
Notes on Complexity Theory Last updated: November, 2011

Lecture 19

Jonathan Katz

1 IP = PSPACE

A small modification of the previous protocol gives an interactive proof for any language in PSPACE,
and hence PSPACE ⊆ IP. Before showing this, however, we quickly argue that IP ⊆ PSPACE.
To see this, fix some proof system (P,V) for a language L (actually, we really only care about
the verifier algorithm V). We claim that L ∈ PSPACE. Given an input x ∈ {0, 1}n, we compute
exactly (using polynomial space) the maximum probability with which a prover can make V accept.
(Although the prover is allowed to be all-powerful, we will see that the optimal strategy can be
computed in PSPACE and so it suffices to consider PSPACE provers in general.) Imagine a tree
where each node at level i (with the root at level 0) corresponds to some sequence of i messages
exchanged between the prover and verifier. This tree has polynomial depth (since V can only run
for polynomially many rounds), and each node has at most 2nc

children (for some constant c),
since messages in the protocol have polynomial length. We recursively assign values to each node
of this tree in the following way: a leaf node is assigned 0 if the verifier rejects, and 1 if the verifier
accepts. The value of an internal node where the prover sends the next message is the maximum
over the values of that node’s children. The value of an internal node where the verifier sends the
next message is the (weighted) average over the values of that node’s children. The value of the
root determines the maximum probability with which a prover can make the verifier accept on the
given input x, and this value can be computed in polynomial space. If this value is greater than 2/3
then x ∈ L; if it is less than 1/3 then x 6∈ L.

1.1 PSPACE ⊆ IP
We now turn to the more interesting direction, namely showing that PSPACE ⊆ IP. We will now
work with the PSPACE-complete language TQBF, which (recall) consists of true quantified boolean
formulas of the form:

∀x1∃x2 · · ·Qnxn φ(x1, . . . , xn),

where φ is a 3CNF formula. We begin by arithmetizing φ as we did in the case of #P; recall, if φ
has m clauses this results in a degree-3m polynomial Φ such that, for x1, . . . , xn ∈ {0, 1}, we have
Φ(x1, . . . , xn) = 1 if φ(x1, . . . , xn) is true, and Φ(x1, . . . , xn) = 0 if φ(x1, . . . , xn) is false.

We next must arithmetize the quantifiers. Let Φ be an arithmetization of φ as above. The
arithmetization of an expression of the form ∀xn φ(x1, . . . , xn) is

∏

xn∈{0,1}
Φ(x1, . . . , xn) def= Φ(x1, . . . , xn−1, 0) · Φ(x1, . . . , xn−1, 1).

If we fix values for x1, . . . , xn−1, then the above evaluates to 1 if the expression ∀xn φ(x1, . . . , xn)
is true, and evaluates to 0 if this expression is false. The arithmetization of an expression of the

19-1



form ∃xn φ(x1, . . . , xn) is

∐

xn∈{0,1}
Φ(x1, . . . , xn) def= 1− (

1− Φ(x1, . . . , xn−1, 0)
) · (1− Φ(x1, . . . , xn−1, 1)

)
.

Note again that if we fix values for x1, . . . , xn−1 then the above evaluates to 1 if the expression
∃xn φ(x1, . . . , xn) is true, and evaluates to 0 if this expression is false. Proceeding in this way, a
quantified boolean formula ∃x1∀x2 · · · ∀xnφ(x1, . . . , xn) is true iff

1 =
∐

x1∈{0,1}

∏

x2∈{0,1}
· · ·

∏

xn∈{0,1}
Φ(x1, . . . , xn). (1)

A natural idea is to use Eq. (1) in the protocols we have seen for coNP and #P, and to have
the prover convince the verifier that the above holds by “stripping off” operators one-by-one. While
this works in principle, the problem is that the degrees of the intermediate results are too large.
For example, the polynomial

P (x1) =
∏

x2∈{0,1}
· · ·

∏

xn∈{0,1}
Φ(x1, . . . , xn)

may have degree as high as 2n · 3m (note that the degree of x1 doubles each time a
∏

or
∐

operator is applied). Besides whatever effect this will have on soundness, this is even a problem for
completeness since a polynomially bounded verifier cannot read an exponentially large polynomial
(i.e., with exponentially many terms).

To address the above issue, we use a simple1 trick. In Eq. (1) the {xi} only take on boolean
values. But for any k > 0 we have xk

i = xi when xi ∈ {0, 1}. So we can in fact reduce the degree
of every variable in any intermediate polynomial to (at most) 1. (For example, the polynomial
x5

1x
4
2+x6

1+x7
1x2 would become 2x1x2+x1.) Let Rxi be an operator denoting this “degree reduction”

operation applied to variable xi. Then the prover needs to convince the verifier that

1 =
∐

x1∈{0,1}
Rx1

∏

x2∈{0,1}
Rx1Rx2

∐

x3∈{0,1}
· · ·Rx1 · · ·Rxn−1

∏

xn∈{0,1}
Rx1 · · ·RxnΦ(x1, . . . , xn).

As in the previous protocols, we will actually evaluate the above modulo some prime q. Since the
above evaluates to either 0 or 1, we can take q any size we like (though soundness will depend
inversely on q as before).

We can now apply the same basic idea from the previous protocols to construct a new protocol
in which, in each round, the prover helps the verifier “strip” one operator from the above expression.
Denote the above expression abstractly by:

Fφ = O1O2 · · · O` Φ(x1, . . . , xn) mod q ,

where ` =
∑n

i=1(i + 1) and each Oj is one of
∏

xi
,
∐

xi
, or Rxi (for some i). At every round k the

verifier holds some value vk and the prover wants to convince the verifier that

vk = Ok+1 · · · O` Φk mod q,

1Of course, it seems simple in retrospect. . .

19-2



where Φk is some polynomial. At the end of the round the verifier will compute some vk+1 and the
prover then needs to convince the verifier that

vk+1 = Ok+2 · · · O` Φk+1 mod q,

for some Φk+1. We explain how this is done below. At the beginning of the protocol we start with
v0 = 1 and Φ0 = Φ (so that the prover wants to convince the verifier that the given quantified
formula is true); at the end of the protocol the verifier will be able to compute Φ` itself and check
whether this is equal to v`.

It only remains to describe each of the individual rounds. There are three cases corresponding to
the three types of operators (we omit the “ mod q” from our expressions from now on, for simplicity):

Case 1: Ok+1 =
∏

xi
(for some i). Here, the prover wants to convince the verifier that

vk =
∏
xi

Rx1 · · ·
∐
xi+1

· · ·
∏
xn

Rx1 · · ·RxnΦ(r1, . . . , ri−1, xi, . . . , xn). (2)

(Technical note: when we write an expression like the above, we really mean

∏

xi

Rx1 · · ·
∐
xi+1

· · ·
∏
xn

Rx1 · · ·RxnΦ(x1, . . . , xi−1, xi, . . . , xn)


 [r1, . . . , ri−1].

That is, first the expression is computed symbolically, and then the resulting expression is evaluated
by setting x1 = r1, . . . , xi−1 = ri−1.) This is done in the following way:

• The prover sends a degree-1 polynomial P̂ (xi).

• The verifier checks that vk =
∏

xi
P̂ (xi). If not, reject. Otherwise, choose random ri ∈ Fq, set

vk+1 = P̂ (ri), and enter the next round with the prover trying to convince the verifier that:

vk+1 = Rx1 · · ·
∐
xi+1

· · ·
∏
xn

Rx1 · · ·RxnΦ(r1, . . . , ri−1, ri, xi+1, . . . , xn). (3)

To see completeness, assume Eq. (2) is true. Then the prover can send

P̂ (xi) = P (xi)
def= Rx1 · · ·

∐
xi+1

· · ·
∏
xn

Rx1 · · ·RxnΦ(r1, . . . , ri−1, xi, . . . , xn);

the verifier will not reject and Eq. (3) will hold for any choice of ri. As for soundness, if Eq. (2)
does not hold then the prover must send P̂ (xi) 6= P (xi) (or else the verifier rejects right away); but
then Eq. (3) will not hold except with probability 1/q.

Case 2: Ok+1 =
∐

xi
(for some i). This case and its analysis are similar to the above and are

therefore omitted.

Case 3: Ok+1 = Rxi (for some i). Here, the prover wants to convince the verifier that

vk = Rxi · · ·
∏
xn

Rx1 · · ·RxnΦ(r1, . . . , rj , xj+1, . . . , xn), (4)

where j ≥ i. This case is a little different from anything we have seen before. Now:

19-3



• The prover sends a polynomial P̂ (xi) of appropriate degree (see below).

• The verifier checks that
(
RxiP̂ (xi)

)
[ri] = vk. If not, reject. Otherwise, choose a new random

ri ∈ Fq, set vk+1 = P̂ (ri), and enter the next round with the prover trying to convince the
verifier that:

vk+1 = Ok+2 · · ·
∏
xn

Rx1 · · ·RxnΦ(r1, . . . , ri, . . . , rj , xj+1, . . . , xn). (5)

Completeness is again easy to see: assuming Eq. (4) is true, the prover can simply send

P̂ (xi) = P (xi)
def= Ok+2 · · ·

∏
xn

Rx1 · · ·RxnΦ(r1, . . . , ri−1, xi, ri+1, . . . , rj , xj+1, . . . , xn)

and then the verifier will not reject and also Eq. (5) will hold for any (new) choice of ri. As for
soundness, if Eq. (4) does not hold then the prover must send P̂ (xi) 6= P (xi); but then Eq. (5) will
not hold except with probability d/q where d is the degree of P̂ .

This brings us to the last point, which is what the degree of P̂ should be. Except for the
innermost n reduce operators, the degree of the intermediate polynomial is at most 2; for the
innermost n reduce operators, the degree can be up to 3m.

We may now compute the soundness error of the entire protocol. There is error 1/q for each of
the n operators of type

∏
or

∐
, error 3m/q for each of the final n reduce operators, and error 2/q

for all other reduce operators. Applying a union bound, we see that the soundness error is:

n

q
+

3mn

q
+

2
q
·

n−1∑

i=1

i =
3mn + n2

q
.

Thus, a polynomial-length q suffices to obtain negligible soundness error.

Bibliographic Notes

The result that PSPACE ⊆ IP is due to Shamir [3], building on [2]. The “simplified” proof given
here is from [4]. Guruswami and O’Donnell [1] have written a nice survey of the history behind the
discovery of interactive proofs (and the PCP theorem that we will cover in a few lectures).

References

[1] V. Guruswami and R. O’Donnell. A History of the PCP Theorem. Available at
http://www.cs.washington.edu/education/courses/533/05au/pcp-history.pdf

[2] C. Lund, L. Fortnow, H.J. Karloff, and N. Nisan. Algebraic Methods for Interactive Proof
Systems. J. ACM 39(4): 859–868 (1992). The result originally appeared in FOCS ’90.

[3] A. Shamir. IP = PSPACE. J. ACM 39(4): 869–877 (1992). Preliminary version in FOCS ’90.

[4] A. Shen. IP = PSPACE: Simplified Proof. J. ACM 39(4): 878–880 (1992).

19-4


