
Notes on Complexity Theory Last updated: October, 2011

Lecture 18

Jonathan Katz

1 The Power of IP
We have seen a (surprising!) interactive proof for graph non-isomorphism. This begs the question:
how powerful is IP?

1.1 coNP ⊆ IP
As a “warm-up” we show that coNP ⊆ IP. We have seen last time that coNP is unlikely to have
a constant-round interactive proof system (since this would imply1 that the polynomial hierarchy
collapses). For this reason it was conjectured at one point that IP was not “too much more
powerful” than NP. Here, however, we show this intuition wrong: any language in coNP has a
proof system using a linear number of rounds.

We begin by arithmetizing a 3CNF formula φ to obtain a polynomial expression that evaluates
to 0 iff φ has no satisfying assignments. (This powerful technique, by which a “combinatorial”
statement about satisfiability of a formula is mapped to an algebraic statement about a polynomial,
will come up again later in the course.) We then show how to give an interactive proof demonstrating
that the expression indeed evaluates to 0.

To arithmetize φ, the prover and verifier proceed as follows: identify 0 with “false” and positive
integers with “true.” The literal xi becomes the variable xi, and the literal x̄i becomes (1−xi). We
replace “∧” by multiplication, and “∨” by addition. Let Φ denote the polynomial that results from
this arithmetization; note that this is an n-variate polynomial in the variables x1, . . . , xn, whose
total degree is at most the number of clauses in φ.

Now consider what happens when the {xi} are assigned boolean values: all literals take the
value 1 if they evaluate to “true,” and 0 if they evaluate to “false.” Any clause (which is a
disjunction of literals) takes a positive value iff at least one of its literals is true; thus, a clause
takes a positive value iff it evaluates to “true.” Finally, note that Φ itself (which is a conjunction
of clauses) takes on a positive value iff all of its constituent clauses are positive. We can summarize
this as: Φ(x1, . . . , xn) > 0 if φ(x1, . . . , xn) = true, and Φ(x1, . . . , xn) = 0 if φ(x1, . . . , xn) = false.
Summing over all possible (boolean) settings to the variables, we see that

φ ∈ SAT ⇔
∑

x1∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(x1, . . . , xn) = 0.

If φ has m clauses, then Φ has degree (at most) m (where the [total] degree of a polynomial
is the maximum degree on any of its monomials, and the degree of a monomial is the sum of the
degrees of its constituent variables). Furthermore, the sum above is at most 2n · 3m. So, if we work

1In more detail: a constant-round proof system for coNP would imply a constant-round public-coin proof system
for coNP, which would in turn imply coNP ⊆ AM. We showed last time that the latter implies the collapse of PH.

18-1

modulo a prime q > 2n · 3m the above is equivalent to:

φ ∈ SAT ⇔
∑

x1∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(x1, . . . , xn) = 0 mod q.

Working modulo a prime (rather than over the integers) confers two advantages: it keeps the
numbers from getting too large (since all numbers will be reduced modulo q; note that |q| = log q is
polynomial) and it means that we are working over the finite field Fq (which simplifies the analysis).

We have now reduced the question of whether φ is unsatisfiable to the question of proving
that a particular polynomial expression sums to 0! This already hints at the power of arithmeti-
zation: it transforms questions of logic (e.g., satisfiability) into questions of abstract mathematics
(polynomials, group theory, algebraic geometry, . . .) and we can then use all the powerful tools of
mathematics to attack our problem. Luckily, for the present proof the only “deep” mathematical
result we need is that a non-zero polynomial of degree m over a field has at most m roots. An easy
corollary is that two different polynomials of degree (at most) m can agree on at most m points.

We now show the sum-check protocol, which is an interactive proof that φ is not satisfiable.

• Both prover and verifier have φ. They both generate the polynomial Φ. Note that the
(polynomial-time) verifier cannot write out Φ explicitly, but it suffices for the verifier to
be able to evaluate Φ on any given values of x1, . . . , xn. The prover wants to show that
0 =

∑
x1∈{0,1} · · ·

∑
xn∈{0,1}Φ(x1, . . . , xn).

• The prover sends a prime q such that q > 2n ·3m. The verifier checks the primality of q. (The
verifier could also generate q itself, and send it to the prover.) All subsequent operations are
performed modulo q.

• The verifier initializes v0 = 0.

• The following is repeated for i = 1 to n:

– The prover sends a polynomial P̂i (in one variable) of degree at most m.
– The verifier checks that P̂i has degree at most m and that P̂i(0)+ P̂i(1) = vi−1 (addition

is done in Fq). If not, the verifier rejects. Otherwise, the verifier chooses a random
ri ∈ Fq, computes vi = P̂i(ri), and sends ri to the prover.

• The verifier accepts if Φ(r1, . . . , rn) = vn mod q and rejects otherwise. (Note that even though
we originally only “cared” about the values Φ takes when its inputs are boolean, nothing stops
us from evaluating Φ at any points in the field.)

Claim 1 If φ is unsatisfiable then a prover can make the verifier accept with probability 1.

For every 1 ≤ i ≤ n (and given the verifier’s choices of r1, . . . , ri−1) define the degree-m polynomial:

Pi(xi)
def=

∑

xi+1∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(r1, . . . , ri−1, xi, xi+1, . . . , xn).

We claim that if φ is unsatisfiable and the prover always sends P̂i = Pi, then the verifier always
accepts. In the first iteration (i = 1), we have

P1(0) + P1(1) =
∑

x1∈{0,1}

 ∑

x2∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(x1, . . . , xn)

 = 0 = v0,

18-2

since φ is unsatisfiable. For i > 1 we have:

Pi(0) + Pi(1) =
∑

xi∈{0,1}

∑

xi+1∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(r1, . . . , ri−1, xi, . . . , xn)

= Pi−1(ri−1) = vi−1.

Finally, vn
def= Pn(rn) = Φ(r1, . . . , rn) so the verifier accepts.

Claim 2 If φ is satisfiable, then no matter what the prover does the verifier will accept with prob-
ability at most nm/q.

The protocol can be viewed recursively, where in iteration i the prover is trying to convince the
verifier that

vi−1 =
∑

xi∈{0,1}
· · ·

∑

xn∈{0,1}
Φi(xi, . . . , xn) (1)

for some degree-m polynomial Φi that the verifier can evaluate. (In an execution of the protocol,
we have Φ1 = Φ; for i > 1 we have Φi(xi, . . . , xn) = Φ(r1, . . . , ri−1, xi, . . . , xn).) Each iteration i
proceeds as follows: the prover sends some degree-m polynomial P ′

i (xi) (this polynomial is supposed
to be equal to

∑
xi+1∈{0,1} · · ·

∑
xn∈{0,1}Φi(xi, . . . , xn) but may not be if the prover is cheating).

The verifier checks that
∑

xi∈{0,1} P ′
i (xi) = vi−1 and, if so, then chooses a random point ri; the

prover then needs to convince the verifier that

vi
def= P ′

i (ri) =
∑

xi+1∈{0,1}
· · ·

∑

xn∈{0,1}
Φi+1(xi+1, . . . , xn),

where Φi+1(xi+1, . . . , xn) = Φi(ri, xi+1, . . . , xn).
Looking now abstractly at Eq. (1), we claim that if Eq. (1) does not hold then the prover can

make the verifier accept with probability at most km/q, where k = n − i + 1 is the number of
variables we are summing over. The proof is by induction on k:

Base case. When k = 1 we have

vn 6=
∑

xn∈{0,1}
Φn(xn) (2)

but the prover is trying to convince the verifier otherwise. The prover sends some polynomial P ′
n(xn).

If P ′
n = Φn the verifier always rejects since, by Eq. (2), P ′

n(0) + P ′
n(1) 6= vn. If P ′

n 6= Φn, then
the polynomials P ′

n and Φn agree on at most m points; since the verifier chooses random rn and
accepts only if P ′

n(rn) = Φn(rn), the verifier accepts with probability at most m/q.

Inductive step. Say the claim is true for some value of k, and look at Eq. (1) for k + 1. Renum-
bering the variables, we have

v 6=
∑

x1∈{0,1}
· · ·

∑

xk+1∈{0,1}
Φ(x1, . . . , xk+1),

but the prover is trying to convince the verifier otherwise. The prover sends some polynomial P ′(x1).
Let P̂ (x1) =

∑
x2∈{0,1} · · ·

∑
xk+1∈{0,1}Φ(x1, . . . , xk+1) (this is what the prover is “supposed” to

18-3

send). There are again two possibilities: if P ′ = P̂ , then P ′(0) + P ′(1) 6= v and the verifier always
rejects. If P ′ 6= P̂ then these polynomials agree on at most m points. So with probability at most
m/q the verifier chooses a point r1 for which P ′(r1) = P̂ (r1); if this happens, we will just say the
prover succeeds. If this does not occur, then

v′ def= P ′(r1) 6=
∑

x2∈{0,1}
· · ·

∑

xk+1∈{0,1}
Φ(r1, x2, . . . , xk+1),

and we have reduced to a case where we are summing over k variables. By our inductive assumption,
the prover succeeds with probability at most km/q in that case. Thus, the overall success probability
of the prover is at most m/q + km/q ≤ (k + 1)m/q. This completes the proof.

1.2 #P ⊆ IP
(We have not yet introduced the class #P, but we do not use any properties of this class here.) It
is relatively straightforward to extend the protocol of the previous section to obtain an interactive
proof regarding the number of satisfying assignments of some 3CNF formula φ. We need only
change the way we do the arithmetization: now we want our arithmetization Φ to evaluate to
exactly 1 on any satisfying assignment to φ, and to 0 otherwise. For literals we proceed as before,
transforming xi to xi and x̄i to 1−xi. For clauses, we do something different: given clause a∨ b∨ c
(where a, b, c are literals), we construct the polynomial:

1− (1− â)(1− b̂)(1− ĉ),

where â represents the arithmetization of a, etc. Note that if all of a, b, c are set to “false” (i.e.,
â = b̂ = ĉ = 0) the above evaluates to 0 (i.e., false), while if any of a, b, c are “true” the above
evaluates to 1 (i.e., true). Finally, arithmetization of the entire formula φ (which is the “and” of a
bunch of clauses) is simply the product of the arithmetization of its clauses. This gives a polynomial
Φ with the desired properties. Note that the degree of Φ is now (at most) 3m, rather than m.

Using the above arithmetization, a formula φ has exactly K satisfying assignments iff:

K =
∑

x1∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(x1, . . . , xn).

Using the exact same protocol as before, except with q > 2n (since the above summation can
now be at most 2n) and setting v0 = K (the claimed number of satisfying assignments), gives an
interactive proof for #SAT with soundness error 3mn/q.

18-4

