
Notes on Complexity Theory Last updated: November, 2011

Lecture 25

Jonathan Katz

1 Time-Bounded Derandomization

Randomization provides unconditional benefits in many settings; examples include cryptography
(where random keys are used to provide protection against an adversary) and distributed computing
(where randomness can be used as a means to break symmetry between parties). Randomness
also appears to help in algorithm design. But is it possible that, from a complexity-theoretic
perspective, randomness does not help? E.g., might it be the case that every problem that can be
solved in randomized polynomial time can also be solved in deterministic polynomial time? (That
is, is P = BPP?) Historically, guided by progress in designing efficient randomized algorithms,
most researchers believed that randomness does help. Research over the past 25 years on (time-
bounded) derandomization has now led many to change their views; the consensus nowadays is
that randomization does not help.1

One natural approach to derandomize algorithms is to use a pseudorandom generator (PRG)
that expands a small, truly random input into a larger, random-looking output. In the next section
we define PRGs and then describe their application to derandomization. The remainder of these
notes will focus on constructing a PRG based on a (plausible) complexity assumption.

2 Pseudorandom Generators

A pseudorandom generator G is a deterministic algorithm that expands a short input (often called
a “seed”) into a larger output. The output of G should “look random”; formally, G(s) (for s chosen
uniformly) should be indistinguishable from a uniform string of length |G(s)|. We give a formal
definition next. (A word on notation: When we write G : {0, 1}`(t) → {0, 1}t we mean that for
every integer t and every s ∈ {0, 1}`(t), we have |G(s)| = t.)

Definition 1 A function G : {0, 1}`(t) → {0, 1}t is a (complexity-theoretic) pseudorandom generator
if G can be computed in exponential time (i.e., G(s) can be computed in time 2O(|s|)) and if for all
sufficiently large t the following holds: for any distinguisher (i.e., circuit) C of size at most t,

∣∣∣Prr←{0,1}t [C(r) = 1]− Prs←{0,1}`(t) [C (G(s)) = 1]
∣∣∣ < 1/t.

It is worth pointing out several differences between the above definition and that of cryptographic
pseudorandom generators. (Those who have not seen cryptographic PRGs can skip to the next
section.) The primary difference is with respect to the running time of the PRG vs. the running time

1Note that even if randomness “does not help” from a complexity-theoretic standpoint, it may still be the case
that it helps from an algorithmic standpoint. Namely, even if P = BPP there may exist problems whose solution
requires, say, deterministic quadratic time but randomized linear time.

25-1

of the distinguisher. Simplifying things a bit, in the cryptographic setting honest parties evaluate
the PRG and an adversary plays the role of the distinguisher; we would like to keep the running time
of the honest parties as small as possible, while simultaneously protecting them against the most
powerful class of adversaries possible. In particular, we certainly want to offer protection against
adversaries who are at least as powerful as the honest parties; thus, when defining a cryptographic
PRG we will always want to consider distinguishers that run in time greater than the time to
evaluate the PRG itself. In contrast, we will see that this is not needed for complexity-theoretic
applications; thus, it is still meaningful in our context to consider PRGs where the distinguisher
runs in less time than is required to evaluate the PRG.

We mention a few other differences; the reason for these differences should become clear in the
following section:

• Here we only require that the distinguisher cannot distinguish the pseudorandom distribu-
tion from the uniform distribution “too well”, i.e., with advantage better than 1/t. In the
cryptographic setting we require the distinguisher’s advantage to be negligible.

• A complexity-theoretic PRG may require exponential time (in the input length) to compute.
In the cryptographic setting, as noted above, evaluating the PRG should be as efficient as
possible; we at least require the PRG to be computable in polynomial time.

• In the present definition we consider non-uniform distinguishers, while in the usual crypto-
graphic setting one considers only uniform distinguishers.

With the exception of the last point, complexity-theoretic PRGs are weaker than cryptographic
PRGs; thus they can be constructed from milder assumptions.

2.1 Using a PRG to Derandomize Algorithms

We now show how a complexity-theoretic PRG can be used to derandomize algorithms.

Theorem 1 If there is a (complexity-theoretic) pseudorandom generator G : {0, 1}`(t) → {0, 1}t,
then bptime(t(n)) ⊆ time(2O(`(t2(n)))).

Proof Fix a language L ∈ bptime(t(n)), and a probabilistic algorithm A running in time T (n) =
O(t(n)) for which

x ∈ L ⇒ Pr[A(x) = 1] ≥ 2/3
x 6∈ L ⇒ Pr[A(x) = 1] ≤ 1/3.

We construct a deterministic algorithm B deciding L. We focus on input lengths n sufficiently
large; the behavior of B on a finite number of shorter inputs can be hard-coded into the algorithm.

On input x ∈ {0, 1}n, algorithm B sets t = t(n) and does:

1. For each s ∈ {0, 1}`(t2), compute A(x; G(s)). (Note that A uses at most T (n) random bits,
which is less than |G(s)| = t2(n) for n sufficiently large.)

2. Output the majority value computed in the previous step.

25-2

Each iteration of step 1 takes time2 at most 2O(`(t2(n))) + T (n) = 2O(`(t2(n))), and there are 2`(t2(n))

iterations; thus, B runs in time 2O(`(t2(n))). We now show that B correctly decides L.
Correctness of B follows once we show that

x ∈ L ⇒ Pr[A(x; G(s)) = 1] > 1/2
x 6∈ L ⇒ Pr[A(x; G(s)) = 1] < 1/2,

where the probabilities are over random choice of s ∈ {0, 1}`(t2). Fix x ∈ {0, 1}n with x ∈ L. (The
argument if x 6∈ L is analogous.) Consider the distinguisher C(·) = A(x; ·). Since A runs in time
T (n), there is a circuit of size o(T 2) = o(t2) computing C. But then for n sufficiently large

Pr[A(x; G(s)) = 1] = Pr[C(G(s)) = 1]
> Pr[C(r) = 1]− 1/t2 (by pseudorandomness of G)
= Pr[A(x) = 1]− 1/t2 ≥ 2/3− 1/t2 > 1/2.

This completes the proof.

It is worth noting that non-uniformity comes into play in the preceding proof because we want
B to be correct on all inputs; if there exists an input x on which B is incorrect then we can
“hard-wire” x into the distinguisher C. The theorem would hold even if we only required G to
be indistinguishable for T = O(t)-time algorithms taking n ≤ T bits of advice. In a different
direction, if we only required B to be correct for efficiently sampleable inputs then we could work
with a uniform notion of PRGs.

Corollary 2 If there is a (complexity-theoretic) pseudorandom generator G : {0, 1}`(t) → {0, 1}t

with `(t) = O(log t), then P = BPP.

Proof Take arbitrary L ∈ BPP. Then L ∈ bptime(nc) for some constant c. By the previous
theorem, L ∈ time(2O(`(n2c))) = time(2O(log n)) = time(nO(1)) ⊂ P.

3 The Nisan-Wigderson PRG

3.1 Some Preliminaries

We collect here some results that are used in the next section, but are tangential to the main thrust.
The first lemma follows by a standard hybrid argument.

Lemma 3 Fix G : {0, 1}` → {0, 1}t and suppose there is a circuit C of size at most t such that
∣∣∣Prr←{0,1}t [C(r) = 1]− Prx←{0,1}` [C (G(x)) = 1]

∣∣∣ ≥ 1/t.

Then there exists an i ∈ {1, . . . , t} and a circuit C ′ of size at most t such that

Prx←{0,1}` [C ′ (G(x)1 · · ·G(x)i−1

)
= G(x)i]− 1

2
≥ 1/t2.

I.e., C ′ can predict the ith bit of the output of G.

The next lemma is a standard fact we have seen before.

Lemma 4 Any function f : {0, 1}k → {0, 1} can be computed by a circuit of size at most 2k.

2Note that `(t) = Ω(log t) (so 2O(`(t2)) = Ω(T)); otherwise, there is a trivial distinguisher and G is not a PRG.

25-3

3.2 From Hardness to Randomness

We will construct a PRG starting from any “suitably hard” computational problem. The starting
point here is simple: if a boolean function f is hard to compute (on average) for algorithms running
in time t — we formalize this below — then, by definition, x‖f(x) “looks random” to any t-time
algorithm given x. This does not yet give a PRG, but at least indicates the intuition. We first
formally define what it means for a function to be hard.

Definition 2 A function f : {0, 1}m → {0, 1} is S-hard if for all circuits C of size at most S,
∣∣Prx←{0,1}m [C(x) = f(x)]− 1/2

∣∣ < 1/S .

The key to the construction of a PRG is a combinatorial object called a design.

Definition 3 Fix integers k, m, `. A collection of sets {S1, . . . , St} with Si ⊂ {1, . . . , `} is a (k, m)-
design if (1) |Si| = m for all i, and (2) |Si ∩ Sj | ≤ k for all i 6= j.

We can specify a set system {S1, . . . , St} with Si ⊆ {1, . . . , `} by a t × ` matrix, where row i
of the matrix is the characteristic vector for Si. We say such a matrix A is a (k, m)-design if the
corresponding set system is.

Given a function f : {0, 1}m → {0, 1}, an `-bit string x = x1 · · ·x`, and a set S = {i1, . . . , im} ⊂
{1, . . . , `}, define fS(x) = f(xi1 · · ·xim). Given a t × ` matrix A corresponding to a set system
{S1, . . . , St} with Si ⊂ {1, . . . , `}, define fA : {0, 1}` → {0, 1}t as

fA(x) = fS1(x) · · · fSt(x).

In the following theorem we construct a “PRG” G : {0, 1}` → {0, 1}t for some fixed values of `, t.
(It is not quite a PRG since it is not yet a construction for arbitrary outputs length t.) We will
observe later that, as t varies, the construction is computable in exponential time as required by
Definition 2.

Theorem 5 Fix integers t,m, `. Suppose f : {0, 1}m → {0, 1} is t2-hard, and let A be a t × `
matrix that is a (log t, m)-design. Let fA : {0, 1}` → {0, 1}t be as above. Then for all circuits C of
size at most t we have

∣∣∣Prr←{0,1}t [C(r) = 1]− Prx←{0,1}` [C (fA(x)) = 1]
∣∣∣ < 1/t. (1)

Proof Denote the design corresponding to A by {S1, . . . , St}. Fix a circuit C of size at most t,
and assume toward a contradiction that (1) does not hold. By Lemma 3, this implies the existence
of an i ∈ {1, . . . , t} and a circuit C ′ of size at most t for which

Prx←{0,1}` [C ′ (fS1(x) · · · fSi−1(x)
)

= fSi(x)]− 1
2
≥ 1/t2. (2)

That is, C ′ can predict fSi(x) given fS1(x), . . . , fSi−1(x). We construct a circuit D of size at most t2

that computes f with probability better than 1/2 + 1/t2, contradicting the assumed hardness of f .
For notational convenience, let us assume that Si = {1, . . . , m}. Rewriting (2), we have

Prx1,...,x`←{0,1}[C ′ (fS1(x) · · · fSi−1(x)
)

= f(x1 · · ·xm)]− 1
2
≥ 1/t2 ,

25-4

where x = x1 · · ·x`. By a standard averaging argument, this implies that there exist some fixed
values x̄m+1, . . . , x̄` for the variables xm+1, . . . , x` for which

Prx1,...,xm←{0,1}[C ′ (fS1(x) · · · fSi−1(x)
)

= f(x1 · · ·xm)]− 1
2
≥ 1/t2 ,

where now x = x1 · · ·xmx̄m+1 · · · x̄`. We can express C ′ as a function D of x1, . . . , xm only by
defining D(x1 · · ·xm) = C ′ (fS1(x) · · · fSi−1(x)

)
(with x as just defined). The size of D is at most

the size of C ′ plus the sizes of the circuits required to compute all the fSj (x). To get an upper
bound on the latter, we use the fact that A is a (log t,m)-design. This implies that each fSj (x) is a
function of at most log t of the bits x1, . . . , xm (since Sj intersects Si = {1, . . . , m} in at most log t
positions). Thus, by Lemma 4, each fSi can be computed using at most t gates; hence D requires
at most t + (t− 1) · t = t2 gates. This gives the desired contradiction, and completes the proof.

To finish the construction we need only show how to build a design with the required parameters.
Treating the hard function f as being given, we have some fixed t, m and we want a (log t, m)-design
{S1, . . . , St} with Si ⊂ {1, . . . , `} and where ` = `(t,m) is as small as possible. For log t ≤ m ≤ t,
designs with ` = O(m2) exist; see [2]. For m = O(log t), a better construction is possible.

Theorem 6 Fix a constant c. There is an algorithm that, given t, constructs a (log t, c log t)-design
{S1, . . . , St} with Si ⊂ {1, . . . , `} and ` = O(log t). The algorithm runs in time poly(t).

Proof Define m = c log t, and set ` = d log t where the exact constant d can be derived from
the analysis that follows. A greedy algorithm, where we exhaustively search for the next set Si

(with the required properties) given S1, . . . , Si−1, works. To see this, look at the worst case where
S1, . . . , St−1 have all been fixed. Consider a random subset St ⊂ {1, . . . , `} of size m. The expected
number of points in which St and, say, S1 intersect is m2/` = O(log t); setting d appropriately, the
probability that they intersect in more than log t points is at most 1/t. A union bound over the
t− 1 sets that have already been fixed shows that the probability that any one of the existing sets
intersects St in more than log t points is less than 1; thus, there exists a set St that intersects each
of the fixed sets in at most log t points.

Each set can be chosen in time poly(t) (because ` = O(log t), we can enumerate all m-size subsets
of {1, . . . , `} in time poly(t)); since we choose t sets, the overall running time of the algorithm is
polynomial in t.

The only remaining piece is to let t vary, and observe conditions under which the above pseu-
dorandom generator can be computed in the required time. We say a function f : {0, 1}∗ → {0, 1}
is S(n)-hard if for all sufficiently large n the function f restricted to inputs of size n is S(n)-hard.

Corollary 7 Suppose there is a function f that can be computed in time 2αn but is 2βn-hard
for some constants α, β. Then there is a pseudorandom generator G : {0, 1}`(t) → {0, 1}t with
`(t) = O(log t), and P = BPP.

Proof Set c = 2/β, and let `(t) = O(log t) be as obtained using Theorem 6 for this value of c.
Define G as follows: On input x ∈ {0, 1}`, where ` = `(t) for some t, set m = c log t and let

f (m) denote the restriction of f to inputs of length m. Do:

1. Construct a (log t, m)-design {S1, . . . , St} with Si ⊂ {1, . . . , `}. Let A be the matrix corre-
sponding to this design.

25-5

2. Compute f
(m)
A (x).

By the assumptions of the theorem, for all sufficiently large t the function f (m) is t2-hard. Thus,
Theorem 5 implies that the output of G is pseudorandom and all that is left is to analyze the
running time of G. By Theorem 6, step 1 can be done in poly(t) = 2O(`) time. Step 2 requires
t = 2O(`) evaluations of f (m), and the assumptions of the theorem imply that each such evaluation
can be done in time 2O(m) = 2O(`). We thus see that the entire computation of G can be done in
time 2O(`), as required.

Bibliographic Notes

The results here are due to Nisan and Wigderson [2], whose paper is very readable. A good starting
point for subsequent developments in this area is [1, Chapter 20].

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach, Cambridge University
Press, 2009.

[2] N. Nisan and A. Wigderson. Hardness vs. Randomness. J. Computer & System Sciences
49(2):149–167, 1994. Preliminary version in FOCS ’88.

25-6

