Lecture 14

Jonathan Katz

1 Randomized Space Complexity

1.1 Undirected Connectivity and Random Walks

A classic problem in $\mathcal{R L}$ is undirected connectivity (UCons). Here, we are given an undirected graph and two vertices s, t and are asked to determine whether there is a path from s to t. An $\mathcal{R} \mathcal{L}$ algorithm for this problem is simply to take a "random walk" (of sufficient length) in the graph, starting from s. If vertex t is ever reached, then output 1 ; otherwise, output 0 . (We remark that this approach does not work for directed graphs.) We analyze this algorithm (and, specifically, the length of the random walk needed) in two ways; each illustrates a method that is independently useful in other contexts. The first method looks at random walks on regular graphs, and proves a stronger result showing that after sufficiently many steps of a random walk the location is close to uniform over the vertices of the graph. The second method is more general, in that it applies to any (non-bipartite) graph; it also gives a tighter bound.

1.1.1 Random Walks on Regular Graphs

Fix an undirected graph G on n vertices where we allow self-loops and parallel edges (i.e., integer weights on the edges). We will assume the graph is d-regular and has at least one self-loop at every vertex; any graph can be changed to satisfy these conditions (without changing its connectivity) by adding sufficiently many self-loops. Let G also denote the (scaled) adjacency matrix corresponding to this graph: the (i, j) th entry is k / d if there are k edges between vertices i and j. Note that G is symmetric ($G_{i, j}=G_{j, i}$ for all i, j) and doubly stochastic (all entries are non-negative, and all rows and columns sum to 1). A probability vector $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{n}$ is a vector each of whose entries is non-negative and such that $\sum_{i} p_{i}=1$. If we begin by choosing a vertex v of G with probability determined by \mathbf{p}, and then take a "random step" by choosing (uniformly) an edge of v and moving to the vertex v^{\prime} adjacent to that edge, the resulting distribution on v^{\prime} is given by $\mathbf{p}^{\prime}=G \cdot \mathbf{p}$. Inductively, the distribution after t steps is given by $G^{t} \cdot \mathbf{p}$. Note that if we set $\mathbf{p}=\mathbf{e}_{i}$ (i.e., the vector with a 1 in the i th position and 0 s everywhere else), then $G^{t} \cdot \mathbf{p}$ gives the distribution on the location of a t-step random walk starting at vertex i.

An eigenvector of a matrix G is a vector \mathbf{v} such that $G \cdot \mathbf{v}=\lambda \mathbf{v}$ for some $\lambda \in \mathbb{R}$; in this case we call λ the associated eigenvalue. Since G is a symmetric matrix, standard results from linear algebra show that there is an orthonormal basis of eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ with (real) eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, sorted so that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. If we let 1 denote the vector with $1 / n$ in each entry - i.e., it represents the uniform distribution over the vertices of G - then $G \cdot \mathbf{1}=\mathbf{1}$ and so G has eigenvalue 1. Moreover, since G is a (doubly) stochastic matrix, it has no eigenvalues of absolute value greater than 1 . Indeed, let $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ be an eigenvector of G with eigenvalue λ, and let j be such that $\left|v_{j}\right|$ is maximized. Then $\lambda \mathbf{v}=G \cdot \mathbf{v}$ and so

$$
\left|\lambda v_{j}\right|=\left|\sum_{i=1}^{n} G_{j, i} \cdot v_{i}\right|
$$

$$
\leq\left|v_{j}\right| \cdot \sum_{i=1}^{n}\left|G_{j, i}\right|=\left|v_{j}\right|
$$

we conclude that $|\lambda| \leq 1$. If G is connected, then it has no other eigenvector with eigenvalue 1 . Since G is non-bipartite (because of the self-loops), -1 is not an eigenvalue either.

To summarize, if G is connected and not bipartite then it has (real) eigenvectors $\lambda_{1}, \ldots, \lambda_{n}$ with $1=\lambda_{1}>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. The (absolute value of the) second eigenvalue λ_{2} determines how long a random walk in G we need so that the distribution of the final location is close to uniform:

Theorem 1 Let G be a d-regular, undirected graph on n vertices with second eigenvalue λ_{2}, and let \mathbf{p} correspond to an arbitrary probability distribution over the vertices of G. Then for any $t>0$

$$
\left\|G^{t} \cdot \mathbf{p}-\mathbf{1}\right\|_{2} \leq\left|\lambda_{2}\right|^{t}
$$

Proof Write $\mathbf{p}=\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}$, where the $\left\{\mathbf{v}_{i}\right\}$ are the eigenvectors of G (sorted according to decreasing absolute value of their eigenvalues); recall $\mathbf{v}_{1}=\mathbf{1}$. We have $\alpha_{1}=1$; this follows since $\alpha_{1}=\langle\mathbf{p}, \mathbf{1}\rangle /\|\mathbf{1}\|_{2}^{2}=(1 / n) /(1 / n)=1$. We thus have

$$
G^{t} \cdot \mathbf{p}=G^{t} \cdot \mathbf{1}+\sum_{i=2}^{n} \alpha_{i} G^{t} \cdot \mathbf{v}_{i}=\mathbf{1}+\sum_{i=2}^{n} \alpha_{i}\left(\lambda_{i}\right)^{t} \mathbf{v}_{i}
$$

and so, using the fact that the $\left\{\mathbf{v}_{i}\right\}$ are orthogonal,

$$
\begin{aligned}
\left\|G^{t} \cdot \mathbf{p}-\mathbf{1}\right\|_{2}^{2} & =\sum_{i=2}^{n} \alpha_{i}^{2}\left(\lambda_{i}\right)^{2 t} \cdot\left\|\mathbf{v}_{i}\right\|_{2}^{2} \\
& \leq \lambda_{2}^{2 t} \cdot \sum_{i=2}^{n} \alpha_{i}^{2} \cdot\left\|\mathbf{v}_{i}\right\|_{2}^{2} \\
& \leq \lambda_{2}^{2 t} \cdot\|\mathbf{p}\|_{2}^{2} \leq \lambda_{2}^{2 t} \cdot\|\mathbf{p}\|_{1}^{2}=\lambda_{2}^{2 t}
\end{aligned}
$$

The theorem follows.
It remains to show a bound on $\left|\lambda_{2}\right|$.
Theorem 2 Let G be a d-regular, connected, undirected graph on n vertices with at least one self-loop at each vertex and $d \leq n$. Then $\left|\lambda_{2}\right| \leq 1-\frac{1}{\operatorname{poly}(n)}$.

Proof Let $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ be a unit eigenvector corresponding to λ_{2}, and recall that \mathbf{u} is orthogonal to $\mathbf{1}=(1 / n, \ldots, 1 / n)$. Let $\mathbf{v}=G \mathbf{u}=\lambda_{2} \mathbf{u}$. We have

$$
\begin{aligned}
1-\lambda_{2}^{2}=\|\mathbf{u}\|_{2}^{2} \cdot\left(1-\lambda_{2}^{2}\right) & =\|\mathbf{u}\|_{2}^{2}-\|\mathbf{v}\|_{2}^{2} \\
& =\|\mathbf{u}\|_{2}^{2}-2\|\mathbf{v}\|_{2}^{2}+\|\mathbf{v}\|_{2}^{2} \\
& =\|\mathbf{u}\|_{2}^{2}-2\langle G \mathbf{u}, \mathbf{v}\rangle+\|\mathbf{v}\|_{2}^{2} \\
& =\sum_{i} u_{i}^{2}-2 \sum_{i, j} G_{i, j} u_{j} v_{i}+\sum_{j} v_{j}^{2} \\
& =\sum_{i, j} G_{i, j} u_{i}^{2}-2 \sum_{i, j} G_{i, j} u_{j} v_{i}+\sum_{i, j} G_{i, j} v_{j}^{2} \\
& =\sum_{i, j} G_{i, j}\left(u_{i}-v_{j}\right)^{2}
\end{aligned}
$$

using the fact that G is a symmetric, doubly stochastic matrix for the second-to-last equality. Since \mathbf{u} is a unit vector orthogonal to $\mathbf{1}$, there exist i, j with $u_{i}>0>u_{j}$ and such that at least one of u_{i} or u_{j} has absolute value at least $1 / \sqrt{n}$, meaning that $u_{i}-u_{j} \geq 1 / \sqrt{n}$. Since G is connected, there is a path of length D, say, between vertices i and j. Renumbering as necessary, let $i=1$, $j=D+1$, and let the vertices on the path be $2, \ldots, D$. Then

$$
\begin{aligned}
\frac{1}{\sqrt{n}} \leq u_{1}-u_{D+1} & =\left(u_{1}-v_{1}\right)+\left(v_{1}-u_{2}\right)+\left(u_{2}-v_{2}\right)+\left(v_{2}-u_{3}\right)+\cdots+\left(v_{D}-u_{D+1}\right) \\
& \leq\left|u_{1}-v_{1}\right|+\cdots+\left|v_{D}-u_{D+1}\right| \\
& \leq \sqrt{\left(u_{1}-v_{1}\right)^{2}+\cdots+\left(v_{D}-u_{D+1}\right)^{2}} \cdot \sqrt{2 D}
\end{aligned}
$$

(using Cauchy-Schwarz for the last inequality). But then

$$
\sum_{i, j} G_{i, j}\left(u_{i}-v_{j}\right)^{2} \geq \frac{1}{d} \cdot\left(\left(u_{1}-v_{1}\right)^{2}+\cdots+\left(v_{D}-u_{D+1}\right)^{2}\right) \geq \frac{1}{2 d n D}
$$

using $G_{i, i} \geq 1 / d$ (since every vertex has a self-loop) and $G_{i, i+1} \geq 1 / d$ (since there is an edge from vertex i to vertex $i+1$). Since $D \leq n-1$, we get $1-\lambda_{2}^{2} \geq 1 / 4 d n^{2}$ or $\left|\lambda_{2}\right| \leq 1-1 / 8 d n^{2}$, and the theorem follows.

We can now analyze the algorithm for undirected connectivity. Let us first specify the algorithm more precisely. Given an undirected graph G and vertices s, t, we want to determine if there is a path from s to t. We restrict our attention to the connected component of G containing s, add at least one self-loop to each vertex in G, and add sufficiently many additional self-loops to each vertex in order to ensure regularity. Then we take a random walk of length $\ell=16 d n^{2} \log n \geq 2 \cdot\left(1-\left|\lambda_{2}\right|\right)^{-1} \log n$ starting at vertex s, and output 1 if we are at vertex t at the end of the walk. (Of course, we do better if we output 1 if the walk ever passes through vertex t; our analysis does not take this into account.) By Theorem 1,

$$
\left\|G^{\ell} \cdot \mathbf{e}_{s}-\mathbf{1}\right\|_{2} \leq\left|\lambda_{2}\right|^{\ell} \leq 1 / n^{2}
$$

If t is in the connected component of s, the probability that we are at vertex t at the end of the walk is at least $\frac{1}{n}-\frac{1}{n^{2}} \geq 1 / 2 n$. We can, of course, amplify this by repeating the random walk sufficiently many times.

