Notes on Complexity Theory

Lecture 24

Jonathan Katz

1 The Complexity of Counting

We explore three results related to hardness of counting. Interestingly, at their core each of these results relies on a simple — yet powerful — technique due to Valiant and Vazirani.

1.1 Hardness of Unique-SAT

Does SAT become any easier if we are guaranteed that the formula we are given has at most *one* solution? Alternately, if we are guaranteed that a given boolean formula has a unique solution does it become any easier to find it? We show here that this is not likely to be the case.

Define the following promise problem:

$$\begin{array}{rcl} \mathsf{USAT} & \stackrel{\mathrm{def}}{=} & \{\phi : \phi \text{ has exactly one satisfying assignment}\}\\ \hline \overline{\mathsf{USAT}} & \stackrel{\mathrm{def}}{=} & \{\phi : \phi \text{ is unsatisfiable}\}. \end{array}$$

Clearly, this problem is in promise- \mathcal{NP} . We show that if it is in promise- \mathcal{P} , then $\mathcal{NP} = \mathcal{RP}$. We begin with a lemma about pairwise-independent hashing.

Lemma 1 Let $S \subseteq \{0,1\}^n$ be an arbitrary set with $2^m \leq |S| \leq 2^{m+1}$, and let $H_{n,m+2}$ be a family of pairwise-independent hash functions mapping $\{0,1\}^n$ to $\{0,1\}^{m+2}$. Then

$$\Pr_{h \in H_{n,m+2}}[\text{there is a unique } x \in S \text{ with } h(x) = 0^{m+2}] \ge 1/8.$$

Proof Let $\mathbf{0} \stackrel{\text{def}}{=} 0^{m+2}$, and let $p \stackrel{\text{def}}{=} 2^{-(m+2)}$. Let N be the random variable (over choice of random $h \in H_{n,m+2}$) denoting the number of $x \in S$ for which $h(x) = \mathbf{0}$. Using the inclusion/exclusion principle, we have

$$\begin{aligned} \Pr[N \ge 1] & \ge \quad \sum_{x \in S} \Pr[h(x) = \mathbf{0}] - \frac{1}{2} \cdot \sum_{x \neq x' \in S} \Pr[h(x) = h(x') = \mathbf{0}] \\ & = \quad |S| \cdot p - \binom{|S|}{2} p^2, \end{aligned}$$

while $\Pr[N \ge 2] \le \sum_{x \ne x' \in S} \Pr[h(x) = h(x') = \mathbf{0}] = {\binom{|S|}{2}}p^2$. So

$$\Pr[N=1] = \Pr[N \ge 1] - \Pr[N \ge 2] \ge |S| \cdot p - 2 \cdot {\binom{|S|}{2}} p^2 \ge |S|p - |S|^2 p^2 \ge 1/8,$$

using the fact that $|S| \cdot p \in [\frac{1}{4}, \frac{1}{2}].$

Theorem 2 (Valiant-Vazirani) If (USAT, $\overline{\text{USAT}}$) is in promise- \mathcal{RP} , then $\mathcal{NP} = \mathcal{RP}$.

Proof If $(USAT, \overline{USAT})$ is in promise- \mathcal{RP} , then there is a probabilistic polynomial-time algorithm A such that

$$\phi \in \mathsf{USAT} \quad \Rightarrow \quad \Pr[A(\phi) = 1] \ge 1/2$$

$$\phi \in \overline{\mathsf{USAT}} \quad \Rightarrow \quad \Pr[A(\phi) = 1] = 0.$$

We design a probabilistic polynomial-time algorithm B for SAT as follows: on input an n-variable boolean formula ϕ , first choose uniform $m \in \{0, \ldots, n-1\}$. Then choose random $h \leftarrow H_{n,m+2}$. Using the Cook-Levin reduction, rewrite the expression $\psi(x) \stackrel{\text{def}}{=} (\phi(x) \land (h(x) = 0^{m+2}))$ as a boolean formula $\phi'(x, z)$, using additional variables z if necessary. (Since h is efficiently computable, the size of ϕ' will be polynomial in the size of ϕ . Furthermore, the number of satisfying assignments to $\phi'(x, z)$ will be the same as the number of satisfying assignments of ψ .) Output $A(\phi')$.

If ϕ is not satisfiable then ϕ' is not satisfiable, so A (and hence B) always outputs 0. If ϕ is satisfiable, with S denoting the set of satisfying assignments, then with probability 1/n the value of m chosen by B is such that $2^m \leq |S| \leq 2^{m+1}$. In that case, Lemma 1 shows that with probability at least 1/8 the formula ϕ' will have a unique satisfying assignment, in which case A outputs 1 with probability at least 1/2. We conclude that when ϕ is satisfiable then B outputs 1 with probability at least 1/2.

1.2 Approximate Counting, and Relating #P to \mathcal{NP}

 $\#\mathcal{P}$ is clearly not weaker than \mathcal{NP} , since if we can count solutions then we can certainly tell if any exist. Although $\#\mathcal{P}$ is (in some sense) "harder" than \mathcal{NP} , we show that any problem in $\#\mathcal{P}$ can be probabilistically *approximated* in polynomial time using an \mathcal{NP} oracle. (This is reminiscent of the problem of reducing search to decision, except that here we are reducing *counting* the number of witness to the decision problem of whether or not a witness exists. Also, we are only obtaining an approximation, and we use randomization.) We focus on the $\#\mathcal{P}$ -complete problem #SAT. Let $\#SAT(\phi)$ denote the number of satisfying assignments of a boolean formula ϕ . We show that for any polynomial p there exists a PPT algorithm A such that

$$\Pr\left[\#\mathsf{SAT}(\phi) \cdot \left(1 - \frac{1}{p(|\phi|)}\right) \le A^{\mathcal{NP}}(\phi) \le \#\mathsf{SAT}(\phi) \cdot \left(1 + \frac{1}{p(|\phi|)}\right)\right] \ge 1 - 2^{-p(|\phi|)}; \tag{1}$$

that is, A approximates $\#SAT(\phi)$ (the number of satisfying assignments to ϕ) to within a factor $(1 \pm \frac{1}{p(|\phi|)})$ with high probability.

The first observation is that it suffices to obtain a constant-factor approximation. Indeed, say we have an algorithm B such that

$$\frac{1}{64} \cdot \#\mathsf{SAT}(\phi) \le B^{\mathcal{NP}}(\phi) \le 64 \cdot \#\mathsf{SAT}(\phi).$$
(2)

(For simplicity we assume B always outputs an approximation satisfying the above; any failure probability of B propagates in the obvious way.) We can construct an algorithm A satisfying (1) as follows: on input ϕ , set $q = \log 64 \cdot p(|\phi|)$ and compute $t = B(\phi')$ where

$$\phi' \stackrel{\text{def}}{=} \bigwedge_{i=1}^q \phi(x_i) \,,$$

and the x_i denote independent sets of variables. A then outputs $t^{1/q}$.

Letting N (resp., N') denote the number of satisfying assignments to ϕ (resp., ϕ'), note that $N' = N^q$. Since t satisfies $\frac{1}{64} \cdot N' \leq t \leq 64 \cdot N'$, the output of A lies in the range

$$\left[2^{-1/p(|\phi|)} \cdot N, \quad 2^{1/p(|\phi|)} \cdot N\right] \subseteq \left[\left(1 - \frac{1}{p(|\phi|)}\right) \cdot N, \quad \left(1 + \frac{1}{p(|\phi|)}\right) \cdot N\right],$$

as desired. In the last step, we use the following inequalities which hold for all $x \ge 1$:

$$\left(\frac{1}{2}\right)^{1/x} \ge \left(1 - \frac{1}{x}\right)$$
 and $2^{1/x} \le \left(1 + \frac{1}{x}\right)$.

The next observation is that we can obtain a constant-factor approximation by solving the promise problem (Π_Y, Π_N) given by:

$$\Pi_Y \stackrel{\text{def}}{=} \{(\phi, k) \mid \#\mathsf{SAT}(\phi) > 8k\}$$

$$\Pi_N \stackrel{\text{def}}{=} \{(\phi, k) \mid \#\mathsf{SAT}(\phi) < k/8\}.$$

Given an algorithm C solving this promise problem, we can construct an algorithm B satisfying (2) as follows. (Once again, we assume C is deterministic; if C errs with non-zero probability we can handle it in the straightforward way.) On input ϕ do:

- Set i = 0.
- While $M((\phi, 8^i)) = 1$, increment *i*.
- Return $8^{i-\frac{1}{2}}$.

Let i^* be the value of i at the end of the algorithm, and set $\alpha = \log_8 \# \mathsf{SAT}(\phi)$. In the second step, we know that $M((\phi, 8^i))$ outputs 1 as long as $\# \mathsf{SAT}(\phi) > 8^{i+1}$ or, equivalently, $\alpha > i+1$. So we end up with an i^* satisfying $i^* \ge \alpha - 1$. We also know that $M((\phi, 8^i))$ will output 0 whenever $i > \alpha + 1$ and so the algorithm above must stop at the first (integer) i to satisfy this. Thus, $i^* \le \alpha + 2$. Putting this together, we see that our output value satisfies:

$$\#\mathsf{SAT}(\phi)/64 < 8^{i^* - \frac{1}{2}} < 64 \cdot \#\mathsf{SAT}(\phi),$$

as desired. (Note that we assume nothing about the behavior of M when $(\phi, 8^i) \notin \Pi_Y \cup \Pi_N$.)

Finally, we show that we can probabilistically solve (Π_Y, Π_N) using an \mathcal{NP} oracle. This just uses another application of the Valiant-Vazirani technique. Here we rely on the following lemma:

Lemma 3 Let $H_{n,m}$ be a family of pairwise-independent hash functions mapping $\{0,1\}^n$ to $\{0,1\}^m$, and let $\varepsilon > 0$. Let $S \subseteq \{0,1\}^n$ be arbitrary with $|S| \ge \varepsilon^{-3} \cdot 2^m$. Then:

$$\Pr_{h \in H_{n,m}} \left[(1-\varepsilon) \cdot \frac{|S|}{2^m} \le |\{x \in S \mid h(x) = 0^m\}| \le (1+\varepsilon) \cdot \frac{|S|}{2^m} \right] > 1-\varepsilon.$$

Proof Define for each $x \in S$ an indicator random variable δ_x such that $\delta_x = 1$ iff $h(x) = 0^m$ (and 0 otherwise). Note that the δ_x are pairwise independent random variables with expectation 2^{-m} and variance $2^{-m} \cdot (1 - 2^{-m})$. Let $Y \stackrel{\text{def}}{=} \sum_{x \in S} \delta_x = |\{x \in S \mid h(x) = 0^m\}|$. The expectation of Y is $|S|/2^m$, and its variance is $\frac{|S|}{2^m} \cdot (1 - 2^{-m})$ (using pairwise independent of the δ_x). Using Chebychev's inequality, we obtain:

$$\begin{aligned} \Pr\left[(1-\varepsilon) \cdot \mathbf{Exp}[Y] \le Y \le (1+\varepsilon) \cdot \mathbf{Exp}[Y]\right] &= \Pr\left[|Y - \mathbf{Exp}[Y]| \le \varepsilon \cdot \mathbf{Exp}[Y]\right] \\ &\geq 1 - \frac{\mathbf{Var}[Y]}{(\varepsilon \cdot \mathbf{Exp}[Y])^2} \\ &= 1 - \frac{(1-2^{-m}) \cdot 2^m}{\varepsilon^2 \cdot |S|}, \end{aligned}$$

which is greater than $1 - \varepsilon$ for |S| as stated in the proposition.

The algorithm solving (Π_Y, Π_N) is as follows. On input (ϕ, k) with k > 1 (note that a solution is trivial for k = 1), set $m = \lfloor \log k \rfloor$, choose a random h from $H_{n,m}$, and then query the \mathcal{NP} oracle on the statement $\phi'(x) \stackrel{\text{def}}{=} (\phi(x) \land (h(x) = 0^m))$ and output the result. An analysis follows. **Case 1:** $(\phi, k) \in \Pi_Y$, so $\#\mathsf{SAT}(\phi) > 8k$. Let $S_{\phi} = \{x \mid \phi(x) = 1\}$. Then $|S_{\phi}| > 8k \ge 8 \cdot 2^m$. So:

$$\Pr\left[\phi' \in \mathsf{SAT}\right] = \Pr\left[\left\{x \in S_{\phi} : h(x) = 0^{m}\right\} \neq \emptyset\right]$$

$$\geq \Pr\left[\left|\left\{x \in S_{\phi} : h(x) = 0^{m}\right\}\right| \ge 4\right] \ge \frac{1}{2},$$

which we obtain by applying Lemma 3 with $\varepsilon = \frac{1}{2}$.

Case 2: $(\phi, k) \in \Pi_N$, so $\#\mathsf{SAT}(\phi) < k/8$. Let S_{ϕ} be as before. Now $|S_{\phi}| < k/8 \le 2^m/4$. So:

$$\begin{aligned} \Pr\left[\phi' \in \mathsf{SAT}\right] &= & \Pr\left[\left\{x \in S_{\phi} : h(x) = 0^{m}\right\} \neq \emptyset\right] \\ &\leq & \sum_{x \in S_{\phi}} \Pr\left[h(x) = 0^{m}\right] \\ &< & \frac{2^{m}}{4} \cdot 2^{-m} = \frac{1}{4}, \end{aligned}$$

where we have applied a union bound in the second step. We thus have a constant gap in the acceptance probabilities when $\phi \in \Pi_Y$ vs. when $\phi \in \Pi_N$; this gap can be amplified as usual.

1.3 Toda's Theorem

The previous section may suggest that $\#\mathcal{P}$ is not "much stronger" than \mathcal{NP} , in the sense that $\#\mathcal{P}$ can be closely approximated given access to an \mathcal{NP} oracle. Here, we examine this more closely, and show the opposite: while *approximating* the number of solutions may be "easy" (given an \mathcal{NP} oracle), determining the *exact* number of solutions appears to be much more difficult.

Toward this, we first introduce the class $\oplus \mathcal{P}$ ("parity \mathcal{P} "):

Definition 1 A function $f : \{0,1\}^* \to \{0,1\}$ is in $\oplus \mathcal{P}$ if there is a Turing machine M running in time polynomial in its first input such that $f(x) = \#M(x) \mod 2$.

Note that if $f \in \oplus \mathcal{P}$ then f is just the least-significant bit of some function $\overline{f} \in \#\mathcal{P}$. The class $\oplus \mathcal{P}$ does not represent any "natural" computational problem. Nevertheless, it is natural to study

it because (1) it nicely encapsulates the difficulty of computing functions in $\#\mathcal{P}$ exactly (i.e., down to the least-significant bit), and (2) it can be seen as a generalization of the unique-SAT example discussed previously (where the difficulty there is determining whether a boolean formula has 0 solutions or 1 solution).

A function $g \in \oplus \mathcal{P}$ is $\oplus \mathcal{P}$ -complete (under parsimonious reductions) if for every $f \in \# \mathcal{P}$ there is a polynomial-time computable function ϕ such that $f(x) = g(\phi(x))$ for all x. If $\bar{g} \in \# \mathcal{P}$ is $\# \mathcal{P}$ complete under parsimonious reductions, then the least-significant bit of \bar{g} is $\oplus \mathcal{P}$ -complete under parsimonious reductions. For notational purposes it is easier to treat $\oplus \mathcal{P}$ as a language class, in the natural way. (In particular, if $f \in \oplus \mathcal{P}$ as above then we obtain the language $L_f = \{x : f(x) = 1\}$.) In this sense, $\oplus \mathcal{P}$ -completeness is just the usual notion of a Karp reduction. Not surprisingly,

 $\oplus \mathsf{SAT} \stackrel{\text{def}}{=} \{ \phi : \phi \text{ has an odd number of satisfying assignments} \}$

is $\oplus \mathcal{P}$ -complete. Note that $\phi \in \oplus \mathsf{SAT}$ iff $\sum_x \phi(x) = 1 \mod 2$ (where we let $\phi(x) = 1$ if x satisfies ϕ , and $\phi(x) = 0$ otherwise).

A useful feature of $\oplus \mathcal{P}$ is that it can be "manipulated" arithmetically in the following sense:

• $(\phi \in \oplus SAT) \land (\phi' \in \oplus SAT) \Leftrightarrow \phi \land \phi' \in \oplus SAT$. This follows because

$$\sum_{x,x'} \phi(x) \wedge \phi'(x') = \sum_{x,x'} \phi(x) \cdot \phi'(x') = \left(\sum_{x} \phi(x)\right) \cdot \left(\sum_{x'} \phi'(x')\right),$$

and hence the number of satisfying assignments of $\phi \wedge \phi'$ is the product of the number of satisfying assignments of each of ϕ, ϕ' .

• Let ϕ, ϕ' be formulas, where without loss of generality we assume they both have the same number n of variables (this can always be enforced, without changing the number of satisfying assignments, by "padding" with additional variables that are forced to be 0 in any satisfying assignment). Define the formula $\phi + \phi'$ on n + 1 variables as follows:

$$(\phi + \phi')(z, x) = \left((z = 0) \land \phi(x)\right) \lor \left((z = 1) \land \phi'(x)\right).$$

Note that the number of satisfying assignments of $\phi + \phi'$ is the sum of the number of satisfying assignments of each of ϕ, ϕ' . In particular, $(\phi + \phi') \in \oplus SAT$ iff *exactly one* of $\phi, \phi' \in \oplus SAT$.

- Let '1' stand for some canonical boolean formula that has exactly one satisfying assignment. Then $\phi \notin \oplus \mathsf{SAT} \Leftrightarrow (\phi + 1) \in \oplus \mathsf{SAT}$.
- Finally, $(\phi \in \oplus \mathsf{SAT}) \bigvee (\phi' \in \oplus \mathsf{SAT}) \Leftrightarrow (\phi + 1) \land (\phi' + 1) + 1 \in \oplus \mathsf{SAT}.$

We use the above tools to prove the following result:

Theorem 4 (Toda's theorem) $\mathsf{PH} \subseteq \mathcal{P}^{\#\mathcal{P}}$.

The proof of Toda's theorem proceeds in two steps, each of which is a theorem in its own right.

Theorem 5 Fix any $c \in \mathbb{N}$. There is a probabilistic polynomial-time algorithm A such that for any quantified boolean formula ψ with c alternations, the following holds:

$$\begin{array}{ll} \psi \ is \ true \ \Rightarrow \ \Pr[A(1^m,\psi) \in \oplus \mathsf{SAT}] \geq 1 - 2^{-m} \\ \psi \ is \ false \ \Rightarrow \ \Pr[A(1^m,\psi) \in \oplus \mathsf{SAT}] \leq 2^{-m}. \end{array}$$

As a corollary, $\mathsf{PH} \subseteq \mathcal{BPP}^{\oplus \mathcal{P}}$.

Proof It suffices to consider quantified boolean formulae beginning with an ' \exists ' quantifier. Indeed, say we have some algorithm A' that works in that case. If ψ begins with a ' \forall ' quantifier then $\neg \psi$ can be written as a quantified boolean formula beginning with an ' \exists ' quantifier; moreover, ψ is true iff $\neg \psi$ is false. Thus, defining $A(1^m, \psi)$ to return $A'(1^m, \neg \psi) + 1$ gives the desired result.

The proof is by induction on c. For c = 1 we apply the Valiant-Vazirani result plus amplification. Specifically, let ψ be a statement with only a single \exists quantifier. The Valiant-Vazirani technique gives us a probabilistic polynomial-time algorithm B such that:

$$\psi$$
 is true \Rightarrow $\Pr[B(\psi) \in \oplus \mathsf{SAT}] \ge 1/8n$
 ψ is false \Rightarrow $\Pr[B(\psi) \in \oplus \mathsf{SAT}] = 0$,

where *n* is the number of variables in ψ . Algorithm $A(1^m, \psi)$ runs $B(\psi)$ a total of $\ell = O(mn)$ times to obtain formulae $\phi_1, \ldots, \phi_\ell$; it then outputs the formula $\Phi = 1 + \bigwedge_i (\phi_i + 1)$. Note that $\bigvee_i (\phi_i \in \oplus SAT) \Leftrightarrow \Phi \in \oplus SAT$; hence

$$\psi$$
 is true \Rightarrow $\Pr[A(1^m, \psi) \in \oplus \mathsf{SAT}] \ge 1 - 2^{-m}$
 ψ is false \Rightarrow $\Pr[A(1^m, \psi) \in \oplus \mathsf{SAT}] = 0.$

In fact, it can be verified that the above holds even if ψ has some free variables x. In more detail, let ψ_x be a statement (with only a single \exists quantifier) that depends on free variables x.¹ The Valiant-Vazirani technique gives us a probabilistic polynomial-time algorithm B outputting a statement ϕ_x (with free variables x) such that, for each x:

$$x \text{ is such that } \psi \text{ is true } \Rightarrow \Pr[\phi_x \in \oplus \mathsf{SAT}] \ge 1/8n$$

 $x \text{ is such that } \psi \text{ is false } \Rightarrow \Pr[\phi_x \in \oplus \mathsf{SAT}] = 0.$

Repeating this $O(n \cdot (m + |x|))$ times and proceeding as before gives a formula Φ_x where, for all x,

$$x \text{ is such that } \psi \text{ is true } \Rightarrow \Pr[\Phi_x \in \oplus \mathsf{SAT}] \ge 1 - 2^{-m}$$

 $x \text{ is such that } \psi \text{ is false } \Rightarrow \Pr[\Phi_x \in \oplus \mathsf{SAT}] = 0.$

For the inductive step, write $\psi = \exists x : \psi'_x$, where ψ'_x is a quantified boolean formula with c-1 alternations having *n* free variables *x*. Applying the inductive hypothesis, we can transform ψ'_x into a boolean formula Φ'_x such that, for all *x*:

$$x \text{ is such that } \psi'_r \text{ is true } \Rightarrow \Phi'_r \in \oplus \mathsf{SAT}$$
 (3)

$$x ext{ is such that } \psi'_x ext{ is false } \Rightarrow \Phi'_x \notin \oplus \mathsf{SAT}$$

$$\tag{4}$$

except with probability at most $2^{-(m+1)}$. We assume the above hold for the rest of the proof.

The key observation is that the Valiant-Vazirani technique applies here as well. We can output, in polynomial time, a boolean formula β such that with probability at least 1/8n,

$$\exists x : \psi'_x \Rightarrow \exists x : \Phi'_x \in \oplus \mathsf{SAT} \Rightarrow |\{x : (\Phi'_x \in \oplus \mathsf{SAT}) \land \beta(x)\}| = 1 \mod 2$$

$$\exists x : \psi'_x \Rightarrow \exists x : \Phi'_x \notin \oplus \mathsf{SAT} \Rightarrow |\{x : (\Phi'_x \in \oplus \mathsf{SAT}) \land \beta(x)\}| = 0 \mod 2.$$

¹E.g., ψ_x may be of the form " $\exists z : (z \lor \bar{x}) \land x$ ", in which case ψ_0 is false and ψ_1 is true.

Assume β is such that the above hold. Let [P] evaluate to 1 iff predicate P is true. Then $\exists x:\psi'_x$ implies

$$1 = \sum_{x} \left[\left(\Phi'_{x} \in \oplus \mathsf{SAT} \right) \land \beta(x) \right] \mod 2$$
$$= \sum_{x} \left[\left(1 = \sum_{z} \Phi'_{x}(z) \mod 2 \right) \land \beta(x) \right] \mod 2$$
$$= \sum_{x} \left[1 = \sum_{z} \left(\beta(x) \land \Phi'_{x}(z) \right) \mod 2 \right] \mod 2$$
$$= \sum_{x,z} \left(\beta(x) \land \Phi'_{x}(z) \right) \mod 2,$$

and similarly $\not\exists x : \psi'_x$ implies

$$0 = \sum_{x,z} \left(\beta(x) \land \Phi'_x(z) \right) \mod 2.$$

Letting $\phi(x,z) \stackrel{\text{def}}{=} \beta(x) \wedge \Phi'_x(z)$ (note ϕ has no free variables), we conclude that

$$\exists x: \psi'_x \Leftrightarrow \phi \in \oplus \mathsf{SAT}.$$

The above all holds with probability at least 1/8n. But we may amplify as before to obtain Φ such that

$$\exists x : \psi'_x \Rightarrow \Pr[\Phi \in \oplus \mathsf{SAT}] \ge 1 - 2^{-(m+1)}$$

$$\exists x : \psi'_x \Rightarrow \Pr[\Phi \in \oplus \mathsf{SAT}] \le 2^{-(m+1)}.$$

Taking into account the error from Equations (3) and (4), we get a total error probability that is bounded by 2^{-m} .

The second step of Toda's theorem shows how to derandomize the above reduction, given access to a $\#\mathcal{P}$ oracle.

Theorem 6 $\mathcal{BPP}^{\oplus \mathcal{P}} \subseteq \mathcal{P}^{\# \mathcal{P}}$.

Proof We prove a weaker result, in that we consider only probabilistic Karp reductions to $\oplus \mathcal{P}$. (This suffices to prove Toda's theorem, since the algorithm from the preceding theorem shows that PH can be solved by such a reduction.) For simplicity, we also only consider derandomization of the specific algorithm A from the previous theorem.

The first observation is that there is a (deterministic) polynomial-time computable transformation T such that if $\phi' = T(\phi, 1^{\ell})$ then

$$\phi \in \oplus \mathsf{SAT} \quad \Rightarrow \quad \#\mathsf{SAT}(\phi') = -1 \bmod 2^{\ell+1}$$
$$\phi \notin \oplus \mathsf{SAT} \quad \Rightarrow \quad \#\mathsf{SAT}(\phi') = 0 \bmod 2^{\ell+1}.$$

(See [1, Lemma 17.22] for details.)

Let now A be the randomized reduction from the previous theorem (fixing m = 2), so that

$$\psi$$
 is true \Rightarrow $\Pr[A(\psi) \in \oplus \mathcal{P}] \ge 3/4$
 ψ is false \Rightarrow $\Pr[A(\psi) \in \oplus \mathcal{P}] \le 1/4$,

where ψ is a quantified boolean formula. Say A uses $t = t(|\psi|)$ random bits. Let $T \circ A$ be the (deterministic) function given by

$$T \circ A(\psi, r) = T(A(\psi; r), 1^t).$$

Finally, consider the polynomial-time predicate R given by

 $R(\psi, (r, x)) = 1$ iff x is a satisfying assignment for $T \circ A(\psi, r)$.

Now:

1. If ψ is true then for at least 3/4 of the values of r the number of satisfying assignments to $T \circ A(\psi, r)$ is equal to -1 modulo 2^{t+1} , and for the remaining values of r the number of satisfying assignments is equal to 0 modulo 2^{t+1} . Thus

$$\left|\{(r,x) \mid R(\psi,(r,x)) = 1\}\right| \in \{-2^t, \dots, -3 \cdot 2^t/4\} \mod 2^{t+1}$$

2. If ψ is false then for at least 3/4 of the values of r the number of satisfying assignments to $T \circ A(\psi, r)$ is equal to 0 modulo 2^{t+1} , and for the remaining values of r the number of satisfying assignments is equal to -1 modulo 2^{t+1} . Thus

$$|\{(r,x) \mid R(\psi,(r,x)) = 1\}| \in \{-2^t/4,\ldots,0\} \mod 2^{t+1}.$$

We can distinguish the two cases above using a single call to the $\#\mathcal{P}$ oracle (first applying a parsimonious reduction from $R(\psi, \cdot)$ to a boolean formula $\phi(\cdot)$).

References

 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009.