
Notes on Complexity Theory Last updated: November, 2011

Lecture 24

Jonathan Katz

1 The Complexity of Counting

We explore three results related to hardness of counting. Interestingly, at their core each of these
results relies on a simple — yet powerful — technique due to Valiant and Vazirani.

1.1 Hardness of Unique-SAT

Does SAT become any easier if we are guaranteed that the formula we are given has at most one
solution? Alternately, if we are guaranteed that a given boolean formula has a unique solution does
it become any easier to find it? We show here that this is not likely to be the case.

Define the following promise problem:

USAT
def= {φ : φ has exactly one satisfying assignment}

USAT
def= {φ : φ is unsatisfiable}.

Clearly, this problem is in promise-NP. We show that if it is in promise-P, then NP = RP. We
begin with a lemma about pairwise-independent hashing.

Lemma 1 Let S ⊆ {0, 1}n be an arbitrary set with 2m ≤ |S| ≤ 2m+1, and let Hn,m+2 be a family
of pairwise-independent hash functions mapping {0, 1}n to {0, 1}m+2. Then

Pr
h∈Hn,m+2

[there is a unique x ∈ S with h(x) = 0m+2] ≥ 1/8.

Proof Let 0 def= 0m+2, and let p
def= 2−(m+2). Let N be the random variable (over choice of random

h ∈ Hn,m+2) denoting the number of x ∈ S for which h(x) = 0. Using the inclusion/exclusion
principle, we have

Pr[N ≥ 1] ≥
∑

x∈S

Pr[h(x) = 0]− 1
2
·

∑

x6=x′∈S

Pr[h(x) = h(x′) = 0]

= |S| · p−
(|S|

2

)
p2,

while Pr[N ≥ 2] ≤ ∑
x6=x′∈S Pr[h(x) = h(x′) = 0] =

(|S|
2

)
p2. So

Pr[N = 1] = Pr[N ≥ 1]− Pr[N ≥ 2] ≥ |S| · p− 2 ·
(|S|

2

)
p2 ≥ |S|p− |S|2p2 ≥ 1/8,

using the fact that |S| · p ∈ [14 , 1
2].

24-1

Theorem 2 (Valiant-Vazirani) If (USAT, USAT) is in promise-RP, then NP = RP.

Proof If (USAT, USAT) is in promise-RP, then there is a probabilistic polynomial-time algorithm
A such that

φ ∈ USAT ⇒ Pr[A(φ) = 1] ≥ 1/2
φ ∈ USAT ⇒ Pr[A(φ) = 1] = 0.

We design a probabilistic polynomial-time algorithm B for SAT as follows: on input an n-variable
boolean formula φ, first choose uniform m ∈ {0, . . . , n−1}. Then choose random h ← Hn,m+2. Us-

ing the Cook-Levin reduction, rewrite the expression ψ(x) def=
(
φ(x) ∧ (

h(x) = 0m+2
))

as a boolean
formula φ′(x, z), using additional variables z if necessary. (Since h is efficiently computable, the
size of φ′ will be polynomial in the size of φ. Furthermore, the number of satisfying assignments to
φ′(x, z) will be the same as the number of satisfying assignments of ψ.) Output A(φ′).

If φ is not satisfiable then φ′ is not satisfiable, so A (and hence B) always outputs 0. If φ is
satisfiable, with S denoting the set of satisfying assignments, then with probability 1/n the value of
m chosen by B is such that 2m ≤ |S| ≤ 2m+1. In that case, Lemma 1 shows that with probability
at least 1/8 the formula φ′ will have a unique satisfying assignment, in which case A outputs 1 with
probability at least 1/2. We conclude that when φ is satisfiable then B outputs 1 with probability
at least 1/16n.

1.2 Approximate Counting, and Relating #P to NP
#P is clearly not weaker than NP, since if we can count solutions then we can certainly tell if any
exist. Although #P is (in some sense) “harder” than NP, we show that any problem in #P can
be probabilistically approximated in polynomial time using an NP oracle. (This is reminiscent of
the problem of reducing search to decision, except that here we are reducing counting the number
of witness to the decision problem of whether or not a witness exists. Also, we are only obtaining
an approximation, and we use randomization.) We focus on the #P-complete problem #SAT. Let
#SAT(φ) denote the number of satisfying assignments of a boolean formula φ. We show that for
any polynomial p there exists a ppt algorithm A such that

Pr
[
#SAT(φ) ·

(
1− 1

p(|φ|)
)
≤ ANP(φ) ≤ #SAT(φ) ·

(
1 +

1
p(|φ|)

)]
≥ 1− 2−p(|φ|) ; (1)

that is, A approximates #SAT(φ) (the number of satisfying assignments to φ) to within a factor
(1± 1

p(|φ|)) with high probability.
The first observation is that it suffices to obtain a constant-factor approximation. Indeed, say

we have an algorithm B such that

1
64
·#SAT(φ) ≤ BNP(φ) ≤ 64 ·#SAT(φ). (2)

(For simplicity we assume B always outputs an approximation satisfying the above; any failure
probability of B propagates in the obvious way.) We can construct an algorithm A satisfying (1)
as follows: on input φ, set q = log 64 · p(|φ|) and compute t = B(φ′) where

φ′ def=
∧q

i=1 φ(xi) ,

24-2

and the xi denote independent sets of variables. A then outputs t1/q.
Letting N (resp., N ′) denote the number of satisfying assignments to φ (resp., φ′), note that

N ′ = N q. Since t satisfies 1
64 ·N ′ ≤ t ≤ 64 ·N ′, the output of A lies in the range

[
2−1/p(|φ|) ·N, 21/p(|φ|) ·N

]
⊆

[(
1− 1

p(|φ|)
)
·N,

(
1 +

1
p(|φ|)

)
·N

]
,

as desired. In the last step, we use the following inequalities which hold for all x ≥ 1:

(
1
2

)1/x

≥
(

1− 1
x

)
and 21/x ≤

(
1 +

1
x

)
.

The next observation is that we can obtain a constant-factor approximation by solving the
promise problem (ΠY ,ΠN) given by:

ΠY
def= {(φ, k) | #SAT(φ) > 8k}

ΠN
def= {(φ, k) | #SAT(φ) < k/8}.

Given an algorithm C solving this promise problem, we can construct an algorithm B satisfying (2)
as follows. (Once again, we assume C is deterministic; if C errs with non-zero probability we can
handle it in the straightforward way.) On input φ do:

• Set i = 0.

• While M((φ, 8i)) = 1, increment i.

• Return 8i− 1
2 .

Let i∗ be the value of i at the end of the algorithm, and set α = log8 #SAT(φ). In the second step,
we know that M((φ, 8i)) outputs 1 as long as #SAT(φ) > 8i+1 or, equivalently, α > i+1. So we end
up with an i∗ satisfying i∗ ≥ α− 1. We also know that M((φ, 8i)) will output 0 whenever i > α+1
and so the algorithm above must stop at the first (integer) i to satisfy this. Thus, i∗ ≤ α + 2.
Putting this together, we see that our output value satisfies:

#SAT(φ)/64 < 8i∗− 1
2 < 64 ·#SAT(φ),

as desired. (Note that we assume nothing about the behavior of M when (φ, 8i) 6∈ ΠY ∪ΠN .)
Finally, we show that we can probabilistically solve (ΠY , ΠN) using an NP oracle. This just

uses another application of the Valiant-Vazirani technique. Here we rely on the following lemma:

Lemma 3 Let Hn,m be a family of pairwise-independent hash functions mapping {0, 1}n to {0, 1}m,
and let ε > 0. Let S ⊆ {0, 1}n be arbitrary with |S| ≥ ε−3 · 2m. Then:

Pr
h∈Hn,m

[
(1− ε) · |S|

2m
≤ |{x ∈ S | h(x) = 0m}| ≤ (1 + ε) · |S|

2m

]
> 1− ε.

24-3

Proof Define for each x ∈ S an indicator random variable δx such that δx = 1 iff h(x) = 0m

(and 0 otherwise). Note that the δx are pairwise independent random variables with expectation
2−m and variance 2−m · (1 − 2−m). Let Y

def=
∑

x∈S δx = |{x ∈ S | h(x) = 0m}|. The expectation
of Y is |S|/2m, and its variance is |S|

2m · (1 − 2−m) (using pairwise independent of the δx). Using
Chebychev’s inequality, we obtain:

Pr [(1− ε) ·Exp[Y] ≤ Y ≤ (1 + ε) ·Exp[Y]] = Pr [|Y −Exp[Y]| ≤ ε ·Exp[Y]]

≥ 1− Var[Y]
(ε ·Exp[Y])2

= 1− (1− 2−m) · 2m

ε2 · |S| ,

which is greater than 1− ε for |S| as stated in the proposition.

The algorithm solving (ΠY ,ΠN) is as follows. On input (φ, k) with k > 1 (note that a solution
is trivial for k = 1), set m = blog kc, choose a random h from Hn,m, and then query the NP oracle

on the statement φ′(x) def= (φ(x) ∧ (h(x) = 0m)) and output the result. An analysis follows.

Case 1: (φ, k) ∈ ΠY , so #SAT(φ) > 8k. Let Sφ = {x | φ(x) = 1}. Then |Sφ| > 8k ≥ 8 · 2m. So:

Pr
[
φ′ ∈ SAT

]
= Pr

[{x ∈ Sφ : h(x) = 0m} 6= ∅]

≥ Pr
[|{x ∈ Sφ : h(x) = 0m}| ≥ 4

] ≥ 1
2

,

which we obtain by applying Lemma 3 with ε = 1
2 .

Case 2: (φ, k) ∈ ΠN , so #SAT(φ) < k/8. Let Sφ be as before. Now |Sφ| < k/8 ≤ 2m/4. So:

Pr
[
φ′ ∈ SAT

]
= Pr

[{x ∈ Sφ : h(x) = 0m} 6= ∅]

≤
∑

x∈Sφ

Pr [h(x) = 0m]

<
2m

4
· 2−m =

1
4
,

where we have applied a union bound in the second step. We thus have a constant gap in the
acceptance probabilities when φ ∈ ΠY vs. when φ ∈ ΠN ; this gap can be amplified as usual.

1.3 Toda’s Theorem

The previous section may suggest that #P is not “much stronger” than NP, in the sense that #P
can be closely approximated given access to an NP oracle. Here, we examine this more closely,
and show the opposite: while approximating the number of solutions may be “easy” (given an NP
oracle), determining the exact number of solutions appears to be much more difficult.

Toward this, we first introduce the class ⊕P (“parity P”):

Definition 1 A function f : {0, 1}∗ → {0, 1} is in ⊕P if there is a Turing machine M running in
time polynomial in its first input such that f(x) = #M(x) mod 2.

Note that if f ∈ ⊕P then f is just the least-significant bit of some function f̄ ∈ #P. The class
⊕P does not represent any “natural” computational problem. Nevertheless, it is natural to study

24-4

it because (1) it nicely encapsulates the difficulty of computing functions in #P exactly (i.e., down
to the least-significant bit), and (2) it can be seen as a generalization of the unique-SAT example
discussed previously (where the difficulty there is determining whether a boolean formula has 0
solutions or 1 solution).

A function g ∈ ⊕P is ⊕P-complete (under parsimonious reductions) if for every f ∈ #P there
is a polynomial-time computable function φ such that f(x) = g(φ(x)) for all x. If ḡ ∈ #P is #P-
complete under parsimonious reductions, then the least-significant bit of ḡ is ⊕P-complete under
parsimonious reductions. For notational purposes it is easier to treat ⊕P as a language class, in the
natural way. (In particular, if f ∈ ⊕P as above then we obtain the language Lf = {x : f(x) = 1}.)
In this sense, ⊕P-completeness is just the usual notion of a Karp reduction. Not surprisingly,

⊕SAT
def= {φ : φ has an odd number of satisfying assignments}

is ⊕P-complete. Note that φ ∈ ⊕SAT iff
∑

x φ(x) = 1 mod 2 (where we let φ(x) = 1 if x satisfies φ,
and φ(x) = 0 otherwise).

A useful feature of ⊕P is that it can be “manipulated” arithmetically in the following sense:

• (φ ∈ ⊕SAT)
∧

(φ′ ∈ ⊕SAT) ⇔ φ ∧ φ′ ∈ ⊕SAT. This follows because

∑

x,x′
φ(x) ∧ φ′(x′) =

∑

x,x′
φ(x) · φ′(x′) =

(∑
x

φ(x)

)
·
(∑

x′
φ′(x′)

)
,

and hence the number of satisfying assignments of φ ∧ φ′ is the product of the number of
satisfying assignments of each of φ, φ′.

• Let φ, φ′ be formulas, where without loss of generality we assume they both have the same
number n of variables (this can always be enforced, without changing the number of satisfying
assignments, by “padding” with additional variables that are forced to be 0 in any satisfying
assignment). Define the formula φ + φ′ on n + 1 variables as follows:

(φ + φ′)(z, x) =
(
(z = 0) ∧ φ(x)

) ∨ (
(z = 1) ∧ φ′(x)

)
.

Note that the number of satisfying assignments of φ+φ′ is the sum of the number of satisfying
assignments of each of φ, φ′. In particular, (φ + φ′) ∈ ⊕SAT iff exactly one of φ, φ′ ∈ ⊕SAT.

• Let ‘1’ stand for some canonical boolean formula that has exactly one satisfying assignment.
Then φ 6∈ ⊕SAT ⇔ (φ + 1) ∈ ⊕SAT.

• Finally, (φ ∈ ⊕SAT)
∨

(φ′ ∈ ⊕SAT) ⇔ (φ + 1)
∧

(φ′ + 1) + 1 ∈ ⊕SAT.

We use the above tools to prove the following result:

Theorem 4 (Toda’s theorem) PH ⊆ P#P .

The proof of Toda’s theorem proceeds in two steps, each of which is a theorem in its own right.

Theorem 5 Fix any c ∈ N. There is a probabilistic polynomial-time algorithm A such that for any
quantified boolean formula ψ with c alternations, the following holds:

ψ is true ⇒ Pr[A(1m, ψ) ∈ ⊕SAT] ≥ 1− 2−m

ψ is false ⇒ Pr[A(1m, ψ) ∈ ⊕SAT] ≤ 2−m.

As a corollary, PH ⊆ BPP⊕P .

24-5

Proof It suffices to consider quantified boolean formulae beginning with an ‘∃’ quantifier. Indeed,
say we have some algorithm A′ that works in that case. If ψ begins with a ‘∀’ quantifier then ¬ψ
can be written as a quantified boolean formula beginning with an ‘∃’ quantifier; moreover, ψ is true
iff ¬ψ is false. Thus, defining A(1m, ψ) to return A′(1m,¬ψ) + 1 gives the desired result.

The proof is by induction on c. For c = 1 we apply the Valiant-Vazirani result plus amplification.
Specifically, let ψ be a statement with only a single ∃ quantifier. The Valiant-Vazirani technique
gives us a probabilistic polynomial-time algorithm B such that:

ψ is true ⇒ Pr[B(ψ) ∈ ⊕SAT] ≥ 1/8n

ψ is false ⇒ Pr[B(ψ) ∈ ⊕SAT] = 0,

where n is the number of variables in ψ. Algorithm A(1m, ψ) runs B(ψ) a total of ` = O(mn)
times to obtain formulae φ1, . . . , φ`; it then outputs the formula Φ = 1 +

∧
i(φi + 1). Note that∨

i(φi ∈ ⊕SAT) ⇔ Φ ∈ ⊕SAT; hence

ψ is true ⇒ Pr[A(1m, ψ) ∈ ⊕SAT] ≥ 1− 2−m

ψ is false ⇒ Pr[A(1m, ψ) ∈ ⊕SAT] = 0.

In fact, it can be verified that the above holds even if ψ has some free variables x. In more
detail, let ψx be a statement (with only a single ∃ quantifier) that depends on free variables x.1

The Valiant-Vazirani technique gives us a probabilistic polynomial-time algorithm B outputting a
statement φx (with free variables x) such that, for each x:

x is such that ψ is true ⇒ Pr[φx ∈ ⊕SAT] ≥ 1/8n

x is such that ψ is false ⇒ Pr[φx ∈ ⊕SAT] = 0.

Repeating this O(n · (m + |x|)) times and proceeding as before gives a formula Φx where, for all x,

x is such that ψ is true ⇒ Pr[Φx ∈ ⊕SAT] ≥ 1− 2−m

x is such that ψ is false ⇒ Pr[Φx ∈ ⊕SAT] = 0.

For the inductive step, write ψ = ∃x : ψ′x, where ψ′x is a quantified boolean formula with c− 1
alternations having n free variables x. Applying the inductive hypothesis, we can transform ψ′x
into a boolean formula Φ′x such that, for all x:

x is such that ψ′x is true ⇒ Φ′x ∈ ⊕SAT (3)
x is such that ψ′x is false ⇒ Φ′x 6∈ ⊕SAT (4)

except with probability at most 2−(m+1). We assume the above hold for the rest of the proof.
The key observation is that the Valiant-Vazirani technique applies here as well. We can output,

in polynomial time, a boolean formula β such that with probability at least 1/8n,

∃x : ψ′x ⇒ ∃x : Φ′x ∈ ⊕SAT ⇒ ∣∣{x :
(
Φ′x ∈ ⊕SAT

) ∧ β(x)
}∣∣ = 1 mod 2

6 ∃x : ψ′x ⇒ 6 ∃x : Φ′x 6∈ ⊕SAT ⇒ ∣∣{x :
(
Φ′x ∈ ⊕SAT

) ∧ β(x)
}∣∣ = 0 mod 2.

1E.g., ψx may be of the form “∃z : (z ∨ x̄) ∧ x”, in which case ψ0 is false and ψ1 is true.

24-6

Assume β is such that the above hold. Let [P] evaluate to 1 iff predicate P is true. Then ∃x : ψ′x
implies

1 =
∑

x

[(
Φ′x ∈ ⊕SAT

) ∧ β(x)
]

mod 2

=
∑

x

[(
1 =

∑
z

Φ′x(z) mod 2

)
∧ β(x)

]
mod 2

=
∑

x

[
1 =

∑
z

(
β(x) ∧ Φ′x(z)

)
mod 2

]
mod 2

=
∑
x,z

(
β(x) ∧ Φ′x(z)

)
mod 2,

and similarly 6 ∃x : ψ′x implies
0 =

∑
x,z

(
β(x) ∧ Φ′x(z)

)
mod 2.

Letting φ(x, z) def= β(x) ∧ Φ′x(z) (note φ has no free variables), we conclude that

∃x : ψ′x ⇔ φ ∈ ⊕SAT.

The above all holds with probability at least 1/8n. But we may amplify as before to obtain Φ
such that

∃x : ψ′x ⇒ Pr[Φ ∈ ⊕SAT] ≥ 1− 2−(m+1)

6 ∃x : ψ′x ⇒ Pr[Φ ∈ ⊕SAT] ≤ 2−(m+1).

Taking into account the error from Equations (3) and (4), we get a total error probability that is
bounded by 2−m.

The second step of Toda’s theorem shows how to derandomize the above reduction, given access
to a #P oracle.

Theorem 6 BPP⊕P ⊆ P#P .

Proof We prove a weaker result, in that we consider only probabilistic Karp reductions to ⊕P.
(This suffices to prove Toda’s theorem, since the algorithm from the preceding theorem shows that
PH can be solved by such a reduction.) For simplicity, we also only consider derandomization of
the specific algorithm A from the previous theorem.

The first observation is that there is a (deterministic) polynomial-time computable transforma-
tion T such that if φ′ = T (φ, 1`) then

φ ∈ ⊕SAT ⇒ #SAT(φ′) = −1 mod 2`+1

φ 6∈ ⊕SAT ⇒ #SAT(φ′) = 0 mod 2`+1.

(See [1, Lemma 17.22] for details.)

24-7

Let now A be the randomized reduction from the previous theorem (fixing m = 2), so that

ψ is true ⇒ Pr[A(ψ) ∈ ⊕P] ≥ 3/4
ψ is false ⇒ Pr[A(ψ) ∈ ⊕P] ≤ 1/4,

where ψ is a quantified boolean formula. Say A uses t = t(|ψ|) random bits. Let T ◦ A be the
(deterministic) function given by

T ◦A(ψ, r) = T (A(ψ; r), 1t).

Finally, consider the polynomial-time predicate R given by

R(ψ, (r, x)) = 1 iff x is a satisfying assignment for T ◦A(ψ, r).

Now:

1. If ψ is true then for at least 3/4 of the values of r the number of satisfying assignments to
T ◦ A(ψ, r) is equal to −1 modulo 2t+1, and for the remaining values of r the number of
satisfying assignments is equal to 0 modulo 2t+1. Thus

∣∣{(r, x) | R(ψ, (r, x)) = 1}∣∣ ∈ {−2t, . . . ,−3 · 2t/4} mod 2t+1.

2. If ψ is false then for at least 3/4 of the values of r the number of satisfying assignments
to T ◦ A(ψ, r) is equal to 0 modulo 2t+1, and for the remaining values of r the number of
satisfying assignments is equal to −1 modulo 2t+1. Thus

∣∣{(r, x) | R(ψ, (r, x)) = 1}∣∣ ∈ {−2t/4, . . . , 0} mod 2t+1.

We can distinguish the two cases above using a single call to the #P oracle (first applying a
parsimonious reduction from R(ψ, ·) to a boolean formula φ(·)).

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

24-8

