Homework 2 Due at the *beginning* of class on Sept. 28

I suggest to use $\square T_E X$ when typing up your solutions.

1. An undirected graph G can be k-colored if each of its vertices can be assigned a "color" in $\{1, \ldots, k\}$ such that no vertices that share an edge have the same color. Let

 $3COL = \{G : G \text{ can be } 3\text{-colored}\}.$

Prove that 3COL is \mathcal{NP} -complete.

- 2. Let L be an \mathcal{NP} -complete language. Prove that if $L \in \mathsf{co}\mathcal{NP}$ then $\mathcal{NP} = \mathsf{co}\mathcal{NP}$.
- 3. Prove that Definition 4.19 (the certificate-based definition) yields the same class NL as the definition of NL based on non-deterministic Turing machines.
- 4. A non-deterministic machine M computes a function $f : \{0,1\}^* \to \{0,1\}^*$ if the following holds:
 - For every x, there exists a computation path such that M(x) accepts.
 - In any computation path on which M(x) accepts, the correct result f(x) is written on the output tape when M halts. (On computation paths where M(x) does not accept, anything may be written on the output tape.)

Answer the following questions:

- (a) Let f(G, s, t) be the function that outputs a path from s to t in directed graph G (or \perp if there is no path). Show that f can be computed by a non-deterministic log-space machine.
- (b) Show that f can be computed by a deterministic machine in space $O(\log^2 n)$.
- (c) Show that any function that can be computed by a non-deterministic machine in space s(n) can be computed by a deterministic machine in space $O(s(n)^2)$.
- 5. Barak-Arora, Exercise 4.5. (*Hint*: reduce 2SAT to $\overline{\text{CONN}}$.)