Lecture 24

Jonathan Katz

1 The Complexity of Counting

We explore three results related to hardness of counting. Interestingly, at their core each of these results relies on a simple - yet powerful - technique due to Valiant and Vazirani.

1.1 Hardness of Unique-SAT

Does SAT become any easier if we are guaranteed that the formula we are given has at most one solution? Alternately, if we are guaranteed that a given boolean formula has a unique solution does it become any easier to find it? We show here that this is not likely to be the case.

Define the following promise problem:

$$
\begin{aligned}
& \text { USAT } \stackrel{\text { def }}{=}\{\phi: \phi \text { has exactly one satisfying assignment }\} \\
& \overline{\text { USAT }} \stackrel{\text { def }}{=}\{\phi: \phi \text { is unsatisfiable }\} .
\end{aligned}
$$

Clearly, this problem is in promise- $\mathcal{N} \mathcal{P}$. We show that if it in promise- \mathcal{P}, then $\mathcal{N} \mathcal{P}=\mathcal{R} \mathcal{P}$. We begin with a lemma about pairwise-independent hashing.

Lemma 1 Let $S \subseteq\{0,1\}^{n}$ be an arbitrary set with $2^{m} \leq|S| \leq 2^{m+1}$, and let $H_{n, m+2}$ be a family of pairwise-independent hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m+2}$. Then

$$
\operatorname{Pr}_{h \in H_{n, m+2}}\left[\text { there is a unique } x \in S \text { with } h(x)=0^{m+2}\right] \geq 1 / 8 .
$$

Proof Let $\mathbf{0} \stackrel{\text { def }}{=} 0^{m+2}$, and let $p \stackrel{\text { def }}{=} 2^{-(m+2)}$. Let N be the random variable (over choice of random $h \in H_{n, m+2}$) denoting the number of $x \in S$ for which $h(x)=\mathbf{0}$. Using the inclusion/exclusion principle, we have

$$
\begin{aligned}
\operatorname{Pr}[N \geq 1] & \geq \sum_{x \in S} \operatorname{Pr}[h(x)=\mathbf{0}]-\frac{1}{2} \cdot \sum_{x \neq x^{\prime} \in S} \operatorname{Pr}\left[h(x)=h\left(x^{\prime}\right)=\mathbf{0}\right] \\
& =|S| \cdot p-\binom{|S|}{2} p^{2},
\end{aligned}
$$

while $\operatorname{Pr}[N \geq 2] \leq \sum_{x \neq x^{\prime} \in S} \operatorname{Pr}\left[h(x)=h\left(x^{\prime}\right)=\mathbf{0}\right]=\binom{|S|}{2} p^{2}$. So

$$
\operatorname{Pr}[N=1]=\operatorname{Pr}[N \geq 1]-\operatorname{Pr}[N \geq 2] \geq|S| \cdot p-2 \cdot\binom{|S|}{2} p^{2} \geq|S| p-|S|^{2} p^{2} \geq 1 / 8,
$$

using the fact that $|S| \cdot p \in\left[\frac{1}{4}, \frac{1}{2}\right]$.

Theorem 2 (Valiant-Vazirani) If (USAT, $\overline{U S A T}$) is in promise $-\mathcal{R} \mathcal{P}$, then $\mathcal{N P}=\mathcal{R} \mathcal{P}$.
Proof If (USAT, $\overline{\text { USAT }}$) is in promise- $\mathcal{R} \mathcal{P}$, then there is a probabilistic polynomial-time algorithm A such that

$$
\begin{aligned}
\phi \in \text { USAT } & \Rightarrow \operatorname{Pr}[A(\phi)=1] \geq 1 / 2 \\
\phi \in \overline{\text { USAT }} & \Rightarrow \operatorname{Pr}[A(\phi)=1]=0 .
\end{aligned}
$$

We design a probabilistic polynomial-time algorithm B for SAT as follows: on input an n-variable boolean formula ϕ, first choose uniform $m \in\{0, \ldots, n-1\}$. Then choose random $h \leftarrow H_{n, m+2}$. Using the Cook-Levin reduction, rewrite the expression $\psi(x) \stackrel{\text { def }}{=}\left(\phi(x) \wedge\left(h(x)=0^{m+2}\right)\right)$ as a boolean formula $\phi^{\prime}(x, z)$, using additional variables z if necessary. (Since h is efficiently computable, the size of ϕ^{\prime} will be polynomial in the size of ϕ. Furthermore, the number of satisfying assignments to $\phi^{\prime}(x, z)$ will be the same as the number of satisfying assignments of ψ.) Output $A\left(\phi^{\prime}\right)$.

If ϕ is not satisfiable then ϕ^{\prime} is not satisfiable, so A (and hence B) always outputs 0 . If ϕ is satisfiable, with S denoting the set of satisfying assignments, then with probability $1 / n$ the value of m chosen by B is such that $2^{m} \leq|S| \leq 2^{m+1}$. In that case, Lemma 1 shows that with probability at least $1 / 8$ the formula ϕ^{\prime} will have a unique satisfying assignment, in which case A outputs 1 with probability at least $1 / 2$. We conclude that when ϕ is satisfiable then B outputs 1 with probability at least $1 / 16 n$.

1.2 Approximate Counting, and Relating $\# \mathcal{P}$ to $\mathcal{N} \mathcal{P}$

$\# \mathcal{P}$ is clearly not weaker than $\mathcal{N} \mathcal{P}$, since if we can count solutions then we can certainly tell if any exist. Although $\# \mathcal{P}$ is (in some sense) "harder" than $\mathcal{N} \mathcal{P}$, we show that any problem in $\# \mathcal{P}$ can be probabilistically approximated in polynomial time using an $\mathcal{N P}$ oracle. (This is reminiscent of the problem of reducing search to decision, except that here we are reducing counting the number of witness to the decision problem of whether or not a witness exists. Also, we are only obtaining an approximation, and we use randomization.) We focus on the \#P-complete problem \#SAT. Let \#SAT (ϕ) denote the number of satisfying assignments of a boolean formula ϕ. We show that for any polynomial p there exists a PPT algorithm A such that

$$
\begin{equation*}
\operatorname{Pr}\left[\# \operatorname{SAT}(\phi) \cdot\left(1-\frac{1}{p(|\phi|)}\right) \leq A^{\mathcal{N P}}(\phi) \leq \# \operatorname{SAT}(\phi) \cdot\left(1+\frac{1}{p(|\phi|)}\right)\right] \geq 1-2^{-p(|\phi|)} ; \tag{1}
\end{equation*}
$$

that is, A approximates $\# \operatorname{SAT}(\phi)$ (the number of satisfying assignments to ϕ) to within a factor $\left(1 \pm \frac{1}{p(|\phi|)}\right)$ with high probability.

The first observation is that it suffices to obtain a constant-factor approximation. Indeed, say we have an algorithm B such that

$$
\begin{equation*}
\frac{1}{64} \cdot \# \operatorname{SAT}(\phi) \leq B^{\mathcal{N P}}(\phi) \leq 64 \cdot \# \operatorname{SAT}(\phi) \tag{2}
\end{equation*}
$$

(For simplicity we assume B always outputs an approximation satisfying the above; any failure probability of B propagates in the obvious way.) We can construct an algorithm A satisfying (1) as follows: on input ϕ, set $q=\log 64 \cdot p(|\phi|)$ and compute $t=B\left(\phi^{\prime}\right)$ where

$$
\phi^{\prime} \stackrel{\text { def }}{=} \bigwedge_{i=1}^{q} \phi\left(x_{i}\right),
$$

and the x_{i} denote independent sets of variables. A then outputs $t^{1 / q}$.
Letting N (resp., N^{\prime}) denote the number of satisfying assignments to ϕ (resp., ϕ^{\prime}), note that $N^{\prime}=N^{q}$. Since t satisfies $\frac{1}{64} \cdot N^{\prime} \leq t \leq 64 \cdot N^{\prime}$, the output of A lies in the range

$$
\left[\begin{array}{ll}
2^{-1 / p(|\phi|)} \cdot N, & 2^{1 / p(|\phi|)} \cdot N
\end{array}\right] \subseteq\left[\left(1-\frac{1}{p(|\phi|)}\right) \cdot N, \quad\left(1+\frac{1}{p(|\phi|)}\right) \cdot N\right]
$$

as desired. In the last step, we use the following inequalities which hold for all $x \geq 1$:

$$
\left(\frac{1}{2}\right)^{1 / x} \geq\left(1-\frac{1}{x}\right) \quad \text { and } \quad 2^{1 / x} \leq\left(1+\frac{1}{x}\right)
$$

The next observation is that we can obtain a constant-factor approximation by solving the promise problem $\left(\Pi_{Y}, \Pi_{N}\right)$ given by:

$$
\begin{aligned}
& \Pi_{Y} \stackrel{\text { def }}{=}\{(\phi, k) \mid \# \operatorname{SAT}(\phi)>8 k\} \\
& \Pi_{N} \stackrel{\text { def }}{=}\{(\phi, k) \mid \# \operatorname{SAT}(\phi)<k / 8\} .
\end{aligned}
$$

Given an algorithm C solving this promise problem, we can construct an algorithm B satisfying (2) as follows. (Once again, we assume C is deterministic; if C errs with non-zero probability we can handle it in the straightforward way.) On input ϕ do:

- Set $i=0$.
- While $M\left(\left(\phi, 8^{i}\right)\right)=1$, increment i.
- Return $8^{i-\frac{1}{2}}$.

Let i^{*} be the value of i at the end of the algorithm, and set $\alpha=\log _{8} \# \operatorname{SAT}(\phi)$. In the second step, we know that $M\left(\left(\phi, 8^{i}\right)\right)$ outputs 1 as long as $\# \operatorname{SAT}(\phi)>8^{i+1}$ or, equivalently, $\alpha>i+1$. So we end up with an i^{*} satisfying $i^{*} \geq \alpha-1$. We also know that $M\left(\left(\phi, 8^{i}\right)\right)$ will output 0 whenever $i>\alpha+1$ and so the algorithm above must stop at the first (integer) i to satisfy this. Thus, $i^{*} \leq \alpha+2$. Putting this together, we see that our output value satisfies:

$$
\# \operatorname{SAT}(\phi) / 64<8^{i^{*}-\frac{1}{2}}<64 \cdot \# \operatorname{SAT}(\phi)
$$

as desired. (Note that we assume nothing about the behavior of M when $\left(\phi, 8^{i}\right) \notin \Pi_{Y} \cup \Pi_{N}$.)
Finally, we show that we can probabilistically solve $\left(\Pi_{Y}, \Pi_{N}\right)$ using an $\mathcal{N P}$ oracle. This just uses another application of the Valiant-Vazirani technique. Here we rely on the following lemma:

Lemma 3 Let $H_{n, m}$ be a family of pairwise-independent hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$, and let $\varepsilon>0$. Let $S \subseteq\{0,1\}^{n}$ be arbitrary with $|S| \geq \varepsilon^{-3} \cdot 2^{m}$. Then:

$$
\operatorname{Pr}_{h \in H_{n, m}}\left[(1-\varepsilon) \cdot \frac{|S|}{2^{m}} \leq\left|\left\{x \in S \mid h(x)=0^{m}\right\}\right| \leq(1+\varepsilon) \cdot \frac{|S|}{2^{m}}\right]>1-\varepsilon .
$$

Proof Define for each $x \in S$ an indicator random variable δ_{x} such that $\delta_{x}=1$ iff $h(x)=0^{m}$ (and 0 otherwise). Note that the δ_{x} are pairwise independent random variables with expectation 2^{-m} and variance $2^{-m} \cdot\left(1-2^{-m}\right)$. Let $Y \stackrel{\text { def }}{=} \sum_{x \in S} \delta_{x}=\left|\left\{x \in S \mid h(x)=0^{m}\right\}\right|$. The expectation of Y is $|S| / 2^{m}$, and its variance is $\frac{|S|}{2^{m}} \cdot\left(1-2^{-m}\right)$ (using pairwise independent of the δ_{x}). Using Chebychev's inequality, we obtain:

$$
\begin{aligned}
\operatorname{Pr}[(1-\varepsilon) \cdot \operatorname{Exp}[Y] \leq Y \leq(1+\varepsilon) \cdot \mathbf{E x p}[Y]] & =\operatorname{Pr}[|Y-\mathbf{E x p}[Y]| \leq \varepsilon \cdot \operatorname{Exp}[Y]] \\
& \geq 1-\frac{\operatorname{Var}[Y]}{(\varepsilon \cdot \mathbf{E x p}[Y])^{2}} \\
& =1-\frac{\left(1-2^{-m}\right) \cdot 2^{m}}{\varepsilon^{2} \cdot|S|},
\end{aligned}
$$

which is greater than $1-\varepsilon$ for $|S|$ as stated in the proposition.
The algorithm solving $\left(\Pi_{Y}, \Pi_{N}\right)$ is as follows. On input (ϕ, k) with $k>1$ (note that a solution is trivial for $k=1$), set $m=\lfloor\log k\rfloor$, choose a random h from $H_{n, m}$, and then query the $\mathcal{N P}$ oracle on the statement $\phi^{\prime}(x) \stackrel{\text { def }}{=}\left(\phi(x) \wedge\left(h(x)=0^{m}\right)\right)$ and output the result. An analysis follows.
Case 1: $(\phi, k) \in \Pi_{Y}$, so $\# \operatorname{SAT}(\phi)>8 k$. Let $S_{\phi}=\{x \mid \phi(x)=1\}$. Then $\left|S_{\phi}\right|>8 k \geq 8 \cdot 2^{m}$. So:

$$
\begin{aligned}
\operatorname{Pr}\left[\phi^{\prime} \in \mathrm{SAT}\right] & =\operatorname{Pr}\left[\left\{x \in S_{\phi}: h(x)=0^{m}\right\} \neq \emptyset\right] \\
& \geq \operatorname{Pr}\left[\left|\left\{x \in S_{\phi}: h(x)=0^{m}\right\}\right| \geq 4\right] \geq \frac{1}{2},
\end{aligned}
$$

which we obtain by applying Lemma 3 with $\varepsilon=\frac{1}{2}$.
Case 2: $(\phi, k) \in \Pi_{N}$, so \#SAT $(\phi)<k / 8$. Let S_{ϕ} be as before. Now $\left|S_{\phi}\right|<k / 8 \leq 2^{m} / 4$. So:

$$
\begin{aligned}
\operatorname{Pr}\left[\phi^{\prime} \in \mathrm{SAT}\right] & =\operatorname{Pr}\left[\left\{x \in S_{\phi}: h(x)=0^{m}\right\} \neq \emptyset\right] \\
& \leq \sum_{x \in S_{\phi}} \operatorname{Pr}\left[h(x)=0^{m}\right] \\
& <\frac{2^{m}}{4} \cdot 2^{-m}=\frac{1}{4},
\end{aligned}
$$

where we have applied a union bound in the second step. We thus have a constant gap in the acceptance probabilities when $\phi \in \Pi_{Y}$ vs. when $\phi \in \Pi_{N}$; this gap can be amplified as usual.

1.3 Toda's Theorem

The previous section may suggest that $\# \mathcal{P}$ is not "much stronger" than $\mathcal{N} \mathcal{P}$, in the sense that $\# \mathcal{P}$ can be closely approximated given access to an $\mathcal{N P}$ oracle. Here, we examine this more closely, and show the opposite: while approximating the number of solutions may be "easy" (given an $\mathcal{N} \mathcal{P}$ oracle), determining the exact number of solutions appears to be much more difficult.

Toward this, we first introduce the class $\oplus \mathcal{P}$ ("parity \mathcal{P} "):
Definition 1 A function $f:\{0,1\}^{*} \rightarrow\{0,1\}$ is in $\oplus \mathcal{P}$ if there is a Turing machine M running in time polynomial in its first input such that $f(x)=\# M(x) \bmod 2$.
Note that if $f \in \oplus \mathcal{P}$ then f is just the least-significant bit of some function $\bar{f} \in \# \mathcal{P}$. The class $\oplus \mathcal{P}$ does not represent any "natural" computational problem. Nevertheless, it is natural to study
it because (1) it nicely encapsulates the difficulty of computing functions in $\# \mathcal{P}$ exactly (i.e., down to the least-significant bit), and (2) it can be seen as a generalization of the unique-SAT example discussed previously (where the difficulty there is determining whether a boolean formula has 0 solutions or 1 solution).

A function $g \in \oplus \mathcal{P}$ is $\oplus \mathcal{P}$-complete (under parsimonious reductions) if for every $f \in \# \mathcal{P}$ there is a polynomial-time computable function ϕ such that $f(x)=g(\phi(x))$ for all x. If $\bar{g} \in \# \mathcal{P}$ is $\# \mathcal{P}$ complete under parsimonious reductions, then the least-significant bit of \bar{g} is $\oplus \mathcal{P}$-complete under parsimonious reductions. For notational purposes it is easier to treat $\oplus \mathcal{P}$ as a language class, in the natural way. (In particular, if $f \in \oplus \mathcal{P}$ as above then we obtain the language $L_{f}=\{x: f(x)=1\}$.) In this sense, $\oplus \mathcal{P}$-completeness is just the usual notion of a Karp reduction. Not surprisingly,

$$
\oplus \mathrm{SAT} \stackrel{\text { def }}{=}\{\phi: \phi \text { has an odd number of satisfying assignments }\}
$$

is $\oplus \mathcal{P}$-complete. Note that $\phi \in \oplus$ SAT iff $\sum_{x} \phi(x)=1 \bmod 2($ where we let $\phi(x)=1$ if x satisfies ϕ, and $\phi(x)=0$ otherwise).

A useful feature of $\oplus \mathcal{P}$ is that it can be "manipulated" arithmetically in the following sense:

- $(\phi \in \oplus S A T) \bigwedge\left(\phi^{\prime} \in \oplus\right.$ SAT $) \Leftrightarrow \phi \wedge \phi^{\prime} \in \oplus$ SAT. This follows because

$$
\sum_{x, x^{\prime}} \phi(x) \wedge \phi^{\prime}\left(x^{\prime}\right)=\sum_{x, x^{\prime}} \phi(x) \cdot \phi^{\prime}\left(x^{\prime}\right)=\left(\sum_{x} \phi(x)\right) \cdot\left(\sum_{x^{\prime}} \phi^{\prime}\left(x^{\prime}\right)\right)
$$

and hence the number of satisfying assignments of $\phi \wedge \phi^{\prime}$ is the product of the number of satisfying assignments of each of ϕ, ϕ^{\prime}.

- Let ϕ, ϕ^{\prime} be formulas, where without loss of generality we assume they both have the same number n of variables (this can always be enforced, without changing the number of satisfying assignments, by "padding" with additional variables that are forced to be 0 in any satisfying assignment). Define the formula $\phi+\phi^{\prime}$ on $n+1$ variables as follows:

$$
\left(\phi+\phi^{\prime}\right)(z, x)=((z=0) \wedge \phi(x)) \vee\left((z=1) \wedge \phi^{\prime}(x)\right)
$$

Note that the number of satisfying assignments of $\phi+\phi^{\prime}$ is the sum of the number of satisfying assignments of each of ϕ, ϕ^{\prime}. In particular, $\left(\phi+\phi^{\prime}\right) \in \oplus$ SAT iff exactly one of $\phi, \phi^{\prime} \in \oplus$ SAT.

- Let ' 1 ' stand for some canonical boolean formula that has exactly one satisfying assignment. Then $\phi \notin \oplus$ SAT $\Leftrightarrow(\phi+1) \in \oplus$ SAT.
- Finally, $(\phi \in \oplus \operatorname{SAT}) \bigvee\left(\phi^{\prime} \in \oplus\right.$ SAT $) \Leftrightarrow(\phi+1) \bigwedge\left(\phi^{\prime}+1\right)+1 \in \oplus$ SAT.

We use the above tools to prove the following result:
Theorem 4 (Toda's theorem) $\mathrm{PH} \subseteq \mathcal{P}^{\# \mathcal{P}}$.
The proof of Toda's theorem proceeds in two steps, each of which is a theorem in its own right.
Theorem 5 Fix any $c \in \mathbb{N}$. There is a probabilistic polynomial-time algorithm A such that for any quantified boolean formula ψ with c alternations, the following holds:

$$
\begin{aligned}
\psi \text { is true } & \Rightarrow \operatorname{Pr}\left[A\left(1^{m}, \psi\right) \in \oplus \mathrm{SAT}\right] \geq 1-2^{-m} \\
\psi \text { is false } & \Rightarrow \operatorname{Pr}\left[A\left(1^{m}, \psi\right) \in \oplus \mathrm{SAT}\right] \leq 2^{-m}
\end{aligned}
$$

As a corollary, $\mathrm{PH} \subseteq \mathcal{B} \mathcal{P} \mathcal{P}^{\oplus}$ ㄱ.

Proof It suffices to consider quantified boolean formulae beginning with an ' \exists ' quantifier. Indeed, say we have some algorithm A^{\prime} that works in that case. If ψ begins with a ' \forall ' quantifier then $\neg \psi$ can be written as a quantified boolean formula beginning with an ' \exists ' quantifier; moreover, ψ is true iff $\neg \psi$ is false. Thus, defining $A\left(1^{m}, \psi\right)$ to return $A^{\prime}\left(1^{m}, \neg \psi\right)+1$ gives the desired result.

The proof is by induction on c. For $c=1$ we apply the Valiant-Vazirani result plus amplification. Specifically, let ψ be a statement with only a single \exists quantifier. The Valiant-Vazirani technique gives us a probabilistic polynomial-time algorithm B such that:

$$
\begin{aligned}
\psi \text { is true } & \Rightarrow \operatorname{Pr}[B(\psi) \in \oplus \mathrm{SAT}] \geq 1 / 8 n \\
\psi \text { is false } & \Rightarrow \operatorname{Pr}[B(\psi) \in \oplus \mathrm{SAT}]=0,
\end{aligned}
$$

where n is the number of variables in ψ. Algorithm $A\left(1^{m}, \psi\right)$ runs $B(\psi)$ a total of $\ell=O(m n)$ times to obtain formulae $\phi_{1}, \ldots, \phi_{\ell}$; it then outputs the formula $\Phi=1+\bigwedge_{i}\left(\phi_{i}+1\right)$. Note that $\bigvee_{i}\left(\phi_{i} \in \oplus \mathrm{SAT}\right) \Leftrightarrow \Phi \in \oplus \mathrm{SAT}$; hence

$$
\begin{aligned}
\psi \text { is true } & \Rightarrow \operatorname{Pr}\left[A\left(1^{m}, \psi\right) \in \oplus \mathrm{SAT}\right] \geq 1-2^{-m} \\
\psi \text { is false } & \Rightarrow \operatorname{Pr}\left[A\left(1^{m}, \psi\right) \in \oplus \mathrm{SAT}\right]=0
\end{aligned}
$$

In fact, it can be verified that the above holds even if ψ has some free variables x. In more detail, let ψ_{x} be a statement (with only a single \exists quantifier) that depends on free variables $x .{ }^{1}$ The Valiant-Vazirani technique gives us a probabilistic polynomial-time algorithm B outputting a statement ϕ_{x} (with free variables x) such that, for each x :

$$
\begin{aligned}
x \text { is such that } \psi \text { is true } & \Rightarrow \operatorname{Pr}\left[\phi_{x} \in \oplus \mathrm{SAT}\right] \geq 1 / 8 n \\
x \text { is such that } \psi \text { is false } & \Rightarrow \operatorname{Pr}\left[\phi_{x} \in \oplus \mathrm{SAT}\right]=0 .
\end{aligned}
$$

Repeating this $O(n \cdot(m+|x|))$ times and proceeding as before gives a formula Φ_{x} where, for all x,

$$
\begin{aligned}
x \text { is such that } \psi \text { is true } & \Rightarrow \operatorname{Pr}\left[\Phi_{x} \in \oplus \mathrm{SAT}\right] \geq 1-2^{-m} \\
x \text { is such that } \psi \text { is false } & \Rightarrow \operatorname{Pr}\left[\Phi_{x} \in \oplus \mathrm{SAT}\right]=0 .
\end{aligned}
$$

For the inductive step, write $\psi=\exists x: \psi_{x}^{\prime}$, where ψ_{x}^{\prime} is a quantified boolean formula with $c-1$ alternations having n free variables x. Applying the inductive hypothesis, we can transform ψ_{x}^{\prime} into a boolean formula Φ_{x}^{\prime} such that, for all x :

$$
\begin{align*}
x \text { is such that } \psi_{x}^{\prime} \text { is true } & \Rightarrow \Phi_{x}^{\prime} \in \oplus \text { SAT } \tag{3}\\
x \text { is such that } \psi_{x}^{\prime} \text { is false } & \Rightarrow \Phi_{x}^{\prime} \notin \text { SAT } \tag{4}
\end{align*}
$$

except with probability at most $2^{-(m+1)}$. We assume the above hold for the rest of the proof.
The key observation is that the Valiant-Vazirani technique applies here as well. We can output, in polynomial time, a boolean formula β such that with probability at least $1 / 8 n$,

$$
\begin{aligned}
& \exists x: \psi_{x}^{\prime} \Rightarrow \exists x: \Phi_{x}^{\prime} \in \oplus \mathrm{SAT} \Rightarrow\left|\left\{x:\left(\Phi_{x}^{\prime} \in \oplus \mathrm{SAT}\right) \wedge \beta(x)\right\}\right|=1 \bmod 2 \\
& \nexists x: \psi_{x}^{\prime} \Rightarrow \nexists x: \Phi_{x}^{\prime} \notin \mathrm{SAT} \Rightarrow\left|\left\{x:\left(\Phi_{x}^{\prime} \in \oplus \mathrm{SAT}\right) \wedge \beta(x)\right\}\right|=0 \bmod 2 .
\end{aligned}
$$

[^0]Assume β is such that the above hold. Let $[P]$ evaluate to 1 iff predicate P is true. Then $\exists x: \psi_{x}^{\prime}$ implies

$$
\begin{aligned}
1 & =\sum_{x}\left[\left(\Phi_{x}^{\prime} \in \oplus \mathrm{SAT}\right) \wedge \beta(x)\right] \bmod 2 \\
& =\sum_{x}\left[\left(1=\sum_{z} \Phi_{x}^{\prime}(z) \bmod 2\right) \wedge \beta(x)\right] \bmod 2 \\
& =\sum_{x}\left[1=\sum_{z}\left(\beta(x) \wedge \Phi_{x}^{\prime}(z)\right) \bmod 2\right] \bmod 2 \\
& =\sum_{x, z}\left(\beta(x) \wedge \Phi_{x}^{\prime}(z)\right) \bmod 2,
\end{aligned}
$$

and similarly $\nexists x: \psi_{x}^{\prime}$ implies

$$
0=\sum_{x, z}\left(\beta(x) \wedge \Phi_{x}^{\prime}(z)\right) \bmod 2
$$

Letting $\phi(x, z) \stackrel{\text { def }}{=} \beta(x) \wedge \Phi_{x}^{\prime}(z)$ (note ϕ has no free variables), we conclude that

$$
\exists x: \psi_{x}^{\prime} \Leftrightarrow \phi \in \oplus \mathrm{SAT} .
$$

The above all holds with probability at least $1 / 8 n$. But we may amplify as before to obtain Φ such that

$$
\begin{aligned}
& \exists x: \psi_{x}^{\prime} \Rightarrow \operatorname{Pr}[\Phi \in \oplus \mathrm{SAT}] \geq 1-2^{-(m+1)} \\
& \nexists x: \psi_{x}^{\prime} \Rightarrow \operatorname{Pr}[\Phi \in \oplus \mathrm{SAT}] \leq 2^{-(m+1)} .
\end{aligned}
$$

Taking into account the error from Equations (3) and (4), we get a total error probability that is bounded by 2^{-m}.

The second step of Toda's theorem shows how to derandomize the above reduction, given access to a $\# \mathcal{P}$ oracle.

Theorem $6 \mathcal{B} \mathcal{P} \mathcal{P}^{\oplus \mathcal{P}} \subseteq \mathcal{P}{ }^{\# \mathcal{P}}$.
Proof We prove a weaker result, in that we consider only probabilistic Karp reductions to $\oplus \mathcal{P}$. (This suffices to prove Toda's theorem, since the algorithm from the preceding theorem shows that PH can be solved by such a reduction.) For simplicity, we also only consider derandomization of the specific algorithm A from the previous theorem.

The first observation is that there is a (deterministic) polynomial-time computable transformation T such that if $\phi^{\prime}=T\left(\phi, 1^{\ell}\right)$ then

$$
\begin{aligned}
\phi \in \oplus \operatorname{SAT} & \Rightarrow \# \operatorname{SAT}\left(\phi^{\prime}\right)=-1 \bmod 2^{\ell+1} \\
\phi \notin \operatorname{SAT} & \Rightarrow \# \operatorname{SAT}\left(\phi^{\prime}\right)=0 \bmod 2^{\ell+1} .
\end{aligned}
$$

(See [1, Lemma 17.22] for details.)

Let now A be the randomized reduction from the previous theorem (fixing $m=2$), so that

$$
\begin{aligned}
\psi \text { is true } & \Rightarrow \operatorname{Pr}[A(\psi) \in \oplus \mathcal{P}] \geq 3 / 4 \\
\psi \text { is false } & \Rightarrow \operatorname{Pr}[A(\psi) \in \oplus \mathcal{P}] \leq 1 / 4,
\end{aligned}
$$

where ψ is a quantified boolean formula. Say A uses $t=t(|\psi|)$ random bits. Let $T \circ A$ be the (deterministic) function given by

$$
T \circ A(\psi, r)=T\left(A(\psi ; r), 1^{t}\right) .
$$

Finally, consider the polynomial-time predicate R given by

$$
R(\psi,(r, x))=1 \text { iff } x \text { is a satisfying assignment for } T \circ A(\psi, r) .
$$

Now:

1. If ψ is true then for at least $3 / 4$ of the values of r the number of satisfying assignments to $T \circ A(\psi, r)$ is equal to -1 modulo 2^{t+1}, and for the remaining values of r the number of satisfying assignments is equal to 0 modulo 2^{t+1}. Thus

$$
|\{(r, x) \mid R(\psi,(r, x))=1\}| \in\left\{-2^{t}, \ldots,-3 \cdot 2^{t} / 4\right\} \bmod 2^{t+1}
$$

2. If ψ is false then for at least $3 / 4$ of the values of r the number of satisfying assignments to $T \circ A(\psi, r)$ is equal to 0 modulo 2^{t+1}, and for the remaining values of r the number of satisfying assignments is equal to -1 modulo 2^{t+1}. Thus

$$
|\{(r, x) \mid R(\psi,(r, x))=1\}| \in\left\{-2^{t} / 4, \ldots, 0\right\} \bmod 2^{t+1}
$$

We can distinguish the two cases above using a single call to the $\# \mathcal{P}$ oracle (first applying a parsimonious reduction from $R(\psi, \cdot)$ to a boolean formula $\phi(\cdot))$.

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009.

[^0]: ${ }^{1}$ E.g., ψ_{x} may be of the form " $\exists z:(z \vee \bar{x}) \wedge x$ ", in which case ψ_{0} is false and ψ_{1} is true.

