y , if for any

a ∈ N there exists ka ∈ N such that for all k > ka, for all z (and for all values any

additional variables parameterizing the ensemble may take), we have

|Pr[X(k, z) = 1]− Pr[Y (k, z) = 1]| < k−a.

4.1.2 Universally Composable Security

We consider secure computation within the Universal Composability frame-

work of Canetti [Can01], which we review here, most closely following the treatment

of [CLOS02]. Our focus is on the two-party, static corruption setting. We high-

light a few features of our definition that are standard but not universal: (1) The

real model offers authenticated communication and universal access to a common

reference string. Formally, this corresponds to the (FAUTH,FCRS)-hybrid model

of [Can01]. (2) Message delivery in both the real and ideal models is carried out by

the adversary (contrast with [Can01], where messages between the dummy parties

and the ideal functionality in the ideal model are delivered immediately). (3) The
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ideal functionality is not informed of party corruption by the ideal adversary. We

make this choice purely to simplify the exposition; our results extend to the more

general setting by the same means employed in [CLOS02] (see section 3.3 there).

4.1.2.1 Program and protocol syntax

Following [GMR89, Gol01], we use probabilistic, interactive Turing machines

(ITMs) to model programs to be run by parties in our execution environment. Input

and output tapes of ITMs are used to model inputs and outputs that are received

from and given to other programs running within a party, while communication

tapes are used to model messages sent to and received from the network. Hereafter,

when referring to a party, we mean the instance of the ITM it is running (when that

is clear from the context).

Protocols are specified by a set of ITMs, representing the programs to be run

by the participating parties. A protocol may also specify a distribution from which

it expects a common reference string (CRS) to be drawn. To simplify the exposition,

we assume that all protocols are such that the ITMs read their input tapes only at

the onset of their computation (this can easily be achieved by having an ITM copy

its input tape onto an internal work tape).

4.1.2.2 Defining the security of protocols

A protocol is said to be secure if its execution in a given real-life setting in

the presence of an adversary essentially “emulates” an ideal process capturing the
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desired task. Below, we define the real-life setting, the ideal process and the notion

of protocol emulation.

Protocol execution in the real-life model. Execution in the real-life model in-

volves a protocol π, to be run by parties P1, P2; an adversary A; and an environment

Z with input z. All parties have a security parameter k ∈ N and are polynomial in

k.

On the onset of an execution, a CRS from the distribution specified by π (if

any) is chosen; the parties and the adversary have read access to the CRS throughout

the execution. Note that this may be realized in the FCRS-hybrid model of [Can01].

The execution consists of a sequence of activations, where in each activation, a

single party (be it P1, P2,A or Z) is running. The environment is activated first.

On its first activation, it may write a single message on the input tape of the

adversary, who’s activated next. The intent is to allow the (static) adversary to

corrupt parties on the onset of the execution (on corruption, see below). In each

subsequent activation, the environment may read the contents of the output tapes

of all uncorrupted parties and the adversary, and may write a message on the input

tape of a single uncorrupted party or the adversary (the environment may pass an

input to a corrupted party by sending it directly to the adversary, who controls it;

see below). Once the activation is complete, the entity whose input tape was written

to is activated next.

On its first activation, the adversary may corrupt one or both parties (or

neither). Upon corruption, the adversary gains access to all the tapes of a corrupted
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party and may arbitrarily act on its behalf in the future (the corrupted party is never

activated). The environment is notified of the identity of the corrupted parties, if

any (say, via a message that is added to the output tape of the adversary). Note that

corruption here corresponds to the notion of a static adversary of [Can01]. Once

the first activation is complete, the environment is reactivated. On any subsequent

activation, the adversary may read its input tape and the outgoing communication

tapes of all uncorrupted parties. It may then deliver a message to a party by

writing it on the party’s incoming communication tape. We make the following

restrictions on message delivery: if Pi is not corrupted, then the adversary may

deliver a message m from Pi to Pj if and only if m was previously written onto the

outgoing communication tape of Pi with Pj as the designated recipient; furthermore,

m may only be delivered once. Messages need not be delivered in the order in which

they were sent. Note that this models an asynchronous network with authenticated

links; formally, this corresponds to the FAUTH-hybrid model of [Can01]. If the

adversary delivered a message to some uncorrupted party in its activation then this

party is activated once the activation of the adversary is complete. Otherwise, the

environment is activated next.

Once an (uncorrupted) party is activated (either due to an input given by the

environment or due to a message delivered by the adversary), it follows its program

and may write local outputs on its output tape and send messages to other parties

by writing them on its outgoing communication tape. Once the activation of the

party is complete, the environment is activated.

The protocol execution ends when the environment completes an activation
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without writing on the input tape of any entity. The output of the execution is the

output of the environment. We assume that this output consists of a single bit.

In summary, the order of activations is as follows. The environment is activated

first. On its first activation, it activates the adversary, who then returns control

to the environment. In subsequent activations, the environment may activate the

adversary or an uncorrupted party by writing on an input tape. If the adversary

is activated, it may return control to the environment, or it may activate a party

by delivering a message to it. After a party is activated, control is always returned

to the environment. We stress that at any point, only a single party is activated.

Furthermore the environment and the adversary can only activate one other entity

(thus only a single input is written by the environment per activation, and likewise

the adversary can only deliver a single message per activation).

Let REALπ,A,Z(k, z, r̄) denote the output of the environment Z when inter-

acting with adversary A and parties running protocol π on security parameter k,

input z and random tapes r̄ = rZ , rA, r1, r2 as described above (z and rZ for Z,

rA for A, ri for Pi). Let REALπ,A,Z(k, z) denote the random variable describing

REALπ,A,Z(k, z, r̄) when r̄ is uniformly chosen. Let REALπ,A,Z denote the ensemble

{REALπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

The ideal process. The ideal process involves an ideal functionality F , an ideal

process adversary (simulator) S, an environment Z with input z, and dummy parties

P̃1, P̃2. F is modeled as an ITM; Z and S have a security parameter k ∈ N and are

polynomial in k.
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As in protocol execution in the real-life model, the ideal process consists of a

sequence of activations, where in each activation, a single party (be it F ,S, P̃1, P̃2 or

Z) is running. The environment is activated first. As there, on its first activation,

the environment may write a single message on the input tape of the simulator, who’s

activated next. The intent is to allow the (static) simulator to corrupt parties on the

onset of the process. In each subsequent activation, the environment may read the

contents of the output tapes of all uncorrupted dummy parties and the simulator,

and may write a message on the input tape of a single, uncorrupted dummy party or

the simulator (the environment may pass an input to a corrupted dummy party by

sending it directly to the simulator, who controls it; see below). Once the activation

is complete, the entity whose input tape was written to is activated next.

The dummy parties are fixed and simple ITMs. Whenever a dummy party

is activated with an input, it writes it on its outgoing communication tape for the

ideal functionality; whenever a dummy party is activated due to the delivery of

some message (from the ideal functionality), it copies the message onto its output.

At the conclusion of a dummy party’s activation, the environment is activated.

The communication of the dummy parties is with the ideal functionality only. A

message between the two entities comprises of a header and contents. In this work,

as a convention, the first two fields of a message will constitute the header, and the

rest the contents. The first field of the header will describe the action being taken,

and the second will identify the session being run (see also Section 4.1.2.3).

When the ideal functionality is activated, it may read the contents of its in-

coming communication tape, and may send messages to the dummy parties and the
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simulator by writing these messages on its outgoing communication tape. Once the

activation of the ideal functionality is complete, the environment is activated next.

On its first activation, the simulator may corrupt one or both dummy par-

ties (or neither). Upon corruption, the simulator gains access to all the tapes of a

corrupted party and may arbitrarily act on its behalf in the future (the corrupted

party is never activated). The environment is notified of the identity of the cor-

rupted parties, if any (again, say via a message that is added to the output tape of

the simulator). Note that corruption corresponds to the notion of a static adversary.

Once the first activation is complete, the environment is reactivated. On any sub-

sequent activation, the simulator may read its input tape; the headers (but not the

contents) of messages on the outgoing communication tape of the ideal functionality

intended for uncorrupted dummy parties; the headers and contents of messages on

the outgoing communication tape of the ideal functionality intended for the simu-

lator or corrupted parties (note that the ideal process allows the simulator to learn

output values sent by the ideal functionality to corrupted parties as soon as they

are generated); and the headers (but not the contents) of messages on the outgoing

communication tapes of uncorrupted dummy parties intended for the ideal func-

tionality. The simulator may then deliver a message, either from a dummy party

to the ideal functionality, or from the ideal functionality to an uncorrupted dummy

party, by writing it onto the incoming communication tape of the recipient. As in

the execution in the real-life model, messages between uncorrupted dummy parties

and the ideal functionality may only be delivered if they appear on the outgoing

communication tape of the sender, are intended for the recipient, and have not been
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delivered before. There is no restriction on the order in which messages are deliv-

ered. If the simulator delivered a message to some uncorrupted dummy party or

to the ideal functionality in an activation, then that entity is activated once the

activation of the simulator is complete. Otherwise, the environment is activated

next.

As in the real-life model, the ideal process ends when the environment com-

pletes an activation without writing on the input tape of any entity. The output of

the protocol is the (single bit) output of the environment.

In summary, the order of activations is as follows. The environment is activated

first. On its first activation, it activates the simulator, who then returns control

to the environment. In subsequent activations, the environment may activate the

simulator or an uncorrupted dummy party by writing on an input tape. If the

simulator is activated, it may return control to the environment, or it may activate

either a dummy party or the ideal functionality by delivering a message to that

entity. After the activation of either an uncorrupted, dummy party or the ideal

functionality, control is always returned to the environment.

Let IDEALF ,S,Z(k, z, r̄) denote the output of the environment Z after interact-

ing in the ideal process with simulator S and the ideal functionality F , on security

parameter k, input z, and random input r̄ = rZ , rS , rF as described above (z and

rZ for Z; rS for S; rF for F). Let IDEALF ,S,Z(k, z) denote the random variable

describing IDEALF ,S,Z(k, z, r̄) when r̄ is chosen uniformly. Let IDEALF ,S,Z denote

the ensemble {IDEALF ,S,Z}k∈N,z∈{0,1}∗ .

We remark that the above definition of the ideal process slightly differs from
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that of [Can01] in that there, messages between the dummy parties and the ideal

functionality are delivered immediately. In contrast, in this presentation, follow-

ing [CLOS02], the delivery is carried out by the simulator. Thus, in both the real

and ideal models, all message delivery is the responsibility of the adversary alone.

We note that our results can easily be stated in the model of “immediate delivery”

as defined in [Can01].

UC realizing an ideal functionality (emulation of the ideal process). We

say that a protocol π UC realizes an ideal functionality F if for any real-life adversary

A there exists an ideal-process adversary S such that no environment Z can tell

with non-negligible probability whether it is interacting with A and parties running

π in the real-life process, or with S and F in the ideal process. Formally:

Definition 4.1.1. Let F be an ideal functionality and let π be a two-party protocol.

We say that π UC realizes F if for any adversary A there exists an ideal-process

adversary S such that for any environment Z,

REALπ,A,Z
c
≈ IDEALF ,S,Z .

♦

4.1.2.3 The composition theorem

The hybrid model. In order to state the composition theorem, and in particular

in order to formalize the notion of a real-life protocol with access to multiple copies

of an ideal functionality, the hybrid model of computation with access to an ideal-

functionality F (the F-hybrid model, in short) is formalized. The model is identical
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to the real-life model, with the following additions. On top of sending messages

to each other, the parties may send messages to and receive messages from an

unbounded number of copies of F . Each copy of F is identified via a unique

session identifier (SID); all messages addressed to this copy and all messages sent

by this copy carry the corresponding SID.

The communication between the parties and each one of the copies of F mimics

the ideal process. Specifically, when the adversary delivers a message from a party

to a copy of F with a particular SID, that copy of F is the next entity to be

activated. Furthermore, although the adversary in the hybrid model is responsible

for delivering the messages between the copies of F and the parties, it does not have

access to the contents of these messages.

The hybrid model does not specify how the SIDs are generated, nor does it

specify how parties “agree” on the SID of a certain protocol copy that is to be run

by them. These tasks are left to the protocol in the hybrid model. This convention

simplifies formulating ideal functionalities and designing protocols that UC realize

them, by freeing the functionality from the need to choose the SIDs and guarantee

their uniqueness (see [CLOS02] for further discussion).

Let EXECF
π,A,Z(k, z) denote the random variable describing the output of the

environment Z on input z, after interacting in the F -hybrid model with protocol

π and adversary A, analogously to the definition of REALπ,A,Z(k, z). (We stress

that here π is a hybrid of a real-life protocol with ideal evaluation calls to F .) Let

EXECF
π,A,Z denote the distribution ensemble

{
EXECF

π,A,Z
}

k∈N,z∈{0,1}∗ .
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Replacing a call to F with a protocol invocation. Let π be a protocol in the

F -hybrid model, and let ρ be a protocol that UC-realizes F (with respect to some

class of adversaries). The composed protocol πρ is constructed by modifying the code

of each ITM in π so that the first message sent to each copy of F is replaced with

an invocation of a new copy of ρ with fresh random coins, with the same SID, and

with the contents of that message as input. Each subsequent message to that copy

of F is replaced with an activation of the corresponding copy of ρ, with the contents

of that message given to ρ as new input. Each input value generated by a copy of ρ

is treated as a message received from the corresponding copy of F (see [Can01] for

more details). If ρ is a protocol in the real-life model then so is πρ. If ρ is a protocol

in some G-hybrid model, then so is πρ.

The composition theorem. In its general form, the composition theorem essen-

tially states that if ρ UC realizes F in the G-hybrid model for some functionality

G, then an execution of the composed protocol πρ, running in the G-hybrid model,

“emulates” an execution of π in the F -hybrid model. That is, for any adversary A

in the G-hybrid model there exists an adversary S in the F -hybrid model such that

no environment machine Z can tell with non-negligible probability whether it is

interacting with A and πρ in the G-hybrid model or it is interacting with S and π in

the F -hybrid model. A corollary of the general theorem states that if π UC-realizes

some functionality I in the F -hybrid model, and ρ UC-realizes F in the G-hybrid

model, then πρ UC realizes I in the G-hybrid model. Formally:

Theorem 4.1.2 ([Can01]). Let F ,G, I be ideal functionalities. Let π be a two-party
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protocol in the F-hybrid model, and let ρ be a two-party protocol that UC realizes

F in the G-hybrid model. Then for any adversary A in the G-hybrid model, there

exists an adversary S in the F-hybrid model such that for any environment machine

Z, we have:

EXECG
πρ,A,Z

c
≈ EXECF

π,S,Z .

In particular, if π UC realizes functionality I in the F-hybrid model then πρ UC

realizes I in the G-hybrid model.

4.1.2.4 Non-reactive functionalities

Our work deals with non-reactive functionalities. That is, functionalities that

hold until they receive an input from each of the participating parties (in any order),

then compute outputs (for any of the parties) and halt. We model a non-reactive

functionality F with a family of circuits {Fk}k∈N. As a convention, we assume that

F expects an input message with an action-description header field F -inputi from

party Pi, and produces an output message with an action-description header field

F -outputi for party Pi.

4.1.3 Universally Composable Zero Knowledge

Here, we overview the ideal zero-knowledge functionality FZK, following the

treatment of [CLOS02], and discuss a non-interactive protocol that UC-realizes it

in the presence of static adversaries. Looking ahead, our round-efficient, two-party

computation constructions will be presented in the FZK-hybrid model.
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In the zero-knowledge functionality, parameterized by a relation R, a prover

sends the functionality a statement x to be proven, along with a witness w. In

response, the functionality forwards the statement x to a verifier if and only if

R(x,w) = 1 (i.e., if and only if it is a correct statement). The functionality is

presented in Figure 4.1.

Functionality FZK

FZK proceeds as follows, running with a prover P , a verifier V and an adversary

S, and parameterized with a relation R:

• Upon receiving (ZK-prover, sid, x, w) from P , do: if R(x,w) = 1, then send

(ZK-proof, sid, x) to V and S and halt. Otherwise, halt.

Figure 4.1: The ideal Universally-Composable zero-knowledge functionality.

We note the following about the above formulation. First, in actuality, we

have a proof of knowledge here, in that the verifier is assured that the prover knows

w (and has explicitly sent w to the functionality), rather than just assured that such

a w exists. Second, the functionality is defined so that only correct statements (i.e.,

values x such that R(x,w) = 1) are received by the verifier; incorrect statements are

ignored by the functionality, and the verifier receives no notification that an attempt

at cheating in the proof took place. This convention simplifies the description and

analysis of our protocols. We note however that it is not essential; error messages
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can be added to the functionality (an realized) in a straightforward manner.

For the case of static adversaries, De Santis et al. [DDO+01] provide a non-

interactive protocol (i.e., consists of a single message from the prover to the verifier)

that UC realizes FZK for any NP relation (see also a discussion in [CLOS02, Section

6]); the protocol is given in the CRS model and assumes the existence of enhanced

trapdoor-permutations (see [Gol04, Appendix C.1] for a discussion of this assump-

tion).

4.1.4 Yao’s “Garbled Circuit” Technique

Our protocol uses as a building block the “garbled-circuit” technique of Yao [Yao86].

We follow [KO04] in abstracting the technique, and consider those aspects of it which

are necessary for our proofs of security; for the full construction and proof of security

(when the participating parties are assumed to be honest-but-curious, and in the

stand-alone setting), see [LP04].

Let Fk be a description of a two-input/single-output circuit whose inputs and

output are of length k (the technique easily extends to lengths polynomial in k).

Yao’s results provide two PPT algorithms:

1. Yao1 is a randomized algorithm which takes as input a security parameter

k ∈ N, a circuit Fk, and a string y ∈ {0, 1}k. It outputs a garbled circuit

Circuit and input-wire labels {Zi,σ}i∈{1,...,k},σ∈{0,1}.

2. Yao2 is a deterministic algorithm which takes as input a security parameter

k ∈ N, a “garbled-circuit” Circuit and values {Zi}i∈{1,...,k} where Zi ∈ {0, 1}k.
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It outputs either an invalid symbol ⊥, or a value v ∈ {0, 1}k.

We informally describe how the above algorithms may be used for secure com-

putation when the participating parties are honest-but-curious. Let P1 hold input

x = x1 . . . xk ∈ {0, 1}k, P2 hold input y ∈ {0, 1}k, and assume P1 is to obtain the

output Fk(x, y). First, P2 computes (Circuit, {Zi,σ}i,σ)
R← Yao1(k, Fk, y) and sends

Circuit to P1. Then the players engage in k instances of Oblivious Transfer : in the

ith instance, P1 enters with input xi, P2 enters with input (Zi,0, Zi,1), and P1 obtains

Zi
def
= Zi,xi

(additionally, P2 “learns nothing” about xi, and P1 “learns nothing”

about Zi,1−xi
). P1 then computes v ← Yao2(Circuit, {Zi}i), and outputs v.

With the above in mind, we describe the properties required of Yao1,Yao2. We

first require correctness : for any Fk, y, any output (Circuit, {Zi,σ}i,σ) of Yao1(k, Fk, y)

and any x, we have Fk(x, y) = Yao2(k,Circuit, {Zi,xi
}i). The algorithms also satisfy

the following notion of security : there exists a PPT simulator Yao-Sim which takes

k, Fk, x, v as inputs, and outputs Circuit and a set of k input-wire labels {Zi}i;

furthermore, for any PPT A, the following two ensembles are computationally in-

distinguishable:

(1)


(Circuit, {Zi,σ}i,σ)

R← Yao1(k, Fk, y) :

A(k, z, x, y,Circuit, {Zi,xi
}i)


k∈N,z∈{0,1}∗,x,y∈{0,1}k

(2)

{
v = Fk(x, y) :

A(k, z, x, y,Yao-Sim(k, Fk, x, v))

}
k∈N,z∈{0,1}∗,x,y∈{0,1}k

.
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4.1.5 The Decisional Diffie-Hellman (DDH) Assumption

We use a two-round oblivious transfer (OT) protocol as a building block in our

constructions; any OT protocol based on smooth projective hashing for hard subset-

membership problems per Tauman’s framework [Tau05] will do. To simplify the

exposition, we describe our constructions in terms of a protocol based on the Deci-

sional Diffie-Hellman (DDH) assumption [DH76] which we recall here; we list known,

alternative assumptions on which suitable OT protocols may be based in Section 4.2.

A group generator GroupGen is a PPT which on input k ∈ N outputs a de-

scription of a cyclic group G of prime order q, the order q and a generator g ∈ G.

Looking ahead, we will want to associate messages of length k with group elements;

for simplicity we thus assume that |q| ≥ k (alternatively, we could use hashing).

Definition 4.1.3. We say the Decisional Diffie-Hellman (DDH) problem is hard for

GroupGen if for any PPT algorithm A, the following ensembles are computationally

indistinguishable:

(1)
{

(G, q, g) R← GroupGen(k); a, b
R← Zq : A(k, z,G, q, g, ga, gb, gab)

}
k∈N,z∈{0,1}∗

(2)
{

(G, q, g) R← GroupGen(k); a, b, c
R← Zq : A(k, z,G, q, g, ga, gb, gc)

}
k∈N,z∈{0,1}∗

.♦

The following claim follows from the above definition via a simple hybrids

argument.

Claim 4.1.4. If the DDH problem is hard for GroupGen, then for any PPT algorithm

A, ensemble (1) above is also computationally indistinguishable from:

(2’)
{

(G, q, g) R← GroupGen(k); a, b
R← Zq : A(k, z,G, q, g, ga, gb, gab−1)

}
k∈N,z∈{0,1}∗

.
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4.2 Round-Optimal, Universally Composable Two-Party Computa-

tion

In this section, we show a two-round protocol for Universally-Composable

(UC) two-party computation. We reach our construction in two steps:

• First, we describe a two-round protocol, where parties take turns in speaking,

for securely computing functionalities that provide output to only one of the

participating parties. Using standard techniques, our protocol may be com-

piled into one that securely computes functionalities providing output to both

parties at the cost of an additional communication round. The protocol is of

interest in its own right (in Section 4.3, we use it to obtain a two-round UC

blind-signature scheme, matching a recent result by Fischlin [Fis06]), but also

serves as a stepping stone towards our main construction.

• We show how to bind and run two instances of our first protocol “in parallel”,

once in each “direction”, so as to obtain a two-round protocol, where both

parties speak in each round, for securely computing functionalities that provide

output to both participating parties. We stress that our security analysis takes

into account adversaries who may, in particular, wait to receive a message from

their partner before sending their own in any given round (so called “rushing”

adversaries).

At the end of the section, we observe that two rounds of communication are necessary

for UC two-party computation when parties may speak simultaneously in any given
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round; and that three rounds are necessary for the task when parties need to take

turns in sending their protocol messages.

Our constructions use UC zero-knowledge, Yao’s garbled circuit technique and

two-message oblivious transfer (OT) as building blocks. As mentioned earlier, any

OT protocol based on smooth projective hashing for hard subset-membership prob-

lems per Tauman’s framework [Tau05] will do. We stress that such OT protocols

satisfy a weaker notion of security than the one needed here; we use zero-knowledge

to lift the security guarantees to the level we need. To simplify the description of

our protocols, we use a protocol from the framework based on the DDH assump-

tion, simplifying a construction due to Naor and Pinkas [NP01]. We remark that

other protocols conforming to Tauman’s framework are known to exist under the

DDH assumption [AIR01], under the Nth-residuosity assumption and under both the

Quadratic-Residuosity assumption and the Extended Riemann hypothesis [Tau05].

4.2.1 A Two-Round Protocol for Single-Output Functionalities

Let F = {Fk}k∈N be a non-reactive, polynomial-sized, two-party functionality

that provides output to a single party, say P1. To simplify matters, we assume

that F is deterministic; randomized functionalities can be handled using standard

tools [Gol04, Prop. 7.4.4]. Without loss of generality, assume that Fk takes two k-

bit inputs and produces a k-bit output (the protocol easily extends to input/output

lengths polynomial in k). Let GroupGen be a group generator as in Section 4.1.5; re-

call our simplifying assumption that the order q of the group generated by GroupGen
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on security parameter k is such that |q| ≥ k.

In this section, we describe a two round protocol for computing such F in the

UC setting. Informally, our protocol proceeds as follows. Recall that in oblivious

transfer, a receiver chooses and obtains one of two strings held by a sender, such

that the sender “learns nothing” about the receiver’s choice (preserving the receiver’s

privacy) while the receiver “learns nothing” about the second string (preserving the

sender’s privacy). The first round of our protocol is used to set up k instances of

oblivious transfer. The second round is used to communicate a “garbled circuit” per

Yao’s construction, and for completing the oblivious-transfer of circuit input-wire

labels that correspond to P1’s input (cf. Section 4.1.4).

To gain more intuition, we sketch a single oblivious transfer instance, assuming

both parties are honest (the actual construction accounts for possibly malicious

behavior by the parties with the aid of zero-knowledge). Let G be a group and g a

generator, provided by GroupGen as above. To obtain the label corresponding to an

input xi for wire i, P1 picks elements a, b uniformly at random from G and sends P2

a tuple (u = ga, v = gb, w = gc), where c is set to ab if xi = 0, to (ab− 1) otherwise.

Note that if the DDH problem is hard for GroupGen, P2 will not be able to tell a

tuple generated for xi = 0 from one generated for xi = 1, preserving P1’s privacy.

Let Zi,σ be the label corresponding to input bit σ for wire i. P2 selects r0, s0, r1, s1

uniformly at random from G, and sends P1 two pairs as follows:

(K0 = ur0 · gs0 , C0 = wr0 · vs0 · Zi,0) ; and

(K1 = ur1 · gs1 , C1 = (g · w)r1 · vs1 · Zi,1).

It is easy to verify that P1 can obtain Zi,xi
by computing K−b

xi
· Cxi

. Moreover, it
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can be shown that the tuple (K1−xi
, C1−xi

) is uniformly distributed (over the choice

of r1−xi
, s1−xi

), and therefore P1 “learns nothing” (information-theoretically) about

the label corresponding to input (1− xi) for wire i, preserving P2’s privacy.

In the following, we describe our two-round protocol πF for UC realizing F in

the FZK-hybrid model. In our description, we always let i range from 1 to k and σ

range from 0 to 1.

Common Reference String: On security parameter k ∈ N, the CRS is (G, q, g) R←

GroupGen(k).

First Round: P1 on inputs k ∈ N, x = x1 . . . xk ∈ {0, 1}k and sid, proceeds as

follows:

1. For every i, chooses ai, bi uniformly at random from Zq, sets:

ci =


aibi xi = 0

aibi − 1 otherwise,

and lets ui = gai , vi = gbi , wi = gci .

2. P1 sends

(ZK-prover, sid ◦ 1, ({ui, vi, wi}i , (G, q, g), k), (x, {ai, bi}i))

to F1
ZK, where F1

ZK is parameterized by the relation:

R1 =


(({ui, vi, wi}i , (G, q, g), k), (x, {ai, bi}i))

∣∣∣∣∣∣∣∣∣∣∣∣

∀i, ui = gai , vi = gbi , wi = gci ,

where ci =


aibi xi = 0

aibi − 1 otherwise


and is set up such that P1 is the prover and P2 is the verifier.
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Second Round: P2, on inputs k ∈ N, y = y1 . . . yk ∈ {0, 1}k and sid, and upon

receiving

(ZK-proof, sid ◦ 1, ({ui, vi, wi}i , (G
′, q′, g′), k′))

from F1
ZK, first verifies that G ′ = G, q′ = q, g′ = g and k′ = k. If any of these

conditions fail, P2 ignores the message. Otherwise, it proceeds as follows:

1. Generates a “garbled circuit” (cf. Section 4.1.4) for Fk, based on its own input

y. This involves choosing random coins Ω and computing (Circuit, {Zi,σ}i,σ)←

Yao1(k, Fk, y; Ω).

2. For every i and σ, chooses ri,σ, si,σ uniformly at random from Zq, and sets:

Ki,0 = u
ri,0

i · gsi,0 , Ci,0 = w
ri,0

i · vsi,0

i · Zi,0;

Ki,1 = u
ri,1

i · gsi,1 , Ci,1 = (g · wi)
ri,1 · vsi,1

i · Zi,1.

3. SendsZK-prover, sid ◦ 2,

 Circuit, {Ki,σ, Ci,σ}i,σ

(G, q, g), k, {ui, vi, wi}i

 ,

 y,Ω, {Zi,σ}i,σ

{ri,σ, si,σ}i,σ




to F2
ZK, where F2

ZK is parameterized by the relation:

R2 =





Circuit

{Ki,σ, Ci,σ}i,σ

(G, q, g), k

{ui, vi, wi}i

,

y, Ω

{Zi,σ}i,σ

{ri,σ, si,σ}i,σ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Circuit, {Zi,σ}i,σ) = Yao1(k, Fk, y; Ω)

∧∀i,

Ki,0 = u
ri,0

i · gsi,0 , Ci,0 = w
ri,0

i · vsi,0

i · Zi,0;

Ki,1 = u
ri,1

i · gsi,1 , Ci,1 = (g · wi)ri,1 · vsi,1

i · Zi,1


and is set up such that P2 is the prover and P1 is the verifier.

Output Computation: P1, upon receipt of message

(ZK-proof, sid ◦ 2, (Circuit, {Ki,σ, Ci,σ}i,σ , (G
′, q′, g′), k′, {u′i, v′i, w′

i}i))
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from F2
ZK, first verifies that G ′ = G, q′ = q, g′ = g, k′ = k and {u′i, v′i, w′

i}i =

{ui, vi, wi}i. If any of these conditions fail, P1 ignores the message. Otherwise, it

completes the protocol by computing Zi
def
= K−bi

i,xi
·Ci,xi

, computing v ← Yao2(k,Circuit, {Zi}i)

and reporting v as output if v 6= ⊥.

Concrete round complexity. When composed with the non-interactive protocol

of De Santis et al. [DDO+01] UC-realizing FZK, our protocol takes two commu-

nication rounds. Its security now additionally rests on the existence of enhanced

trapdoor permutations.

Security. We forgo the analysis here — the protocol may be viewed as a degenerate

version of the construction we present and analyze next.

Compiling the protocol into one computing two-output functionalities.

The protocol may be compiled into one that securely computes functionalities pro-

viding output to both parties at the cost of an additional round of communication

using standard techniques [Gol04, Prop. 7.2.11].

4.2.2 A Two-Round Protocol for Two-Output Functionalities

Let F =
{
Fk

def
= (F 1

k , F
2
k )

}
k∈N

be a non-reactive, polynomial-sized, two-party

functionality such that P1 wishes to obtain F 1
k (x, y) and P2 wishes to obtain F 2

k (x, y)

when P1 holds x and P2 holds y. Without loss of generality, assume once more that

F is deterministic; that x, y and the outputs of F 1
k , F

2
k are k-bit strings; and that

the order q of a group generated by GroupGen on security parameter k is such that

|q| ≥ k; see Section 4.2.1.
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The protocol of the preceding section provides means to securely compute a

functionality that provides output to one of the parties, in two rounds. To securely-

compute our two-output functionality Fk = (F 1
k , F

2
k ), we run one instance of that

protocol such that P1 receives F 1
k (with a first-round message originating from P1

and a second-round message from P2), and a second instance such that P2 receives

F 2
k (with a first-round message originating from P2 and a second-round message

from P1); if we allow the parties to transmit messages simultaneously in any given

round, this yields a two-round protocol. All that’s left to ensure is that each party

enters both instances of the protocol with the same input; we have the relation pa-

rameterizing the second-round zero-knowledge functionality enforce this condition1.

Below, we describe our two-round protocol πF for UC realizing F in the FZK-

hybrid model when parties are allowed to send messages simultaneously in any given

round. We describe our protocol from the perspective of P1; P2 behaves analogously

(i.e., the protocol is symmetric). In the description, we always let i range from 1 to

k and σ range from 0 to 1.

Common Reference String: On security parameter k ∈ N, the CRS is (G, q, g) R←

GroupGen(k).

First Round: P1 on inputs k ∈ N, x = x1 . . . xk ∈ {0, 1}k and sid, proceeds as

1Alternatively, we can make the following modifications to the protocol of the preceding section:

each party will add a commitment to its input to its original protocol message, and modify its

zero-knowledge assertion to reflect that it has constructed the original message with an input that

is consistent with the commitment. Two instances of this protocol can now be run in parallel as

above without further modifications (note that the second-round commitments become redundant).
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follows:

1. For every i, chooses ai, bi uniformly at random from Zq, sets:

ci =


aibi xi = 0

aibi − 1 otherwise,

and lets ui = gai , vi = gbi , wi = gci .

2. Sends

(ZK-prover, sid ◦ 1 ◦ P1, ({ui, vi, wi}i , (G, q, g), k), (x, {ai, bi}i))

to F1,P1→P2

ZK , where F1,P1→P2

ZK is parameterized by the relation:

R1 =


(({ui, vi, wi}i , (G, q, g), k), (x, {ai, bi}i))

∣∣∣∣∣∣∣∣∣∣∣∣∣

∀i, ui = gai , vi = gbi , wi = gci ,

where ci =


aibi xi = 0

aibi − 1 otherwise


and is set up such that P1 is the prover and P2 is the verifier.

Second Round: Upon receiving the symmetric first-round message

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G
′, q′, g′), k′))

from F1,P2→P1

ZK (defined analogously to F1,P1→P2

ZK using the relation R1, but set up

such that P2 is the prover and P1 is the verifier), P1 verifies that G ′ = G, q′ = q, g′ = g

and k′ = k. If any of these conditions fail, P1 ignores the message. Otherwise, it

proceeds as follows:
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1. Generates a “garbled circuit” (cf. Section 4.1.4) for F 2
k , based on its own input

x. This involves choosing random coins Ω and computing (Circuit, {Zi,σ}i,σ)←

Yao1(k, F
2
k , x; Ω).

2. For every i and σ, chooses ri,σ, si,σ uniformly at random from Zq, and sets:

Ki,0 = ū
ri,0

i · gsi,0 , Ci,0 = w̄
ri,0

i · v̄si,0

i · Zi,0;

Ki,1 = ū
ri,1

i · gsi,1 , Ci,1 = (g · w̄i)
ri,1 · v̄si,1

i · Zi,1.

3. SendsZK-prover, sid ◦ 2 ◦ P1,


Circuit, {Ki,σ, Ci,σ}i,σ

(G, q, g), k, {ūi, v̄i, w̄i}i

{ui, vi, wi}i

 ,


x,Ω, {Zi,σ}i,σ

{ri,σ, si,σ}i,σ

{ai, bi}i




to F2,P1→P2

ZK , where F2,P1→P2

ZK is parameterized by the relation:

R2 =





Circuit

{Ki,σ, Ci,σ}i,σ

(G, q, g), k

{ūi, v̄i, w̄i}i

{ui, vi, wi}i

,

x,Ω

{Zi,σ}i,σ

{ri,σ, si,σ}i,σ

{ai, bi}i



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Circuit, {Zi,σ}i,σ) = Yao1(k, F 2
k , x; Ω)

∧ ∀i,

Ki,0 = ū
ri,0

i · gsi,0 , Ci,0 = w̄
ri,0

i · v̄si,0

i · Zi,0

Ki,1 = ū
ri,1

i · gsi,1 , Ci,1 = (g · w̄i)ri,1 · v̄si,1

i · Zi,1

∧ ∀i, ui = gai , vi = gbi , wi = gci ,

where ci =


aibi xi = 0

aibi − 1 otherwise


and is set up such that P1 is the prover and P2 is the verifier.

Output Computation: Upon receiving the symmetric second-round message

(ZK-proof, sid◦2◦P2, (Circuit,
{
K̄i,σ, C̄i,σ

}
i,σ
, (G ′, q′, g′), k′, {u′i, v′i, w′

i}i , {ū
′
i, v̄

′
i, w̄

′
i}i))
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from F2,P2→P1

ZK (defined analogously to F2,P1→P2

ZK using the relation R2, but set up

such that P2 is the prover and P1 is the verifier), P1 verifies that G ′ = G, q′ = q, g′ =

g, k′ = k, that {u′i, v′i, w′
i}i = {ui, vi, wi}i and that {ū′i, v̄′i, w̄′

i}i = {ūi, v̄i, w̄i}i. If

any of these conditions fail, P1 ignores the message. Otherwise, it completes the

protocol by computing Z̄i
def
= K̄−bi

i,xi
· C̄i,xi

, computing v ← Yao2(k,Circuit,
{
Z̄i

}
i
) and

reporting v as output if v 6= ⊥.

Concrete round complexity. When composed with the non-interactive protocol

of De Santis et al. [DDO+01] realizing FZK, the protocol takes two rounds of commu-

nication; its security now additionally requires the existence of enhanced trapdoor

permutations.

Theorem 4.2.1. Assuming that the DDH problem is hard for GroupGen, the above

protocol UC-realizes F in the FZK-hybrid model (in the presence of static adver-

saries).

Let A be a (static) adversary operating against πF in the FZK-hybrid model.

To prove the theorem, we construct a simulator S such that no environment Z can

tell with a non-negligible probability whether it is interacting with A and P1, P2

running πF in the FZK-hybrid model or with S and P̃1, P̃2 in the ideal process for F .

S will internally run a copy of A, “simulating” for it an execution of πF in the FZK-

hybrid model (by simulating an environment, a CRS, ideal FZK functionalities and

parties P1, P2) that matches S’s view of the ideal process; S will use A’s actions to

guide its own in the ideal process. We refer to an event as occurring in the internal

simulation if it happens within the execution environment that S simulates for A.
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We refer to an event as occurring in the external process if it happens within the

ideal process, in which S is participating.

For clarity, we group S’s actions according to the subset of parties that A has

corrupted. Recall that S is given a security parameter k ∈ N. S proceeds as follows:

Initial activation: S sets the (simulated) CRS to be (G, q, g) R← GroupGen(k). It

copies the input value written by Z on its own input tape onto A’s input tape

and activates A. If A corrupts party Pi (in the internal simulation), S corrupts

P̃i (in the external process). When A completes its activation, S copies the

output value written by A on its output tape to S’s own output tape, and

ends its activation.

P2 only is corrupted: Upon activation, S copies the input value written by Z on its

own input tape onto A’s input tape. In addition, if P̃1 has added a message

(F -input1, sid, ·) for F to its outgoing communication tape (in the external

process; recall that S can only read the public headers of messages on the

outgoing communication tapes of uncorrupted dummy parties), S, for every

i, chooses ai, bi uniformly at random from Zq, sets ui = gai , vi = gbi , wi = gaibi

for future use, and adds a message (ZK-prover, sid ◦ 1 ◦ P1,⊥,⊥) for F1,P1→P2

ZK

to P1’s outgoing communication tape (in the internal simulation; recall that A

will only be able to read the public header of a message intended for FZK on

the outgoing communication tape of an uncorrupted party in the FZK-hybrid

model). S then activates A.

Upon completion of A’s activation, S acts as follows:
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1. If A delivered the message (ZK-prover, sid ◦ 1 ◦ P1,⊥,⊥) from P1 to

F1,P1→P2

ZK (in the internal simulation), S adds the message

(ZK-proof, sid ◦ 1 ◦ P1, ({ui, vi, wi}i , (G, q, g), k))

for P2 and A to F1,P1→P2

ZK ’s outgoing communication tape (in the internal

simulation). Informally, S constructs the message from F1,P1→P2

ZK to P2

and A (in the internal simulation) in accordance with πF , except that it

always lets wi be gaibi .

2. If A delivered a message

(ZK-prover, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G
′, q′, g′), k′), (y,

{
āi, b̄i

}
i
))

from P2 to F1,P2→P1

ZK (in the internal simulation), S verifies that

(({ūi, v̄i, w̄i}i , (G
′, q′, g′), k′), (y,

{
āi, b̄i

}
i
)) ∈ R1.

If the verification fails, S does nothing. Otherwise, S adds the message

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G
′, q′, g′), k′))

for P1 and A to F1,P2→P1

ZK ’s outgoing communication tape (in the internal

simulation), and delivers the message (F -input2, sid, y) from (the cor-

rupted) P̃2 to F (in the external simulation). S records the values y and

{ūi, v̄i, w̄i}i.

3. If A delivered the message

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G
′, q′, g′), k′))
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from F1,P2→P1

ZK to P1 (in the internal simulation), S first verifies that

P̃1 has a message (F -input1, sid, ·) for F on its outgoing communication

tape (in the external process) and that G ′ = G, q′ = q, g′ = g and k′ = k.

If any of these fail, S does nothing. Otherwise, it adds the message

(ZK-prover, sid◦2◦P1,⊥,⊥) for F2,P1→P2

ZK to P1’s outgoing communication

tape (in the internal simulation), delivers (F -input1, sid, ·) from P̃1 to F

(in the external process), and notes to itself that the Round-1 message

from F1,P2→P1

ZK to P1 (in the internal simulation) has been delivered. Note

that once the activation of S will be complete, F will be in possession of

both its inputs and will be activated next (in the external process).

4. If A delivered the message (ZK-prover, sid ◦ 2 ◦ P1,⊥,⊥) from P1 to

F2,P1→P2

ZK , S proceeds as follows. First note that at this point, we are

guaranteed that two inputs were delivered to F and that F has been ac-

tivated subsequently (in the external process); therefore, F has written

a message (F -output2, sid, v) for P̃2 on its outgoing communication tape

(in the external process; note that S may read the contents of a mes-

sage from F to a corrupted party). Also note that at this point, S has

recorded values y and {ūi, v̄i, w̄i}i sent by (the corrupted) P2 in its first-

round message to F1,P2→P1

ZK . S produces a simulated “garbled circuit”

and input-wire labels using F 2
k , y and v (cf. Section 4.1.4) by computing

(Circuit, {Zi}i)
R← Yao-Sim(k, F 2

k , y, v). For every i, it chooses ri,yi
, si,yi
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uniformly at random from Zq, sets:

Ki,yi
= ū

ri,yi
i · gsi,yi

Ci,yi
=


w̄

ri,yi
i · v̄si,yi

i · Zi if yi = 0

(g · w̄i)
ri,yi · v̄si,yi

i · Zi otherwise,

and sets Ki,1−yi
, Ci,1−yi

to be elements selected uniformly at random from

G. It then adds the messageZK-proof, sid ◦ 2 ◦ P1,

Circuit, {Ki,σ, Ci,σ}i,σ

(G, q, g), k, {ūi, v̄i, w̄i}i

{ui, vi, wi}i


for P2 andA to the outgoing communication tape of F2,P1→P2

ZK . Informally,

S constructs the message in accordance with πF , except that it uses

simulated circuit and input wire labels, and sets {Ki,1−yi
, Ci,1−yi

}i to be

uniform elements in G.

5. If A delivered a messageZK-prover, sid ◦ 2 ◦ P2 ,

Circuit,
{
K̄i,σ, C̄i,σ

}
i,σ

(G ′, q′, g′), k′, {u′i, v′i, w′
i}i

{ū′i, v̄′i, w̄′
i}i

,

y′, Ω̄,
{
Z̄i,σ

}
i,σ

{r̄i,σ, s̄i,σ}i,σ{
ā′i, b̄

′
i

}
i


from A to F2,P2→P1

ZK (in the internal simulation), S verifies that
Circuit,

{
K̄i,σ, C̄i,σ

}
i,σ

(G ′, q′, g′), k′, {u′i, v′i, w′
i}i

{ū′i, v̄′i, w̄′
i}i

,

y′, Ω̄,
{
Z̄i,σ

}
i,σ

{r̄i,σ, s̄i,σ}i,σ{
ā′i, b̄

′
i

}
i

 ∈ R2.
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If the verification fails, S does nothing. Otherwise, S adds the messageZK-proof, sid ◦ 2 ◦ P2,

Circuit,
{
K̄i,σ, C̄i,σ

}
i,σ

(G ′, q′, g′), k′, {u′i, v′i, w′
i}i

{ū′i, v̄′i, w̄′
i}i


for P1 and A to F2,P2→P1

ZK ’s outgoing communication tape (in the internal

simulation).

6. If A delivered the messageZK-proof, sid ◦ 2 ◦ P2,

Circuit,
{
K̄i,σ, C̄i,σ

}
i,σ

(G ′, q′, g′), k′, {u′i, v′i, w′
i}i

{ū′i, v̄′i, w̄′
i}i


from F2,P2→P1

ZK to P1 (in the internal simulation), S first checks whether

a Round-1 message from F1,P2→P1

ZK to P1 (in the internal simulation) has

been delivered, per Item 3 above; if not, S does nothing. Otherwise,

we are guaranteed that two inputs were delivered to F , and that F has

subsequently been activated and written a message (F -output1, sid, ·) for

P̃1 on its outgoing communication tape (in the external process). S

verifies that G ′ = G, q′ = q, g′ = g, k′ = k, that {u′i, v′i, w′
i}i = {ui, vi, wi}i

and that {ū′i, v̄′i, w̄′
i}i = {ūi, v̄i, w̄i}i (intuitively, the checks, along with

those performed by S on behalf of F2,P2→P1

ZK per Item 5 above, guarantee

that (the corrupted) P2 has used the same input consistently in both

rounds, i.e., that y′ = y); if so, S delivers the message (F -output1, sid, ·)

from F to P̃1 (in the external process).
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After performing one of the above (if any), S copies the output value written

by A on its output tape to S’s own output tape, and ends its activation.

P1 only is corrupted: Symmetric to the case where P2 only is corrupted.

P1, P2 are both corrupted: Informally, S need only pass messages between Z and A,

and simulate FZK for A. Specifically, upon activation, S copies the input value

written by Z on its own input tape (in the external process) onto A’s input

tape and activates A (in the internal simulation). Upon the completion of A’s

activation, S proceeds as follows: if A delivered a message (ZK-prover, sid ◦

` ◦ Pi, x̂, ŵ) from Pi to F `,Pi→Pj

ZK , S verifies that (x̂, ŵ) ∈ R`. If the verification

fails, S does nothing; otherwise, it adds the message (ZK-proof, sid ◦ ` ◦ Pi, x̂)

for Pj and A to the outgoing communication tape of F `,Pi→Pj

ZK . S copies the

output value written by A on its output tape to S’s own output tape, and

ends its activation.

Neither P1 nor P2 is corrupted: Informally, S need only pass messages between Z

and A, and deliver messages in the external process in accordance to mes-

sage delivery by A in the internal simulation. Specifically, upon activation,

S copies the input value written by Z on its own input tape onto A’s input

tape. In addition, if P̃i has added a message (F -inputi, sid, ·) for F to its

outgoing communication tape (in the external process; recall that S can only

read the public headers of messages on the outgoing communication tapes of

uncorrupted dummy parties), S adds a message (ZK-prover, sid ◦ 1 ◦ Pi,⊥,⊥)

for F1,Pi→Pj

ZK to Pi’s outgoing communication tape (in the internal simulation;
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recall that A will only be able to read the public header of a message in-

tended for FZK on the outgoing communication tape of an uncorrupted party

in the FZK-hybrid model), where Pj is Pi’s partner (i.e., Pj = P(3−i)). S then

activates A.

Upon completion of A’s activation, S acts as follows:

1. IfA delivered the message (ZK-prover, sid◦1◦Pi,⊥,⊥) from Pi to F1,Pi→Pj

ZK

(in the internal simulation), S adds the message (ZK-proof, sid◦1◦Pi,⊥)

for Pj and A to the outgoing communication tape of F1,Pi→Pj

ZK (in the

internal simulation).

2. IfA delivered the message (ZK-proof, sid◦1◦Pi,⊥) from F1,Pi→Pj

ZK to Pj (in

the internal simulation), note first thatAmust have delivered the message

(ZK-prover, sid ◦ 1 ◦Pi,⊥,⊥) from Pi to F1,Pi→Pj

ZK (in the internal simula-

tion) per Item 1 above, and so it must be the case that P̃i has a message

(F -inputi, sid, ·) for F on its outgoing communication tape (in the exter-

nal process). S verifies that P̃j has added a message (F -inputj, sid, ·) for

F to its outgoing communication tape (in the external process). If not, S

does nothing. Otherwise, it adds the message (ZK-prover, sid◦2◦Pj,⊥,⊥)

for F2,Pj→Pi

ZK to the outgoing communication tape of Pj (in the internal

simulation), delivers the message (F -inputi, sid, ·) from P̃i to F (in the

external process), and notes to itself that the Round-1 message from

F1,Pi→Pj

ZK to Pj (in the internal simulation) has been delivered.

3. IfA delivered the message (ZK-prover, sid◦2◦Pi,⊥,⊥) from Pi to F2,Pi→Pj

ZK
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(in the internal simulation), S adds the message (ZK-proof, sid◦2◦Pi,⊥)

for Pj and A to the outgoing communication tape of F2,Pi→Pj

ZK (in the

internal simulation).

4. If A delivered the message (ZK-proof, sid ◦ 2 ◦ Pi,⊥) from F2,Pi→Pj

ZK to

Pj, note first that A must have delivered the message (ZK-prover, sid ◦

2 ◦ Pi,⊥,⊥) from Pi to F2,Pi→Pj

ZK (in the internal simulation) per Item 3

above, and so that the Round-1 message from F1,Pj→Pi

ZK to Pi (in the in-

ternal simulation) has been delivered as well, per Item 2; therefore, S

must have delivered the message (F -inputj, sid, ·) from P̃j to F (in the

external process) per Item 2. S verifies that the Round-1 message from

F1,Pi→Pj

ZK to Pj (in the internal simulation) has been delivered per Item 2;

if not, S does nothing. Otherwise, we are guaranteed that S has deliv-

ered the message (F -inputi, sid, ·) from P̃i to F (in the external process)

per Item 2 as well. As both inputs were delivered to F and F has been

subsequently activated (in the external process), F has written a mes-

sage (F -outputj, sid,⊥) for P̃j on its outgoing communication tape (in

the external process). S delivers (F -outputj, sid,⊥) from F to P̃j (in the

external process).

After performing one of the above (if any), S copies the output value written

by A on its output tape to S’s own output tape, and ends its activation.

This completes the description of S. All that is left to be shown is that no environ-

ment Z can tell with a non-negligible probability whether it is interacting with A
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and P1, P2 running πF in the FZK-hybrid model or with S and P̃1, P̃2 in the ideal

process for F . We focus on the case where A corrupts one of the parties, say P2.

The case where A corrupts P1 is symmetric, and the cases where either or neither

of the parties are corrupted are straightforward. Formally, we claim the following:

Lemma 4.2.2. Let A be a (static) adversary that corrupts P2 only, and let S be as

above. Then for any Z,

EXECFZK
πF ,A,Z

c
≈ IDEALF ,S,Z . (4.1)

Loosely speaking, when P2 only is corrupted, the following differences between

a real-life execution of πF among P1, P2 in the FZK-hybrid model and the ideal

process for F among P̃1, P̃2 may be noted: (1) in the former, P1 computes its

output based on a “garbled circuit” and obliviously-transferred input-wire labels

corresponding to its input, received in the second round of the protocol, while in

the latter, P̃1 receives its output from F based on the value y that S obtained

while simulating F1,P2→P1

ZK for the first round of the protocol; (2) in the former, the

first round message from F 1,P1→P2

ZK to P2 contains values wi = gci where ci = aibi

when xi = 0, ci = aibi − 1 when xi = 1; while in the latter, the message (in the

internal simulation) contains wi = gaibi for all i; (3) in the former, the second-

round message from F2,P1→P2

ZK to P2 contains values Ki,(1−yi), Ci,(1−yi) computed as

in the specification of the protocol, while in the latter, those values (in the internal

simulation) are chosen uniformly at random from G; and (4) in the former, Yao1 is

used to compute the “garbled circuit” and input-wire labels for the second-round

message from F2,P1→P2

ZK to P2, while in the latter, Yao-Sim is used for that purpose,
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based on P2’s output from F(x, y), where y was obtained by S while simulating

F 1,P2→P1

ZK for the first round of the protocol.

Nevertheless, we claim that Equation 4.1 holds, based on (1) the correctness

of Yao’s “garbled circuit” technique, the correctness of the oblivious transfer pro-

tocol and the enforcement of parties entering the two rounds of the protocol with

a consistent input; (2) the hardness of the DDH assumption for GroupGen; (3) the

uniformity of Ki,(1−yi), Ci,(1−yi) per πF in G; and (4) the security Yao’s construction.

We proceed with a formal proof.

Proof (of lemma). We prove the lemma by defining an intermediate sequence of

probabilistic games between the distributions in Equation 4.1 and showing that any

two subsequent games in the sequence are (at most) computationally-indistinguishable.

GAME0. Let GAME0 denote EXECFZK
πF ,A,Z .

GAME1. Let GAME1
def
= EXEC

 
F1,P1→P2

ZK , F1,P2→P1
ZK-pass

F2,P1→P2
ZK , F2,P2→P1

ZK

!
π1,A,Z , where:

• F1,P2→P1

ZK-pass acts precisely like F1,P2→P1

ZK , except that for an incoming message

(ZK-prover, sid ◦ 1 ◦ P2, x̂, ŵ)

from P2 such that (x̂, ŵ) ∈ R1, it sends (ZK-proof, sid ◦ 1 ◦P2, x̂) along with ŵ

to P1 and the adversary.

• π1 is identical to πF , except that here the parties use F1,P2→P1

ZK-pass (instead of

F1,P2→P1

ZK ) for first-round communication originating from P2. In addition: (1)

upon receiving the first-round message

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G
′, q′, g′), k′))
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along with (y,
{
āi, b̄i

}
i
) from F1,P2→P1

ZK-pass , P1 performs the same checks as πF

instructs (on the onset of the second round), but also records y if they pass; and

(2) upon receiving the second-round message from F2,P2→P1

ZK , P1 performs the

same checks as πF instructs (in the output computation phase), but outputs

F 1
k (x, y) (where x is P1’s input).

We claim that GAME0 and GAME1 are identical. First, observe that the

adversary has no access to the contents of a message for P1 from either F1,P2→P1

ZK

in GAME0 or from F1,P2→P1

ZK-pass in GAME1, and therefore cannot tell one (not con-

taining a witness) from the other (containing the witness). The rest of the claim

follows from the correctness of the OT protocol, the correctness of Yao’s construc-

tion (cf. Section 4.1.4) and the enforcing of (the corrupted) P2 to enter both rounds

of the protocol with a consistent input. More precisely, note that the only difference

left between the executions is in the computation of P1’s output. Observe that if

the output computation phase is reached in GAME0 (resp. in GAME1), we are

guaranteed that:

1. The values {ui, vi, wi}i were constructed as specified in πF (in both games);

2. A delivered a message

(ZK-prover, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G, q, g), k), (y,
{
āi, b̄i

}
i
))

from (the corrupted) P2 to F1,P2→P1

ZK (resp. to F1,P2→P1

ZK-pass ) such that

(({ūi, v̄i, w̄i}i , (G, q, g), k), (y,
{
āi, b̄i

}
i
)) ∈ R1; (4.2)
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3. A delivered

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G, q, g), k))

(along with (y,
{
āi, b̄i

}
i
)) in GAME1) from F1,P2→P1

ZK (resp. from F1,P2→P1

ZK-pass ) to

P1;

4. A delivered a messageZK-prover, sid ◦ 2 ◦ P2 ,

Circuit,
{
K̄i,σ, C̄i,σ

}
i,σ

(G, q, g), k, {ui, vi, wi}i

{ūi, v̄i, w̄i}i

,

y′, Ω̄,
{
Z̄i,σ

}
i,σ

{r̄i,σ, s̄i,σ}i,σ{
ā′i, b̄

′
i

}
i


from (the corrupted) P2 to F2,P2→P1

ZK such that
Circuit,

{
K̄i,σ, C̄i,σ

}
i,σ

(G, q, g), k, {ui, vi, wi}i

{ūi, v̄i, w̄i}i

,

y′, Ω̄,
{
Z̄i,σ

}
i,σ

{r̄i,σ, s̄i,σ}i,σ{
ā′i, b̄

′
i

}
i

 ∈ R2; and (4.3)

5. A delivered

(ZK-proof, sid◦2◦P2, (Circuit,
{
K̄i,σ, C̄i,σ

}
i,σ
, (G, q, g), k, {ui, vi, wi}i , {ūi, v̄i, w̄i}i))

from F2,P2→P1

ZK to P1.

(The above implicitly takes into account the consistency verifications that P1 per-

forms in both πF and π1 at the onset of the second round and prior to the output

computation.)

We first note that in both executions, since for all i,

ūi = gāi , v̄i = gb̄i , w̄i =


gāib̄i yi = 0

gāib̄i−1 otherwise
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per Equation 4.2, and since for all i,

ūi = gā′i , v̄i = gb̄′i , w̄i =


gā′ib̄

′
i y′i = 0

gā′ib̄
′
i−1 otherwise

per Equation 4.3 — it must be the case that y′ = y.

Next, note that by Equation 4.3 we have that in both executions, (Circuit,
{
Z̄i,σ

}
i,σ

) =

Yao1(k, F
1
k , y

′; Ω̄). Furthermore, Equation 4.3 and the proper construction of the val-

ues {ui, vi, wi}i guarantees that for any i, if xi = 0,

Z̄i
def
= K̄−bi

i,xi
· C̄i,xi

= (u
r̄i,0

i · gs̄i,0)−bi · (wr̄i,0

i · vs̄i,0

i · Z̄i,0)

= (gair̄i,0 · gs̄i,0)−bi · (gaibir̄i,0 · gbis̄i,0 · Z̄i,0) = Z̄i,0,

and if xi = 1,

Z̄i
def
= K̄−bi

i,xi
· C̄i,xi

= (u
r̄i,1

i · gs̄i,1)−bi · ((g · wi)
r̄i,1 · vs̄i,1

i · Z̄i,1)

= (gair̄i,1 · gs̄i,1)−bi · (gaibir̄i,1 · gbis̄i,1 · Z̄i,1) = Z̄i,1;

in other words, for any i, Z̄i = Z̄i,xi
. In GAME0, P1 outputs Yao2(k,Circuit,

{
Z̄i

}
i
),

which therefore equals Yao2(k,Circuit,
{
Z̄i,xi

}
i
). In GAME1, P1 outputs F 1

k (x, y) =

F 1
k (x, y′). But by the correctness property of Yao’s construction, these are equal.

GAME2. Next, let GAME2
def
= EXEC

 
FP1→P2

ZK-consult, F
1,P2→P1
ZK-pass

F2,P1→P2
ZK , F2,P2→P1

ZK

!
π2,A,Z , where:

• FZK-consult mimics the input/output behavior of FZK, but is controlled by the

prover and produces an on-the-fly “proof” for a statement x̂ without ever

seeing a witness ŵ such that (x̂, ŵ) ∈ R. In particular, on a (dummy) incoming
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message (ZK-prover, sid, ·, ·), FP1→P2
ZK-consult asks the prover P1 for x̂ and sends

(ZK-proof, sid, x̂) to the verifier P2 and the adversary.

• π2 is identical to π1, except that here the parties use FP1→P2
ZK-consult for first-round

communication originating at P1, as follows. In the first round, P1 sends a

(dummy) message (ZK-prover, sid◦1◦P1,⊥,⊥) to FP1→P2
ZK-consult. When the latter

asks for a statement to be “proven”, P1 provides:

x̂ = ({ui, vi, wi}i , (G, q, g), k)),

computed precisely as in π1. In effect, P1 in π2 provides the functionality with

the exact same statement to be proven as in π1, but without the witness.

We claim that GAME1 is identical to GAME2. To see this, note that (1)

the adversary does not have access to the contents of the first-round message from

P1 to either F1,P1→P2

ZK in GAME1 or to FP1→P2
ZK-consult in GAME2, and therefore cannot

distinguish one (with contents) from the other (with dummy contents); and (2) the

adversary cannot distinguish the outgoing message F1,P1→P2

ZK produces in GAME1

from the message FP1→P2
ZK-consult produces in GAME2, as they are identically distributed

(in GAME1, the message contains the statement x̂, where x̂ was provided with ŵ

such that (x̂, ŵ) ∈ R1; in GAME2, the message contains a statement computed in

the exact same way, and is therefore identically distributed). We conclude that Z

cannot distinguish between the games, as claimed.

GAME3. Let GAME3
def
= EXEC

 
FP1→P2

ZK-consult, F
1,P2→P1
ZK-pass

F2,P1→P2
ZK , F2,P2→P1

ZK

!
π3,A,Z , where

• π3 is identical to π2, except that in the first round, when F1,P1→P2

ZK-consult asks P1
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for a first-round statement to be “proven”, P1 provides

x̂ = ({ui, vi, wi}i , (G, q, g), k),

where the values {ui, vi, wi}i are computed as in π2, except that P1 sets wi =

gaibi for all i (as opposed to setting wi to gaibi when xi = 0 and to gaibi−1 when

xi = 1, as is done in π2).

We now claim that GAME2
c
≈ GAME3. By a standard hybrid argument,

it suffices to show that GAME
(i∗−1)
2

c
≈ GAMEi∗

2 for some 0 < i∗ ≤ k, where

GAME
(i∗−1)
2

def
= EXEC

 
FP1→P2

ZK-consult, F
1,P2→P1
ZK-pass

F2,P1→P2
ZK , F2,P2→P1

ZK

!
π

(i∗−1)
2 ,A,Z

, GAMEi∗

2
def
= EXEC

 
FP1→P2

ZK-consult, F
1,P2→P1
ZK-pass

F2,P1→P2
ZK , F2,P2→P1

ZK

!
πi∗
2 ,A,Z ,

and:

• πj
2 is identical to π2, aside from the following. Let i1, . . . ij be the first j

coordinates on which x, the input to P1, is equal to 1. When FP1→P2
ZK-consult asks

P1 for a first-round statement to be “proven”, P1 provides

x̂ = ({ui, vi, wi}i , (G, q, g), k),

where the values {ui, vi, wi}i are computed as in π2, except that for any ` ∈

{i1, . . . ij}, P1 sets w` = ga`b` (as opposed to setting w` = ga`b`−1 as in π2).

Intuitively, GAME
(i∗−1)
2

c
≈ GAMEi∗

2 by the hardness of the DDH problem for GroupGen.

Specifically, assume Z,A attempt to distinguish the said games; we construct an al-

gorithm D that attacks the hardness of the DDH problem for GroupGen. Algorithm

D on input (k, z,G, q, g, u, v, w) sets an internal (simulated) CRS to (G, q, g). It then

invokes Z(z) and A, simulating for them the functionalities FP1→P2
ZK-consult,F

1,P2→P1

ZK-pass ,
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F2,P1→P2

ZK and F2,P2→P1

ZK and an honest P1 running π
(i∗−1)
2 in a straightforward man-

ner, with the following caveat:

• In the simulation of FP1→P2
ZK-consult, when FP1→P2

ZK-consult asks (the simulated) P1 for a

first-round statement to be “proven”, D provides

x̂ = ({ui, vi, wi}i , (G, q, g), k),

where the values {ui, vi, wi}i are computed precisely as in π
(i∗−1)
2 for all i,

except for the i∗’s coordinate on which x is 1; call this coordinate ii∗ . For this

coordinate, D sets uii∗ = u, vii∗ = v, wii∗ = w (recall that u, v, w are inputs to

D).

D outputs whatever Z outputs at the end of the simulation. Note that
(G, q, g) R← GroupGen(k); a, b

R← Zq :

D(k, z,G, q, g, ga, gb, gab−1)


k∈N,z∈{0,1}∗

= EXEC

 
FP1→P2

ZK-consult, F
1,P2→P1
ZK-pass

F2,P1→P2
ZK , F2,P2→P1

ZK

!
π

(i∗−1)
2 ,A,Z

,

and that
(G, q, g) R← GroupGen(k); a, b

R← Zq :

D(k, z,G, q, g, ga, gb, gab)


k∈N,z∈{0,1}∗

= EXEC

 
FP1→P2

ZK-consult, F
1,P2→P1
ZK-pass

F2,P1→P2
ZK , F2,P2→P1

ZK

!
πi∗
2 ,A,Z .

By Claim 4.1.4, it follows that GAME
(i∗−1)
2

c
≈ GAMEi∗

2 .

GAME4. Let GAME4
def
= EXEC

 
FP1→P2

ZK-consult[1], F
1,P2→P1
ZK-pass

FP1→P2
ZK-consult[2], F

2,P2→P1
ZK

!
π4,A,Z , where:

• FP1→P2
ZK-consult[i] is an instance of FP1→P2

ZK-consult, as defined in GAME2; here we use

two distinct instances of the same functionality.

• π4 is identical to π3 (in particular, uses instance FP1→P2
ZK-consult[1] for first-round

communication originating at P1, as before), except that the parties here use
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FP1→P2
ZK-consult[2] for second-round communication originating at P1, as follows. In

the second round, P1 sends a (dummy) message (ZK-prover, sid ◦ 2 ◦ P1,⊥,⊥)

to FP1→P2
ZK-consult[2]. When the latter asks for a statement to be “proven”, P1

provides:

x̂ = (Circuit, {Ki,σ, Ci,σ}i,σ , (G, q, g), k, {ūi, v̄i, w̄i}i , {ui, vi, wi}),

where all the above are computed exactly as in π3. In effect, P1 in π4 provides

the functionality with the exact same second-round statement to be proven as

in π3, but without the witness.

We claim that GAME3 is identical to GAME4. To see this, note that (1) the

adversary does not have access to the contents of the second-round message from P1

to either F2,P1→P2

ZK in GAME3 or to FP1→P2
ZK-consult[2] in GAME4, and therefore cannot

distinguish one (with contents) from the other (with dummy contents); and (2) the

adversary cannot distinguish the outgoing message F2,P1→P2

ZK produces in GAME3

from the message FP1→P2
ZK-consult[2] produces in GAME4, as they are identically dis-

tributed (in GAME3, the message contains the statement x̂, where x̂ was provided

with ŵ such that (x̂, ŵ) ∈ R2; in GAME4, the message contains a statement com-

puted in the exact same way, and is therefore identically distributed). We conclude

that Z cannot distinguish between the games, as claimed.

GAME5. Define GAME5
def
= EXEC

 
FP1→P2

ZK-consult[1], F
1,P2→P1
ZK-pass

FP1→P2
ZK-consult[2], F

2,P2→P1
ZK

!
π5,A,Z , where:

• π5 is identical to π4, except that after receiving (and testing) first-round mes-
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sage

(ZK-proof, sid ◦ 1 ◦ P2, ({ūi, v̄i, w̄i}i , (G, q, g), k)),

along with (y,
{
āi, b̄i

}
i
) from F1,P2→P1

ZK-pass , and upon being asked by FP1→P2
ZK-consult[2]

for a second-round statement, P1 provides FP1→P2
ZK-consult[2] with

x̂2 = (Circuit, {Ki,σ, Ci,σ}i,σ , (G, q, g), k, {ūi, v̄i, w̄i}i , {ui, vi, wi}i),

where all the components of x̂2 are computed precisely as in π4, except that

P1, for every i, sets Ki,1−yi
, Ci,1−yi

to be elements chosen uniformly at random

from G.

We claim that GAME4 is identical to GAME5. We first note that in both

executions, if the contents of P2’s first-round message verify on R1, it is the case

that

Ki,1−yi
= gāi·r(i,1−yi)

+s(i,1−yi)

Ci,1−yi
= gc̄(i,1−yi)

·r(i,1−yi)
+b̄i·s(i,1−yi) · Zi,1−yi

where

c̄(i,1−yi) =


āib̄i + 1 yi = 0

āib̄i − 1 otherwise

6= āib̄i.

We claim that for for any ā, b̄, c̄, Z ∈ G such that c̄ 6= āb̄, the group elements

K
def
= gār+s and C

def
= gc̄r+b̄s ·Z are independent and uniformly distributed in G when

r, s are picked uniformly at random from G. To see this, fix some α, β ∈ G, and

consider the following system of equations in r, s: gār+s = α

gc̄r+b̄s · Z = β

 .
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Rearranging, we have:  ār + s = logg α

c̄r + b̄s = logg β − logg Z

 ,
which we write equivalently as

B ·

 r

s

 =

 logg α

logg β − logg Z



where B =

 ā 1

c̄ b̄

. Note that det(B) = āb̄− c̄ 6= 0 when c̄ 6= āb̄. Therefore, the

system has a unique solution in r, s for each choice of α, β. It follows that when r, s

are chosen uniformly at random from G, α = K and β = C are uniformly distributed

in G.

Therefore, the adversary cannot distinguish the output message produced by

FP1→P2
ZK-consult[2] in GAME4, where the {Ki,1−yi

, Ci,1−yi
}i are computed as in π4, from the

output message produced by FP1→P2
ZK-consult[2] in GAME5, where the {Ki,1−yi

, Ci,1−yi
}i

are chosen uniformly at random from G. It follows that GAME4,GAME5 are iden-

tical.

GAME6. Let GAME6
def
= EXEC

 
FP1→P2

ZK-consult[1], F
1,P2→P1
ZK-pass

FP1→P2
ZK-consult[2], F

2,P2→P1
ZK

!
π6,A,Z , where:

• π6 is identical to π5, except that when P1 is asked by FP1→P2
ZK-consult[2] for a second-

round statement, P1 computes v ← F2
k (x, y), computes (Circuit, {Zi}i)

R←

Yao-Sim(k,F2
k , y, v), and sets Zi,yi

= Zi for every i; it continues preparing the

statement as in π5.
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It is straightforward to show that GAME5
c
≈ GAME6 based on the security of Yao’s

garbled circuit (cf. Section 4.1.4).

GAME7. Finally, note that GAME6 is identical to GAME7
def
= IDEALF ,S,Z . This is

so, because the differences between the executions are conceptual: in the former, P1

computes F2
k (x, y) by itself, while in the latter it receives it from F ; in the former,

P1 computes F 1
k (x, y) itself, while in the latter P̃1 receives it from F ; in addition,

in the former, the parties use FP1→P2
ZK-consult[1],F1,P2→P1

ZK-pass ,F
P1→P2
ZK-consult[2] and F2,P2→P1

ZK ,

while in the latter S perfectly simulates these functionalities. We conclude that

EXECFZK
πF ,A,Z

c
≈ IDEALF ,S,Z as required.

4.2.3 Round Optimality

It is almost immediate that two rounds are necessary for two-party computa-

tion, even if both parties are allowed to speak simultaneously, under any reasonable

definition of security. Loosely speaking, consider a candidate single-round protocol

for a functionality that provides output to one of the parties, say P2. Since (an

honest) P1 sends its message independently of P2’s input, P2 can (honestly) run

its output-computation segment of the protocol on the incoming message multiple

times using inputs of its choice, and learn the output of the functionality on each.

This clearly violates security except for functionalities that do not depend on P2’s

input.

More formally and in the context of UC security, consider the functionality

F=, which on input a pair of two-bit strings x, y ∈ {0, 1}2, provides P2 with output
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1 if x = y, 0 otherwise. Assume π UC-realizes F= in a single round. Let πP1 be

the procedure in π that takes P1’s input x and a security parameter k and outputs

P1’s outgoing message m; let πP2 be the procedure in π that takes P2’s input y,

an incoming message m and a security parameter k, and computes P2’s output

value v. As π UC-realizes F=, it must be the case that for any x, y and with all but

negligible probability in k, if m
R← πP1(x, k) and v

R← πP2(y,m, k), then v = F=(x, y)

(by considering a benign adversary that does not corrupt any party and delivers all

messages as prescribed by π).

Consider an environment Z which picks x uniformly at random from {0, 1}2

and provides x as input to P1. Consider an adversary A, participating in a real-life

execution of π, that acts as follows. A corrupts P2 on the onset of the execution.

On an incoming message m from P1, A computes πP2(y,m, k) on all four strings

y ∈ {0, 1}2, and outputs (the lexicographically first) y on which the computation

produces 1. Note that by the above, with all but negligible probability, A outputs

x. We claim that for any ideal-process adversary S, Z may distinguish a real-life

execution of π in the presence of A from the ideal process involving S and F=. To

see this, observe that S’s probability of outputting x is at most 1/4, as its view in

the ideal process is independent of x.

For the setting in which parties need to take turns in sending their protocol

messages, note that a two-round protocol that provides output to both participating

parties implies a one-round protocol that provides output to one. Proceed with the

argument above to obtain that three rounds are necessary for this setting.
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4.3 Application to Universally-Composable Blind Signatures

In this section, we briefly discuss how the simpler of our protocols can be used

to construct a round-optimal (i.e., two-round) UC-secure blind signature scheme in

the CRS model. We begin with a quick recap of the definitions. Roughly speaking,

a blind signature scheme should guarantee unforgeability and blindness. The first

property requires that if a malicious user interacts with the honest signer for a total

of ` executions of the protocol (in an arbitrarily-interleaved fashion), then the user

should be unable to output valid signatures on `+ 1 distinct messages. (A stronger

requirement called strong unforgeability requires that the user cannot even output

`+ 1 distinct signatures on `+ 1 possibly-repeating messages.) Blindness requires,

very informally, that a malicious signer cannot “link” a particular execution of the

protocol to a particular user even after observing the signature obtained by the user.

This is formalized (see, e.g., [Fis06]) by a game in which the signer interacts with

two users in an order determined by a randomly-chosen selector bit b, and should

be unable to guess the value of b (with probability significantly better than 1/2)

even after being given the signatures computed by these two users. This definition

also allows the malicious signer to generate its public key in any manner (and not

necessarily following the legitimate key-generation algorithm).

The above represent the “classical” definitions of security for blind signatures.

Fischlin [Fis06] formally defines a blind signature functionality in the UC framework.

He also gives a two-round protocol realizing this functionality. Interestingly, one of

the motivations cited in [Fis06] for not relying on the generic results of [CLOS02] is

137



the desire to obtain a round-optimal protocol.

Assume we have a (standard) signature scheme (Gen, Sign,Vrfy), and consider

the (randomized) functionality Fsign(SK,m) = SignSK(m). Contrary to what might

be a naive first impression, secure computation of this functionality does not (in

general) yield a secure blind signature scheme! (See also [JLO97].) Specifically,

the problem is that the signer may use different secret keys SK, SK ′ in different

executions of the protocol. Furthermore, the public key may be set up in such a way

that each secret key yields a valid signature. Then, upon observing the signatures

computed by the users, the signer may be able to tell which key was used to generate

each signature, thereby violating the users’ anonymity.

Juels, Luby, and Ostrovsky [JLO97] suggest a relatively complex method for

handling this issue. We observe that a much simpler solution is possible by simply

forcing the signer to use a fixed signing key in every execution of the protocol. This is

done in the following way: To generate a public/secret key, the signer first computes

(PK, SK) ← Gen(1k). It then computes a (perfectly-binding) commitment com =

Com(SK;ω) to SK using randomness ω. The public key is PK, com and the secret

key contains SK and ω.

Define functionality F∗
sign ((SK, ω), (com,m)) as follows: if Com(SK;ω) =

com, then the second party receives output SignSK(m) (when Sign is randomized,

the functionality chooses a uniform random tape for computing this signature). Oth-

erwise, the second party receives output ⊥. The first party receives no output in

either case.

It is not hard to see that a protocol for secure computation of F∗
sign yields a
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secure blind signature scheme; using a UC two-party computation protocol for F∗
sign

gives a UC blind signature scheme. Using the simple two-round protocol constructed

in Section 4.2.1, and noticing that only one party receives output here, we thus

obtain a two-round UC blind signature scheme.

4.4 Application to Evaluation of Trust Policies on Sets of Credentials

Trust establishment between a server and a client typically involves an in-

teraction that enables the server to evaluate his policy on a subset of the client’s

credentials. It is often desirable that the interaction provide privacy guarantees to

the participating parties. In rough terms, a procedure that limits the amount of

information disclosed to the client about the server’s policy is said to provide server

privacy guarantees; similarly, a procedure that limits the amount of information

disclosed to the server about the client’s credentials is said to provide client privacy

guarantees.

Note that the evaluation of a server’s policy on a client’s set of credentials

can be cast as an instance of two-party computation (by having the policy as the

server’s input, the credentials as the client’s, and the functionality a circuit that

evaluates one on the other). Applying our main construction yields a solution that

provides full privacy guarantees to both the client and the server in a minimal

number of rounds while preserving security under general composition. On the

down side, the approach may entail relatively high communication complexity, as a

circuit encoding the verification of cryptographic credentials — to be garbled and
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sent per our construction — may be of large size. In this section, we briefly compare

this approach to other solutions suggested in the literature.

Trust-Negotiation. In the trust-negotiation setting, the server and the client

both maintain policies that regulate access to their resources (be it credentials or

the policies themselves). Trust-negotiation techniques (see [BS00, SWY01, YWS01,

YW03, WL04] and references therein) involve strategies for the gradual disclosure

of the resources, such that no resource is revealed unless its access-control policy has

been satisfied. Resources that are cleared are fully disclosed, and so these techniques

do not provide full privacy guarantees to either party.

Hidden Credentials. Hidden Credential schemes [HBS03, BHS04] allow a client

to decrypt an encrypted server resource when the client holds credentials that sat-

isfy the server’s access-policy; the credentials are never revealed to the server (in

fact, the server never learns whether access to the resource has been granted or not).

The schemes thus provide full client-privacy. However, the client may learn informa-

tion about the structure of the access policy (expressed as a boolean formula with

threshold gates, in the most general case), even if its credentials do not satisfy it.

The schemes therefore provide only partial server-privacy. Specifying policies that

ask for a credential attribute to fall within a range of values is inefficient in current

Hidden Credential schemes. The schemes are based on Identity-Based Encryption

(IBE) (see [BF03] and references therein), consider the problem in a stand-alone

setting, are proven secure in Random Oracle (RO) model and are communication-

and round efficient.
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Oblivious Envelopes. Oblivious Envelopes allow a client to decrypt an encrypted

server resource when the client holds a credential that attests to its compliance

with an agreed upon, public policy (as such, the schemes offer no server privacy

guarantees); as in Hidden Credential schemes, the server is oblivious to the client’s

access attempts — the schemes provide full client privacy. Signature-based con-

structions [LDB03, NT05] allow the use of general policies (expressed as boolean

circuits). A construction based on Pederson commitments [LL05a] only allows for

simple policies that may compare an attribute in a credential to specified values. An

improved construction based on integer commitments [LL06] allows the (efficient)

use of any predicate for which an (efficient) zero-knowledge proof system exists. All

the above constructions consider the problem in the stand-alone setting, are proven

secure in the RO model and are communication- and round efficient.

Policy-Based Encryption. Policy-Based Encryption schemes [BM05, BMC06]

allow a server, holding a resource and a corresponding public access-control policy, to

encrypt the resource such that only a client holding credentials that satisfy the policy

may decrypt it. As in Oblivious Envelopes, the schemes provide full client privacy

and no server privacy. The constructions allow the use of general policies (expressed

as monotone boolean formulae), are based on bilinear-pairings over elliptic curves,

are considered in the stand-alone setting, proven secure in the RO model and are

communication- and round efficient.

Solutions Based on Generic Secure Two-Party Computation Protocols.

Casting the problem as an instance of secure two-party computation, one may use
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generic protocols to obtain solutions that provide full server and client privacy,

but entail a relatively high communication complexity. Specifically, in the stand-

alone setting, applying the protocol of Katz and Yung [KO04] gives a five-round

solution based on general assumptions; while applying the protocol of Cachin et.

al. [CCKM00] gives a three-round solution based on the DDH assumption and the

availability of a CRS in the network. In the UC setting and under the CRS assump-

tion, applying the protocol of Canetti et. al. [CLOS02] gives a non-constant round

solution secure against adaptive adversaries; applying the protocol of Jarecki and

Shmatikov [JS07] yields a five-round solution (three-round, if one further assumes

the RO model) based on the strong RSA and the Decisional Composite Residuos-

ity (DCR) assumptions, secure against static corruption. (All the constant-rounds

solutions above may save a round of communication if only the server is to receive

output.)

Improving the Efficiency of Solutions Based on Generic Secure Two-Party

Computation Protocols. Several solutions aim at reducing the high communica-

tion complexity incurred when applying generic secure two-party computation pro-

tocols to our problem by removing credential verification from the two-party func-

tionality to be computed and dealing with it separately. All consider the problem

in the stand-alone setting. Certified Input Private Policy Evaluation [LL05b] relies

on commitment-based certificates; it provides full server privacy against malicious

adversaries, but full client privacy only for weak-honest adversaries (for malicious

adversaries, some client information is leaked; leakage is detectable). A similar solu-
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tion based on IBE certificates is given in [FAL06]. Both solutions are round efficient

and offer improved communication complexity as compared with solutions based on

generic secure two-party computation protocols. The protocol proposed in [FLA06]

aims at providing a full trust negotiation mechanism with full privacy guarantees

to both participating parties. The solution is based on IBE certificates and homeo-

morphic encryption and offers improved communication efficiency as compared with

solutions based on generic secure two-party computation. However, round complex-

ity is proportional to the sizes of the credential sets held by the parties.
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