Overflow: UB

Unsigned binary:
Add 2 non-negative numbers: result is greater than or equal to each number

$$
\begin{aligned}
& x+y>=x \\
& x+y>=y
\end{aligned}
$$

Overflow occurs when result is larger than maximum number ($2^{k}-1$ for k bits) Can detect overflow just by checking if carry out from most significant bit is 1 Ripple-carry circuit with overflow detection:

" V " is used to denote overflow bit (" O " is too close to " 0 ")

Overflow: 2C

If \mathbf{x} and \mathbf{y} have opposite signs, then the result can't overflow:
magnitude of the result will be less than the magnitude of the larger number
$|x+y|<=\max (|x|,|y|)$
Overflow can only occur when the numbers both have the same sign. If the sign of the result is different, then overflow must have occurred.

For example, if x and y both have sign bit 0 (positive), and the result has
sign bit 1 (negative), then overflow must have occurred.
Add 2 k-bit numbers:

$$
\begin{array}{r}
\mathbf{x}_{\mathrm{k}-1} \cdots \mathbf{x}_{0} \\
+\quad \mathbf{y}_{\mathrm{k}-1} \cdots \mathbf{y}_{0} \\
\hline \\
\hline \mathbf{s}_{\mathrm{k}-1} \cdots \mathbf{s}_{0}
\end{array}
$$

One way to express whether overflow occurs:

$$
v=x_{k-1} Y_{k-1} \backslash s_{k-1}+\backslash x_{k-1} \backslash y_{k-1} s_{k-1}
$$

Either both sign bits of x and y are 1 and the sign bit of s is 0 , or the sign bits are both 0 and the sign bit of s is 1
Simpler formula:

$$
\mathrm{V}=\mathrm{c}_{\mathrm{k}-1} \mathrm{XOR} \mathrm{c}_{\mathrm{k}-2}
$$

The overflow bit is equal to the XOR of the carry-in to the leftmost bit with the carry-out from the leftmost bit.

Overflow: 2C

$\mathrm{V}=\mathrm{c}_{\mathrm{k}-1} \mathrm{XOR} \mathrm{c}_{\mathrm{k}-2} \quad$ Why does this work?
Case 1: 0 carried in, 1 carried out
This occurs only when both $\mathbf{x}_{\mathrm{k}-1}$ and $\mathrm{y}_{\mathrm{k}-1}$ are 1 , but then $\mathbf{s}_{\mathrm{k}-1}$ is $\mathbf{0}$,
so the result is non-negative even though both x and y are negative.
Case 2: 1 carried in, 0 carried out
This occurs only when both $\mathbf{x}_{\mathrm{k}-1}$ and $\mathrm{y}_{\mathrm{k}-1}$ are 0 , but then $\mathrm{s}_{\mathrm{k}-1}$ is 1 ,
so the result is negative even though both x and y are non-negative.

Adder with overflow detection

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

