A Local Search Approximation Algorithm far-Means Clustering

Tapas Kanungo David M. Mount ~ Nathan S. Netanyafu Christine D. Piatk®
Ruth Silverman Angela Y. Wu*

July 14, 2003

Abstract

In k-means clustering we are given a senadata points inl-dimensional spac®&? and an integer
k, and the problem is to determine a sekqgdoints in}¢, calledcenters to minimize the mean squared
distance from each data point to its nearest center. No exact polynomial-time algorithms are known for
this problem. Although asymptotically efficient approximation algorithms exist, these algorithms are
not practical due to the very high constant factors involved. There are many heuristics that are used in
practice, but we know of no bounds on their performance.

We consider the question of whether there exists a simple and practical approximation algorithm for
k-means clustering. We present a local improvement heuristic based on swapping centers in and out.
We prove that this yields @ + ¢)-approximation algorithm. We present an example showing that any
approach based on performing a fixed number of swaps achieves an approximation factor of at least
(9 — ¢) in all sufficiently high dimensions. Thus, our approximation factor is almost tight for algorithms
based on performing a fixed number of swaps. To establish the practical value of the heuristic, we present
an empirical study that shows that, when combined with Lloyd’s algorithm, this heuristic performs quite
well in practice.

Keywords: Clustering k-means, approximation algorithms, local search, computational geometry

*A preliminary version of this paper appeared in the 18th Annual ACM Symposium on Computational Geometry (SoCG'02),
June 2002, Barcelona, Spain, 10-18.
fIBM Almaden Research Center, San Jose, California, 95120. Email: kanungo@almaden.ibm.com.
fDepartment of Computer Science, University of Maryland, College Park, Maryland. This material is based upon work sup-
ported by the National Science Foundation under Grant No. 0098151. Email: mount@cs.umd.edu.
$Department of Mathematics and Computer Science, Bar-llan University, Ramat-Gan 52900, Israel and Center for Automation
Research, University of Maryland, College Park, Maryland. Email: nathan@macs.biu.ac.il.
YThe Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland. Email: christine.piatko@jhuapl.edu.
lcenter for Automation Research, University of Maryland, College Park, Maryland. Email: ruth@cfar.umd.edu.
**Department of Computer Science and Information Systems, American University, Washington, DC. Email: awu@american.-
edu.

1 Introduction

Clustering problems arise in many different applications, including data mining and knowledge discovery
[15], data compression and vector quantization [19], and pattern recognition and pattern classification [11].
There are many approaches, including splitting and merging methods such as ISODATA [6, 21], randomized
approaches such as CLARA [25] and CLARANS [34], and methods based on neural nets [27]. Further
information on clustering and clustering algorithms can be found in [8, 20, 21, 22, 23, 25]. One of the most
popular and widely studied clustering methods for points in Euclidean space is katiedns clustering

Given a sefP of n data pointsin reald-dimensional spac&?, and an integek, the problem is to determine

a set ofk: points inR?, calledcentersto minimize the mean squared Euclidean distance from each data point
to its nearest center. This measure is often calledsthmred-error distortiof19, 21]. Clustering based

on k-means is closely related to a number of other clustering and facility location problems. These include
the Euclideark-median[3, 28] and theNeber problenj42], in which the objective is to minimize the sum

of distances to the nearest center, and the Euclidezenter problenj13, 39], in which the objective is to
minimize the maximum distance. There are no efficient exact solutions known to any of these problems for
generalt, and some formulations are NP-hard [18].

Given the apparent difficulty of solving thhemeans and other clustering and location problems exactly,
it is natural to consider approximation, either through polynomial-time approximation algorithms, which
provide guarantees on the quality of their results, or heuristics, which make no guarantees. One of the
most popular heuristics for thiemeans problem itloyd’s algorithm[17, 30, 31], which is often called
the k-means algorithm Define theneighborhoodof a center point to be the set of data points for which
this center is the closest. It is easy to prove that any locally minimal solution musreidal meaning
that that each center lies at the centroid of its neighborhood [10, 14]. Lloyd’s algorithm starts with any
feasible solution, and it repeatedly computes the neighborhood of each center and then moves the center to
the centroid of its neighborhood, until some convergence criterion is satisfied. It can be shown that Lloyd’s
algorithm eventually converges to a locally optimal solution [38]. Computing nearest neighbors is the most
expensive step in Lloyd’s algorithm, but a number of practical implementations of this algorithm have been
discovered recently [2, 24, 35, 36, 37].

. y . . * Data points
O Optimal centers
+ + +-- Heuristic centers

Fig. 1: Lloyd's algorithm can produce an arbitrarily high approximation ratio.

Unfortunately, it is easy to construct situations in which Lloyd’s algorithm converges to a local minimum
that is arbitrarily bad compared to the optimal solution. Such an example is shown in Figc +f@rand
wherex < y < z. The optimal distortion is2/4, but it is easy to verify that the solution shown at the
bottom is centroidal and has a distortiony3f/4. By increasing the ratig/z the approximation ratio for
Lloyd’s algorithm can be made arbitrarily high. There are many other heuristids-fioeeans clustering,
based on methods such as branch-and-bound searching, gradient descent, simulated annealing, and genetic
algorithms [7, 12, 41]. No proven approximation bounds are known for these methods.

Itis desirable to have some bounds on the quality of a heuristic. Given a canstantac-approximation
algorithm (for a minimization problem) produces a solution that is at most a fadarger than the optimal

solution. There is a classical tradeoff between approximation factors and running times. Some cluster-
ing algorithms are able to produce solutions that are arbitrarily close to optimal. This in¢luées)-
approximation algorithms for the Euclideanmedian problem by Arora, Raghavan and Rao [3] and by
Kolliopoulos and Rao [28]. The latter achieves a running timé)(ﬂl/édnlognlog k), assuming that the
dimensiond is fixed. It is based on applying dynamic programming to an adaptive hierarchical decomposi-
tion of space. Another example is thie+ ¢)-approximation algorithm for the Euclidedncenter problem

given by Agarwal and Procopiuc, which runs@in log k) + (k/€)°*' ") time [1].

Matousek [32] achieved an important breakthrough by presenting an asymptotically effitient)-
approximation algorithm fok-means clustering, which runs @(n(log n)ke_Qde) time for fixedk andd.
First, Matogek shows how to compute a set@ifne~?log(1/¢)) candidate centers, called aapproximate
centroid set from which an approximately optimal solution may be drawn. He then shows that a near-
optimal solution may be assumed to consist wfedl-spreadk-tuple, which intuitively means that no subset
of the k-tuple is strongly isolated relative to the other points. Finally, he proves that given arsqia@ihts,
there ar@(me—kzd) such well-spread sets. The algorithm generates all these tuples and returiaphe
with the minimum distortion. Unfortunately, the constant factors are well beyond practical rangesdunless
andk are very small. In Section 4, we show that, under reasonable assumptions about the way in which
the candidate centers are chosen (which M&#&is algorithm satisfies), the number of well-spréadples
that the algorithm generates is at leéte)*. In typical applicationsk may range from tens to hundreds,
and so this is well beyond practical limits. The dynamic programming approximation algorithm presented
by Kolliopoulos and Rao for the-median problem [28] is also a candidate for modification, but also suffers
from similarly large constant factors.

Another common approach in approximation algorithms is to develop much more practical, efficient
algorithms having weaker, but still constant, approximation factors. This includes the work of Thorup on
solving location problems in sparse graphs [40] and by Mettu and Plaxton [33] on the use of successive
swapping for the metrié-means problem. The most closely related work to our own are the recent approx-
imation algorithms for the metrig-median problem by Korupolu, Plaxton and Rajaraman [29], Charikar
and Guha [9], and Aryat al. [5]. These algorithms are based lacal search that is, by incrementally
improving a feasible solution by swapping a small number of points in and out of the solution set.

In this paper we present such an approximation algorithmkfareans based on a simple swapping
process. In Section 2 we derive an approximation rati@ ef e for the heuristic. Our approach is based
on the heuristic fok-medians presented by Ang al. [5]. However, due to the different nature of the
means problem, the analysis is different and relies on geometric properties that are particulasroetnes
problem. In Section 3 we show that this bound is essentially tight for the class of local search algorithms
that are based on performing a constant number of swaps. In particular, we present an example showing
that any approach based on performing a fixed number of swaps cannot achieve an approximation factor of
better than9 — ¢) in all sufficiently high dimensions.

Approximation factors as high as 9 are of little practical value. Nonetheless, we believe that a combina-
tion of local search and existing approaches results in a practical approximation algorithm with performance
guarantees. In Section 5 we present a hybrid approximation algorithm based on combining local search with
Lloyd’s algorithm. We provide empirical evidence that this hybrid algorithm provides results that are as
good or better than Lloyd’s algorithm, both in terms of distortion and running time.

2 The Local Search Algorithm

Givenu,v € 19, let A(u, v) denote the squared Euclidean distance between these points, that is

d

Au,v) = dist*(u,v) = Z(ul —v)? = (u—0) - (u—u),
i=1

whereu - v denotes the dot product of vectarsandv. Given a finite setS ¢ R¢, define itsdistortion
relative to any point to be A(S,v) = >, cq Au,v).

Consider a seP of n data pointsin ®¢ and an integek. Given any sefS of k points, for anyg € R¢
defines, to be the closest point &f to g. Our goal is to compute thie-element point sef that minimizes
the totaldistortionof S relative toP, defined as

Ap(S) =) Alg, sy)-

qeP

When P is understood, we will refer to this simply @s(.5).

The principal difficulty in extending existing approaches for the métrinedians problem té-means
is that squared distances do not define a metric, and in particular they do not satisfy the triangle inequality,
which states that for any points v, andw, dist(u,w) < dist(u,v)+ dist(v,w). When considering squared
distances we have

Au,w) < (dist(u,v) + dist(v, w))?
= dist*(u,v) + 2dist(u,v)dist(v,w) + dist*(v, w)
< A(u,v) + Av,w) + 2dist(u, v)dist(v, w).

The final product term can be bounded by observing 2hat< a? + b2, for anya andb. Hence we have
the followingdoubled triangle inequality

Au,w) < 2(A(u,v) + A(v,w)).

One obvious idea for producing a local improvement heuristicifareans would be to generalize the
methods of Aryeet al. [5] for the metrick-median problem using this doubled triangle inequality. Unfor-
tunately, this does not seem to work because their analysis relies crucially on the triangle inequality. In
particular, a cancellation of terms that arises in their analysis fails to hold when the triangle inequality is
doubled.

Our approachis based on two ideas. The firstis the introduction of an alternative to the triangle inequality,
which, unlike the doubled triangle inequality is sensitive to the ratio of the optimal and heuristic solution
(see Lemma 2.3 below). The second is based on the well known fact that the optimal solution is centroidal
(see [10]). LetVg(s) denote the neighborhood efthat is, the set of data points that are closer than to
any pointinS. By treating points as vectors, the centroidal property implies that

An important property of centroidal solutions is presented in the following lemma. It states that for
the purposes of computing distortions, a set of points may be treated like a point mass centered about its
centroid. It follows from a straightforward manipulation of the definition of distortion, but we include the
proof for completeness.

Lemma 2.1 Given a finite subse$ of points in)¢, let ¢ be the centroid o5. Then for anyc’ € R¢,
A(S,d) = A(S,c) + |S|A(e,).

Proof: By expanding the definition ok (S, ¢) we have

AS,) = D A d) = > (u—d)-(u—{)

ues u€eS

= Y (=0t (=) ((u=e)+ (=)

ues
= Y- (u—e)+2u—c)-(c—)+((c—c) (e)
ues
= A(S,¢)+2 ((a—) > (u— c>> +18I((c—¢) - (e~)
= A(S,c) + |S|A(c,), <
The last step follows from the fact thatdfis S’s centroid therd o (u — c) is the zero vector. O

2.1 The Single-Swap Heuristic

To illustrate our method, we first present a simple local search that provi@éstae)-approximation to the
k-means problem. Our approach is similar to approaches used in other local search heuristics for facility
location andk-medians by Charikar and Guha [9] and Asfzal. [5].

In the statement of the-means problem, the centers may be placed anywhere in space. In order to apply
our local improvement search, we need to assume that we are given a discretessetidate centerg’
from which k& centers may be chosen. As mentioned above, Mato(32] showed thaf” may be taken
to be ane-approximate centroid set of siz&(ne~%log(1/¢)), which can be computed in tim@(n logn +
ne~%log(1/¢)). Henceforth, when we use the term “optimal,” we mean/trelement subset af' having
the lowest distortion.

This single-swap heuristioperates by selecting an initial set/otentersS from the candidate centers
C, and then it repeatedly attempts to improve the solution by removing one certe$ and replacing
it with another centes’ € C — S. Let S’ = S — {s} U {s'} be the new set of centers. If the modified
solution has lower distortion, the$f replacesS, and otherwiseS' is unchanged. In practice this process is
repeated until some long consecutive run of swaps have been performed with no significant decrease in the
distortion. By extension of standard results [5, 9] it can be shown that by sacrificing a smallcfactor
in the approximation ratio, we can guarantee that this procedure converges after a polynomial number of
swaps.

For simplicity, we will assume that the algorithm terminates when no single swap results in a decrease
in distortion. Such a set of centers is said talbstable Letting O denote an optimal set @f centers, a set

5

S of k£ centers is 1-stable then we have
A(S —{s} U{o}) > A(5) foralls e S,0€ O. 1)

(In fact this is true no matter wha is, but our analysis only relies on this weaker property.) Using this
along with the fact that the optimal solution is centroidal, we will establish the main result of this section,
which is stated below.

Theorem 2.1 Let S denote a 1-stable set éfcenters, and le© denote the optimal set éfcenters. Then
A(S) < 25A(0).

Note that the actual approximation bound is larger by seme0, due to the errors induced by using a
discrete set of candidate centétsand the approximate convergence criterion described above. Our analysis
is similar in structure to that given by Aryet al. [5], but there are two significant differences. The first is
that our notion of capturing a center is different from theirs, and is based on the distance to the closest center,
rather than on the numbers of data points assigned to a center. The second is that their permutation function
7 is not needed in our case, and instead we rely on the centroidal properties of the optimal solution.

For each optimal center € O, let s, denote its closest heuristic centerSh We say thab is captured
by s,. Note that each optimal center is captured by exactly one heuristic center, but each heuristic center
may capture any number of optimal centers. We say that a heuristic celueeligif it captures no optimal
center. The analysis is based on constructing a seivap pairs considering the total change in distortion
that results, and then apply Eg. (1) above to bound the overall change in distortion.

We begin by defining a simultaneous partition of the heuristic centers and optimal centers into two sets
of groupsSi, Sa, ..., S, andOq, O, ..., O, for somer, such thats;| = |O;| for all i. For each heuristic
centers that captures some number > 1 of optimal centers, we form a group a@f optimal centers
consisting of these captured centers. The corresponding group of heuristic centers consistgetier
with anym — 1 lonely heuristic centers. (See Fig. 2.)

S S, S; S, Ss S S, S; S, Ss
T R j/[\j I\j Heuristic centers
Optimal centers
o) o, (N o, O O G, G O G
Partition Swap pairs

Fig. 2: Partitioning of the heuristic and optimal centers for analysis and the swap pairs. On the left, edges
represent the capturing relation, and on the right they represent swap pairs.

We generate the swap pairs as follows. For every partition that involves one captured center we generate
a swap pair consisting of the heuristic center and its captured center. For every partition containing two or
more captured centers we generate swap pairs between the lonely heuristic centers and the optimal centers,
so that each optimal center is involved in exactly one swap pair and each lonely center is involved in at most
two swap pairs. It is easy to verify that:

(1) each optimal center is swapped in exactly once,
(2) each heuristic center is swapped out at most twice, and

6

(3) if s ando are swapped, thendoes not capture any optimal center other than

We establish an upper bound on the change in distortion resulting from any such swagp paly
prescribing a feasible (but not necessarily optimal) assignment of data points to the Sentés$ U {o}.
First, the data points itNp (o) are assigned to, implying a change in distortion of

Z (A(Q7 0) - A(Qa Sq))- (2)
q€No (o)

Each poiniy € Ns(s) \ No(o) has losts as a center and must beassignedo a new center. Lei, denote
the closest optimal center tp Sincegq is not in No (o) we know thato, # o, and hence by property (3)
aboves does not capture,. Therefore,soq, the nearest heuristic center dg, exists after the swap. We
assigng to s,,. Thus the change in distortion due to this reassignment is at most

> (Algse,) — Alg, 9)). (3)
g€Ns(s)\No (o)

By combining over all swap pairs the change in distortion due to optimal assignment and reassignment
together with Eq. (1) we obtain the following.

Lemma 2.2 Let S be a 1-stable set df centers, and leD be an optimal set of centers, then
0 < A(O) —3A(S) + 2R,
whereR =} . p A(g, so,)-
Proof: Consider just the swap pdis, o). By Egs. (2) and (3) and the fact théiis 1-stable we have
Y (A0 = Algs))+ Y (Algise,) — Alg,s)) = 0.

g€No(0) g€N5(s)\No (o)

To bound the sum over all swap pairs, we recall that each optimal center is swapped in exactly once, and
hence each poinj contributes once to the first sum. Note that the quantity in the second sum is always
nonnegative (becausg, € S ands is the closest center iff to g). Hence by extending the sum to all

q € Ng(s) we can only increase its value. Recalling that each heuristic center is swapped in at most twice
we have

0 < Z(A(q,oq) (q,5q) +22 (4, 50,) — A, 5¢))

qeP qeP
0 < > Algog) =3 Alg,59)+2) Alg, so,)
qeP qeP qeP
0 < A(O)—3A(S)+2R,
from which the desired conclusion follows. O

The termR above is called théotal reassignment cosBy applying Lemma 2.1 to each optimal neigh-
borhood, we have

R = > > Algs) = > A(No(o),s

0€0 geNp (o) ocO
=) (A(No(0),0) + [No(0)|Al0,50)) = > > (Alg,0) + Ao, 50)).
0€0 0€0 geNp (o)

Becauses, is the closest heuristic center o for eachg € Np(0), we haveA(o, s,) < A(o,s,). This

yields

SDBIDIRC

0€0 geNp (o) qepP

By applying the triangle inequality and expanding we obtain

Z A(g,0q) + Z(diSt(qu q) + dist(q, Sq))2

qeP qeP

R <

0) +Afo,54)) = Z(A(% 0q) + Alog, 5¢))-

=) Alg,09) + Y _(dist*(0g,q) + 2dist(0g, q)dist(q, 5) + dist>(q, s,))

qeEP
= 2 Z A(q,0q) + Z Alq, sq) +2 Z dist(q, 0q)dist(q, sq)
qeP qeP qeP

= 2A(0) + A(S)+2) dist(q, og)dist(q, 5).
qeEP

qeP

To bound the last term we will apply the following technical lemma.

Lemma 2.3 Let(o;) and(s;) be two sequences of reals, such that= (3", s?)/(>_;

Then o
n 1 n
ZOZ'SZ < —Zs

i=1 =1

Q

Proof: By Schwarz’s inequality [16] we have
n n /2 / n 1/2
Zoisi < (Z 0%) (Z sf)
i=1 i=1 i=1
T 2 s op 1/2 1
2 2 2
i=1 i=1 j

as desired.

07), for somen > 0.

O

To complete the analysis, let thesequence consist dfst (g, o,) over allg € P, and let thes; sequence
consist ofdist(q, s4). Leta denote the square root of the approximation ratio, so that

o = _ ZqEP diStQ(q’ Sq) _ Z?:l 312
AO) Y epdist®(q00) 2imi0f

By applying Lemma 2.3 we have

2 2
= § dist? =2
—i—a ist*(q, sq) -

qeP

R < 2A(0)+A(S

= 2A(0) + (1 + %) A(S).

A(O) + A(S) + ZA(S)

Now we combine this with Lemma 2.2, yielding

0 < A0)—3A(S)+2 <2A(0) + <1 + %) A(S))
< 5A(0) - (1 - f) A(S). (@)

«
Through simple rearrangements we can express this in termsiohe.

5 AS) _ o

—dja = AO)

(-

0 > o*—4a—5 = (a—5)(a+1).

5

Y

This implies thaiv < 5, and hence the approximation ratio of the simple heuristic is bounded by 25.
This completes the proof of Theorem 2.1.

2.2 The Multiple-Swap Heuristic

We generalize the single-swap approach to provide a factarapproximation ratio. Rather than swapping

a single pair of points at any time, for some integewe consider simultaneous swaps between any subset
of S of sizep’ < p with anyp’-element subset of candidate centers. Otherwise the algorithm is the same.
We say that a set of centersyisstableif no simultaneous swap of elements decreases the distortion. Our
main result is given below. As before, there is an additiertakm in the final error because of the use of
the discrete candidate centers and the approximate convergence conditions.

Theorem 2.2 Let S denote gp-stable set ok centers, and le© denote the optimal set & centers. Then
2
AS) < (3+2) A©0).

Again our approach is similar to that of Ary al. [5], but using our different notion of capturing. We
define our swaps as follows. Recall the simultaneous partitions of heuristic and optimal centers used in the
simple heuristic. If for some, |S;| = |O;| < p, then we create a simultaneous swap involving the Sets
andO;. Otherwise, if|S;| = |O;| = m > p, then for each of then — 1 lonely centers of5; we generate
individual 1-for-1 swaps with alln optimal centers of);. For the purposes of the analysis, the change
in distortion due to each of these 1-for-1 swaps is weighted by a multiplicative facigi{ef — 1). (For
example, Fig. 3 shows the swaps that would result from Fig. 2 fer 3. The swaps appearing in shaded
boxes are performed simultaneously. The 1-for-1 swaps performed beByeard O, are each weighted
by 1/4.)

It is easy to verify that: (1) each optimal center is swapped in with total weight 1, (2) each heuristic
center is swapped out with weight at mast 1/p, and (3) if setsS” andO’ are swapped, thefi’ captures
no optimal centers outside 6F.

weighted
by 1/4

6 O 0O G

Fig. 3: Swaps fop = 3. Shaded regions indicate swaps that are performed simultaneously.

The analysis proceeds in the same manner as the simple case. Because of the replacement of the factor 2

with (1 4 1/p), the inequalities in the proof of Lemma 2.2 now become

0 < S(Ag0) - Algs) + (1 . }3) S (A 50,) — Alg: 5,))
qeP qeP
0 < AO) - <2+1—1)> A(S) + <1+%> R.

The analysis and the definition afproceed as before, and Eq. (4) becomes

A(O) - (2 + %) A(S) + (1 + %) <2A(O) + (1 + %) A(S))

<3+ %) A(O) - (1 _ 2 (1 + %)) A(S).

Again, by rearranging and expressing in terms.afe have

34/ o AS) _
I~ @/)1+1/p) ~ A()

on112)-(o02)
=

This implies thata: < 3 + 2/p, and hence the approximation ratio of the general heuristi€ jsvhich
approaches 9 asincreases.

o
IA

IN

0

Y

v

3 ATight Example

It is natural to ask whether the factor 9 is the correct approximation factor for swap-based heuristics, or
whether it arises from some slackness in our analysis. In this section we provide evidence that this is
probably close to the correct factor assuming an algorithm based on performing a fixed number of swaps.
We show that for any, there is a configuration of points in a sufficiently high dimensional space such
that thep-swap heuristic achieves a distortion that9%s— ¢) times optimal. This example has the nice
property that it is centroidal. This implies that it is also a local minimum for Lloyd’s algorithm. Hence

10

neither the swap heuristic (assuming swaps with optimal centers) nor Lloyd’s algorithm would be able
to make further progress. We make the assumption that centers may only be placed at a given discrete
set of candidate locations. This candidate set is reasonable in that it contai@pproximately optimal
solution. Overcoming this assumption would imply that the entire analysis method would somehow need to
be generalized to handle swaps with points other than the optimal centers.

Arya et al. [5] presented a tight example for their heuristic in a metric space. However, their example
cannot be embedded in Euclidean space of any dimension and does not even allow centers to be placed at
data points. Our approach is quite different.

Theorem 3.1 Givenp ande > 0, there exists an integer, a dimensioni, a finite set of point®® € R¢, a
finite set of candidate cente€$, and a setS C C of k centers, such that the following hold.

(i) C contains arc-approximately optimal solution.
(i) S isp-stable.

(i) A(S) > (9 — €)A(O), whereO is the optimalk-means solution.

In the rest of this section we provide a proof of this theorem. dédtlimension) andV be even
integer parameters to be specified later. Our framework consists of adalijeensional integer grid,
G = {0,1,...,N — 1}%. To avoid messy boundary issues, we may assume that the grid is a topological
d-dimensional torus, by taking indices modula For N sufficiently large, this torus may be embedded in
(d+1)-space, so that distances from each embedded grid point to the embedded image of its grid neighbors
is arbitrarily close to 1. Thus the local neighborhoods of all the grid points are identical.

The grid points arel-dimensional integer vectors, where each coordinate {§ja,..., N — 1}. The
points ofG are labeled even or odd, depending on the parity of the sum of coordinates. Consider a parameter
x,0 < x < 1/2, to be fixed later. LeT'(x) be the following set o2d points displaced at a distanee: and
—x from the origin along each of the coordinate axes.

(£2,0,0,...,0),(0,£2,0,...,0),...,(0,0,0,...,+x).

The data seP consists of the union of translatesBfz) each centered about an even grid point. (See
Fig. 4.) Thus;n = dNY. We setk = n/(2d). Itis easy to see that the optimal solutiGhconsists ofk
centers placed at the even grid points. The neighborhood of each cerilecmfsists of2d points, each
at distancer. Consider a solutiort consisting ofk points placed at each of the odd grid points. The
neighborhood of each point &f consists o2d points at distancé — x.

Each optimal center has a neighborhooddfpoints at distance:;, and each heuristic center has a
neighborhood o2d points at distancél — z). Thus we have
A(S) _ (1-=)

A(O) a2

We argue below that by choosing= 1/(4 — p/d), nop-swap involving points of andC' can improve the
distortion. By makingl sufficiently large relative t@, this implies that the approximation ratio is arbitrarily
close to(3/4)2/(1/4)? = 9, as desired.

11

*® Data point O Optimal center + Heuristic center

°
+ [BR@= + L SO e
. . |
° ° °
D e 4 *-Ots
. . L
[[. []
+ o-O-e + *-O-® 4 - o-O-e - ®-O-®
° ° ° °
x 1-x

Fig. 4: Example of the lower bound in the plane. Black circles are the data points, hollow circles denote the
optimal centers, and crosses denote the heuristic centers.

To show that ngp-way swap improves the distortion, consider any simultaneous swap between two
element subsets’ andO’ of heuristic and optimal centers, respectively. Because the optimal neighborhoods
are disjoint and each contaid points, the change in distortion due to assigning these points to their new
optimal center is

2dp(z* — (1 — 2)?) = 2dp(2z — 1).

No other points are assigned to a closer center.

Now consider thedp neighbors of heuristic centers that have now been removed. These data points
must be reassigned to the nearest existing center. After performing the swap, there are &t padrst
(s,0), wheres € S ando € O, such thats ando are adjacent to each other in the grid. For these points no
additional reassignment is needed because the point has been moved to its optimal center. For the remaining
neighbors of the heuristic centers, of which there are at gst- p?, we need to reassign each to a new
center. The closest such center is at distayite+ x2. Hence the change in distortion due to reassignment
is at least

(2dp — p*)(1 4+ 2%) — (1 —2)?) = 2dp (1 - %) 2x.

Combining these two, the total change in distortion is at least

2dp(2x—1+(1—2£d>2x) _ 2dp((2—2%>2:c—1>.

This is nonnegative if we set= 1/(4 — p/d), and hence thg-swap heuristic cannot make progress on this
example. This establishes Theorem 3.1.

4 Analysis of Well-Spreadk-Tuples

In the introduction we pointed out that Matek presented an asymptotically efficierdgpproximation to

the k-means problem, under the assumption that ande are fixed constants [32]. Although this is a very
important theoretical result, the constant factors arising in this algorithm are too large to be of practical
value, unlesg is very small. This raises the question of whether these large constant factors are merely an

12

artifact of the analysis, or whether they are, in some sense, an inescapable consequence of the approach. In
this section, we will argue that the latter is the case.

Let us begin with an overview of the essential elements of Mak's algorithm. First, recall that a set
of candidate centers is called ampproximate centroid sef, by restricting the selection of centers to this
set, the average distortion is larger by a factor of at njost ¢). Matousek shows that given points in
R4, such a set of sizer = O(ne %log(1/¢)) can be computed efficiently. Given such a set the algorithm
proceeds by selecting a judicious subset-tfiples from these candidate points, and argues that one of these
subsets provides the desired approximate solution té-t#means problem. Given a real numbesind two
point setsY” C X, the sett” is r-isolatedin X if every pointinX \ Y is at distance at least diam(Y") from
Y. A setX is e-well-spreadif there is no proper subset &f of two or more points that i§l/¢)-isolated in
X. Matousek shows that, given a setxf points iniR?¢, ane-well-spread set of-tuples of sizeO(me*de)
can be computed efficiently, and that restricting attention to ¢utiples produces aa-approximation.
Applying this procedure to the set of candidate points produces the desired approximation.

Of course, the constant factors suggested above are well beyond the bounds of practicality, but might a
smaller set suffice? We will prove a lower bound on the number of well-sgraagdles that would need to
be generated in order to guarantee a relative errer @fur analysis is based on@cality assumptiorthat
the choice of candidate centers is based only on the local distribution of the points, and has no knowledge of
which cluster each point belongs to in an optimal clustering. This assumption is satisfied by any reasonable
selection algorithm, including Mat8ek’s algorithm.

Theorem 4.1 There exists a configuration of points in the plane, such thakif1/(3+v/k), the number of
well-spreadk-tuples that need to be tested by Matek's algorithm is at leag2/e)*.

Our approach is to present a configuration of points in the plane and argue that, in order to achieve a
relative error that is less than) the points of the candidate centroid set must be sampled with a certain
minimum density. This in turn provides a lower bound on the size of the candidate centroid set, and on the
number of well-spread-tuples.

Our analysis assumes thats a perfect square and that the points lie in a 2-dimensional square domain
of sizevk x vk, which is subdivided into a grid df pairwise disjoint unit squares. (See Fig. 5(a).) Points
are distributed identically within each of these squares. Consider any unit squatieé bket closed square
of side lengthl /7 centered at the midpoint of the unit square. (The fatfaris rather arbitrary, and only
affects the constant factor in the analysis. We assume this value is independgniTbe points of this
unit square are placed uniformly along the boundary of a sqtiarfeside lengthb /7 that is centered at an
arbitrary point ofz within 7. (See Fig. 5(b).) It is easy to see that for largehe optimalk-means solution
involves placing one center in each unit square at the center point

For the purposes of producing a lower bound, it suffices to limit consideration to candidate points lying
within 7. By our locality assumption, the candidate selection algorithm cannot know the location of the
optimum center, and, since the distribution of points surroundingoks about the same to every point
of T', the candidate selection process can do no better than select points uniformly throlighaitus
assume that the candidate poidtsare taken to be the vertices of a square grid of side lemgththere
the value ofr will be derived below. See Fig. 5(c). (The exact pattern of candidates is not important for
our proof, only the assumption of uniformity.) By adjusting the location @fithin 7', we can place so
that the closest candidate centérto = is at a squared distance 2fz/2)? = z2/2 from 2. By applying
Lemma 2.1 (where plays the role of, andz’ plays the role of’), it follows that the absolute increase in

13

sqrt(k)

sqrt(k) T

(@) (b) (©

Fig. 5: Analysis of the number of well-spreaduples.

the average squared distortion is equal to the squared distance betaredn’ which is,z2/2. To derive

the relative error, we first need to compute the expected optimal average distortion. Since the points are
uniformly distributed alongs’s boundary, and assuming thais large, we can estimate this by integrating

the squared distance from each point on the bounda$ytofthe center of5. Straightforward calculations

show this to bg4/3)(5/14)% < 1/4. Therefore, in order to achieve a relative approximation errer ofe

require thatz:2/2 < e/4, thatis,z < \/e/_2 From this it follows that the number of candidate pointgin

must be at least/z? = 2/e. (This lower bound is much smaller than Ma$el’s upper bound because our
assumption that points are uniformly distributed allows us to ignc#ogether.)

Now, consider any:-tuple formed by selecting any one candidate from each of the candidate sets of the
unit squares. We claim that each such setigell-spread, for all sufficiently smadl. The closest that two
candidate points can be @7, and the farthest they can be is at m@stk. Thus any subset of two or
more points has a diameter of at lefig7, and the next closest point is at most a distanc2\df away. It
follows that if (2vk) < 6/(7¢), any suchk-tuple ise-well-spread. This is satisfied given our hypothesis
thate < 1/(3\/E). Thus, the number of sudhtuples that the algorithm needs to test, in order to guarantee
ane relative error in the average distortion for this 2-dimensional example is atyast. This completes
the proof.

5 Experimental Results

Given the relatively high approximation factors involved and the tight example, an important question is
whether the swap-based heuristics perform well enough to be of practical value. In this section we argue
that indeed these heuristics can be of significant value, especially if applied in conjunction with a locally
optimal heuristic such as Lloyd’s algorithm.

It is quite easy to see why such a merger is profitable. As mentioned earlier, Lloyd's can get stuck in
local minima. One common approach for dealing with this is to run this algorithm repeatedly with different
random starting sets. In contrast, the swap heuristic is capable of moving out of a local minimum, but it
may take very long to move near to a local minimum. By alternating between the two methods, we have a
simple heuristic that takes advantage of both methods’ strengths. This is similar in spirit to methods based
on simulated annealing [26], but without the complexities of defining temperature schedules and with the
advantage of provable performance guarantees.

14

Our implementation of the swap heuristic differs from the description in this paper in a couple of respects.
First, we sampled pairs for swapping randomly, rather than applying some systematic enumeration. This
allows the heuristic to be terminated at any point. Also, rather than perfoprsagps simultaneously, our
heuristic performs swaps one by one. After each individual swap, we compute the change in distortion. If
the distortion decreases after any one swap, we stop immediately, without completing the full sequence of
swaps. This was done so that any improvement that arises from a swap is not undone by a subsequent swap.

One other difference involves the selection of candidate centers. We did not explicitly constedct an
approximate centroid set as in Magak’s algorithm [32]. Since the size of such a seb{s~n log(1/¢)),
storing such a setin higher dimensions is not practical. Instead, we implemented a procedure that is designed
to simulate Matogek’s scheme but samples candidate centers on demand. The original points are stored in
a kd-tree, in which each leaf node contains one data point. Each node of the tree is associated with an axis-
aligned hyper-rectangle, called itell, which contains all the descendent data points. We generate a node
of the tree at random. If this is a leaf node, we sample the associated point that is stored in this node. If this
is an internal node, we consider the factor-3 expansion of its cell, and sample a point uniformly at random
from this expanded cell. In this way, about half the candidate points are sampled randomly from the data set
(when a leaf node is sampled), and otherwise they are just poifité in

For purposes of comparison, we also implemented a common variant of LIoyd’s algorithm jteséézh
Lloyd's. In this heuristic, centers are chosen randomly, and some number of stages of Lloyd’s algorithm
are performed. Recall that each stage consists of computing the neighborhood of each center point, and
then moving each center point to the centroid of its neighborhood. Stages are repeated until the following
convergence condition is satisfied: over three consecutive stages, the average distortion decreases by less
than10%. We call such a sequence of stageara After each run, a new random set of centers is generated
and the process is repeated until the total number of stages exceeds a prespecified bound. The centers
producing the best distortion are saved.

Finally, we implemented &ybrid heuristi¢ which is combination of the swap heuristic with iterated
Lloyd’s algorithm. This heuristic augments the swap step by first applying one step of the swap heuristic
and then follows this with one run of Lloyd’s algorithm, as described in the previous paragraph.

The programs were written in C++, compiled with g++, and run on a Sun Ultra 5 workstation. We
considered the following two synthetic distributions.

ClusGauss: The data consist of = 10, 000 points in)?, which were generated from a distribution con-
sisting ofk clusters of roughly equal sizes, with centers uniformly distributed in a cube of side length
2. The points of each cluster are drawn from a multivariate Gaussian distribution centered at the clus-
ter center, where each coordinate has a given standard deviativa considered < {25, 50, 100},
ando = 0.05.

MultiClus: The data consist af = 10,000 points iniR3, which were generated from a distribution con-
sisting of & multivariate Gaussian clusters of various sizes and standard deviations. Again cluster
centers were sampled uniformly from a cube of side length 2. The cluster sizes are powers of 2. The
probability of generating a cluster of si2kis 1/2¢. The coordinate standard deviation for a cluster of
sizem is 0.05//m, implying that each cluster has roughly the same total distortion. We considered
k € {50,100,500}.

The MultiClus distribution was designed to be a adversary for clustering methods based on simple ran-
dom sampling. Because most of the points belong to a constant number of the clusters, random sampling

15

will tend to pick most of the centers from these relatively few clusters.

We also ran experiments on the following data sets taken from standard applicattenmseahs in vector
guantization and pattern classification.

Lena22 and Lena44: These were taken from an application in image compression through vector quanti-
zation. The data were generated by partitionirig 22x 512 gray-scale Lena image into 65,536« 2
tiles. Each tile is treated as a point in a 4-dimensional space. Lena44 was generatddxugitilps,
thus generating 16,384 points in 16-dimensional space. We considerda, 64, 256}.

Kiss: This is from a color quantization application. 10,000 RGB pixel values were sampled at random from
a color image of a painting “The Kiss” by Gustav Klimt. This resulted in 10,000 points in 3-space.
We considered € {8, 64,256}.

Forest: This data set came from the UCI Knowledge Discovery in Databases Archive. The data set relates
forest cover type foB0 x 30 meter cells, obtained from the US Forest Service. The first 10 dimensions
contain integer quantities, and the remaining 44 are binary values (mostly 0’'s). We sampled 10,000
points at random from the entire data set of 581,012 points in dimension 54. We considered
{10,50,100}.

For all heuristics the initial centers were taken to be a random sample of the point set. For the sake of
consistency, for each run the various heuristics were started with the same set of initial centers. Each time the
set of centers is changed, the distortion is recomputed. The combination of modifying the set of centers and
recomputing distortions is calledstage We measured convergence rates by tracking the lowest distortion
encountered as a function of the number of stages executed. We also computed the average CPU time per
stage. We use the filtering algorithm from [24] for computing distortions for all the heuristics. The results
in each case were averaged over five trials having different random data points (for the synthetic examples)
and different random initial centers. We ran the swap heuristip fer{1, 2} swaps. Because they lack a
consistent termination condition, all heuristics were run for 500 stages.

5.1 Comparison of Convergence Rates

In order to compare the quality of the clustering produced by the various heuristics, we ran each heuristic
for 500 stages and plotted the best average distortion after each stage. These plots are shown in Fig. 6 for
the ClusGauss, MultiClus and Lena44 data sets.

A number of observations can be made from these plots. After a small number of stages both iterated
Lloyd’s and the hybrid algorithms converged rapidly. However, after this initial start the iterated Lloyd’s
algorithm rarely makes significant gains in distortion. The problem is that this algorithm begins each run
with an entirely new set of random centers, without accounting for which centers were well placed and
which were not. In contrast, the swap heuristics tend to converge very slowly, and even after 500 stages they
do not surpass the progress that the iterated Lloyd’s algorithm makes in its first 10-50 stages. Since these
heuristics do not use Lloyd’s algorithm for descending to a local minimum, their gains occur only through
the relatively slow process of making good random choices. As expected, the hybrid method does best of
all. It has the same rapid initial convergence as with the iterated Lloyd’s algorithm, but through repeated
swaps, it can transition out of local minima. For most of the real data sets, the hybrid method and Lloyd’s
method produce very similar distortions. (This is not surprising, given the popularity of Lloyd’s algorithm

16

Cluster Gaussians (k=50)

0.1 T . :
w-vy 1-Swap
-1 2-Swap
¢ Lioyd's]
0.05 A—A Hybrid b

(@)

Average Distortion

0.005

L | L | L | L | L
0 100 200 300 400 500
Number of stages

MultiClus (k=100)

0.1

T T
w-vy 1-Swap
B-E 2-Swap
4 Lloyd's
A—A Hybrid

=4
=}
a

(b)

Average Distortion

L L L L L L L L L
004 100 200 300 400 500
Number of stages

Lena44 (k=256)

1500 . . . | ! |
w-v¥ 1-Swap
-1 2-Swap
o—¢ Lloyd's
< 1200 A—A Hybrid 7
i)
=4
=]
.é’ 1000
(c) 2
(=]
o
2 800 -
<
>
600 . | . | . | . | .
0 100 200 300 400 500

Number of stages

Fig. 6: Comparison of the average distortions versus number of stages of execution for ClugGaass, (
MultiClus (k = 100), and Lena44K = 256). Note that thej-axis is plotted on a log scale and does not start
from O.

17

over many years.) Nonetheless, we observed instances where the hybrid method performs significantly
better than the iterated Lloyd’s algorithm, and we never found it to perform significantly worse. The hybrid
algorithm tends to outperform the iterated Lloyd’s algorithm in instances involving large numbers of well
separated clusters.

Our results comparing the performance on all the data sets is given in Table 1. It shows the best distortions

at stages 50, 100, and 500, and CPU times. To facilitate comparison, single-swap and single-swap hybrid are
given as percentage of increase relative to Lloyd's. (In particular, leftingd H denote the performance
quantities for Lloyd’s algorithm and another algorithm respectively, the listed percenteifg i$ — L)/ L.)
The 2-swap heuristic performed very similarly to single-swap and is not shown here. Again, with respect to
average distortions, the hybrid algorithm never performed significantly worse than the other heuristics, and
sometimes performed significantly better. It is also interesting to observe that the hybrid method’s running
time is generally as good, if not better, than the other heuristics. Execution time will be discussed further in
Section 5.2.

The fundamental question, which we cannot answer, is how good are these heuristics relative to the
optimum. Because we do not know the optimal distortion, we can only compare one algorithm against
another. In the case of the ClusGauss, however, it is possible to estimate the optimal distortion. In dimension
3, withk = 50 ando = 0.05, the expected squared distance from each generated data 3oifnitis0.0075.

After 500 iterations, the hybrid method achieved an average distortior00813, which is about 8.4%

above the expected optimal value (see Fig. 6(a)). The relatively good performance of the hybrid algorithm
relative to the other heuristics suggests that, at least for the relatively sets that we tested, the hybrid heuristic’s
performance is much closer to optimal than our proven approximation bounds would suggest.

5.2 Parametric Analysis of Performance

In order to better understand the performance of the various heuristics as a function of the parameters
involved, we ran a number of experiments in which we varied the sizes of the various quantities. All
experiments involved the ClusGauss distribution, where the number of clusters was adjusted to match the
numberk of centers computed. The parameters we varied included the nundbelata points, the number

k of centers, the dimensiady and the coordinate standard deviatioifior the Gaussian clusters. In each

case we ran the heuristic for 500 iterations and recorded the running time in CPU seconds and the average
distortion.

When varying the numbek of centers or the dimensiof, we also adjusted the value ef so that
the clusters were similarly well separated. Recall that the cluster centers are uniformly distributed in a
hypercube of side length 2. Intuitively, if we subdivide this hypercube into a grid of subcubes each of
side length(2/k)'/4, the expected number of clusters centers per subcube is exactly 1. Assuming an ideal
situation in which each cluster center is located at the center of each subcube, this would imply an ideal
separation distance ¢2/k)'/¢ between neighboring subcubes. To model this, we generated clusters with
a coordinate standard deviation €®/k)"/¢, for some constant < 1. Of course, some clusters will be
more well separated than others due to random variations in the placement of cluster centers, but we felt that
this adjustment would help better distinguish variations due soletyaiodd from variations due to cluster
separation.

One advantage of having moderately well separated clusters is that we can use the cluster variance as a
rough estimate for the optimal distortion. As clusters tend to overlap, the optimum distortion will tend to be
lower, since outlying points generated from one Gaussian cluster may be assigned to a closer center. In our

18

Table 1: Summary of Experiments. Absolute values are indicated for Lloyd’s algorithm, and the other values
are given as a percentage of increase (positive) or decrease (negative) relative Lloyd’s algorithm.

DataSet k | Method Best Distortion Time/Stage
Size/Dim Stage 50| Stage 100 Stage 500 (CPU sec)
Lloyd's | 0.048834| 0.045096| 0.041236 0.00989

25 | 1-swap 80.2% 61.2% 41.3% 10.0%

hybrid 2.3% -0.2% -7.6% -24.8%

ClusGauss Lloyd's | 0.014546| 0.013956| 0.011758 0.01852
n=10,000 | 50| 1-swap | 131.6% 92.3% 15.0% -8.0%
d=3 hybrid 15.7% -6.4% -30.9% -18.7%
Lloyd’s | 0.005953| 0.005914| 0.005868 0.03318

100 | 1-swap | 141.7%| 104.2% 22.4% -2.0%

hybrid 6.1% -0.6% -2.9% 1.2%

Lloyd's | 0.036752| 0.03633| 0.03428 0.02437

50 | 1-swap 83.6% 49.9% 11.1% -15.1%

hybrid 1.5% -1.7% -16.6% -27.7%

MultiClus Lloyd’s | 0.020258| 0.01981| 0.01839 0.03658
n =10,000 | 100 | 1-swap | 100.5% 68.5% 15.3% -6.9%
d=3 hybrid 12.7% 6.8% -20.0% -18.5%
Lloyd’s | 0.004123| 0.00393| 0.00372 0.11064

500 | 1-swap | 194.0%| 186.7%| 102.7% 4.2%

hybrid 4.2% 2.3% -13.3% -6.3%

Lloyd's 349.28 342.48 339.62 0.07312

8 | 1-swap 26.6% 21.7% 10.6% 1.7%

hybrid 0.4% 0.2% -0.3% 1.5%

Lena22 Lloyd's 107.82 107.00 106.32 0.29192
n = 65,536 | 64| l-swap 38.8% 32.2% 16.5% -1.0%
d=14 hybrid -0.2% -1.9% -4.3% -7.6%
Lloyd's 56.35 56.35 55.54 0.57020

256 | 1-swap 63.4% 55.9% 33.8% 4.9%

hybrid -3.3% -5.8% -7.8% -8.5%

Lloyd's 2739.2 2720.0 2713.2 0.20412

8 | 1-swap 20.2% 11.4% 7.4% 4.6%

hybrid 1.1% 0.7% 0.0% 1.2%

Lena44 Lloyd's 1158.8 1156.2 1150.4 1.19340
n=16,384 | 64| 1-swap 40.9% 34.8% 21.1% -1.4%
d=16 hybrid -0.9% -1.7% -3.5% -5.7%
Lloyd's 744.7 742.7 734.2 -3.14580

256 | 1-swap 60.2% 57.5% 39.3% 7.7%

hybrid -3.5% -5.2% -7.7% 20.3%

Lloyd's 705.88 703.50 693.56 0.01062

8 | 1-swap 34.9% 20.5% 9.2% -2.4%

hybrid 5.6% 0.8% -0.4% -2.5%

Kiss Lloyd's 156.40 153.32 147.44 0.03528
n =10,000 | 64| 1-swap 86.6% 62.8% 20.7% 1.0%
d=3 hybrid 1.9% -1.4% -7.0% -6.2%
Lloyd's 60.71 60.34 59.13 0.07621

256 | 1-swap 85.2% 76.4% 34.3% 1.8%

hybrid -0.2% -2.3% -11.0% -7.3%

Lloyd's 595040| 588860 587340 0.13722

10 | 1-swap 28.9% 26.3% 19.5% -1.4%

hybrid 0.7% 0.8% -0.7% -14.6%

Forest Lloyd's 202980 199360 198140 0.38842
n =10,000 | 50| 1-swap 56.6% 46.4% 26.0% 7.2%
d=>54 hybrid -0.3% -0.4% -3.7% -14.1%
Lloyd's 138600| 137800 136280 0.62256

100 | 1-swap 62.6% 50.7% 28.0% 11.7%

hybrid -0.9% -2.1% -4.5% -10.5%

19

plots in Figs. 7-10 of average distortion, we have shown this variance-based distortion estimate as a broken
line, to give a better sense of the optimum distortion.

As mentioned above, all the heuristics use the same filtering algorithm [24] for computing nearest centers
and distortions. Since this is the dominant component of the running time, we observed that all the heuristics
had very similar running times. The filtering algorithm uses a kd-tree to store the data points and uses a
pruning technique to compute nearest centers and distortions. As a result, its running time is expected to be
sublinear inn andk, assuming that the dimensidaris fixed. See [24] for further analysis of this algorithm.

(In contrast, a brute-force implementation of the nearest center computation would @@ifire) time.)

CPU Time vs. Data Size Average Distortion vs. Data Size
150 . : : . : . : 0.05 . :
r w-v 1-Swap [
< -1 2-Swap
ﬂu-; 4 Lloyd's
£ k A—A Hybrid c 0.
@ 100 %
g I 3
4 Dy,
g S
2} r I
-E 50 g I v-v 1-Swap]
S [< 0.02+ B-E 2-Swap -
o r r 4—¢ Lloyd's 1
O s A—A Hybrid
L [— - Variance
0 . | | | . | . 0.0 . | . | . | . | .
0 20000 40000 60000 80000 1e+05 0% 20000 40000 60000 80000 1e+05
Data Size Data Size

Fig. 7: CPU time and average distortion versus number of points: {0, 000, ¥ = 50, c = 0.1, d = 3.)

CPU Time vs. Number of Centers Average Distortion vs. Number of Centers
50 ——— ———— — 02— —_——
[w-y 1-Swap w-y 1-Swap
o - 2-Swap =-m 2-Swap
g F ¢ Lloyd's ¢ Lloyd's 4
£ 40 A—A Hybrid = 0.15 A—A Hybrid 7
B’ r 8 — - Variance]
=) S
g ki
~ 30 Q o4
gl g
<]
£ 9]
= r >
E oo <Lo.05
o
(6]
107“\“‘\“‘\“‘\“‘ 07“\“‘\“‘\“‘\“‘
20 40 60 80 100 20 40 60 80 100
Number of Centers Number of Centers

Fig. 8: CPU time and average distortion versus number of centers.10, 000, o ~ k~1/3/2, d = 3.)

Varying data size: In this experiment, the numberof data points was varied from 1000 to 100,000, fixing
k = 50,d = 3, ando = 0.1. The results are shown in Fig. 7. As expected, the running times grow
sublinearly withn. The hybrid heuristic and iterated Lloyd’s achieved the best average distortions.

Varying the number of centers: Here the numbek of centers was varied from 5 to 100, while fixing
n = 10,000 andd = 3. We generate& Gaussian clusters in each case. As explained above, in
order to guarantee similar cluster separation, we set the standard dewiatiqi /k)'/3 /3 for each
coordinate. The results are shown in Fig. 8. As expected, running times grow sublinearty ariith,

20

Fig.

CPU Time vs. Cluster Standard Deviation

Average Distortion vs. Cluster Std Deviation

50 : o : : 1.0g : —
w-y 1-Swap £ -1
< r m-m 2-Swap . P
3 40+ ¢ Lloyd's
é [A—A Hybrid < 0.1f
° t .g E
g sof - g
@ a
9] [© 0.01F w—y 1-Swap
% 20 — ? . B 2-Swap
£ [@ 4—¢ Lloyd's
= L 4 A—A Hybrid
2 10l] 1e3 — - Variance B
) E
0 ! P ! ! . 264 ! ! ! .
0.01 0.02 0.05 0.1 0.2 05 0.01 0.02 0.05 0.1 0.2 05
Cluster Standard Deviation Clust Standard Deviation
9: CPU time and average distortion versus cluster standard deviatien1(, 000, £ = 50, d = 3.)
CPU Time vs. Dimension Average Distortion vs. Dimension
2000 T T T 1 T T r T T T T
[w-v 1-Swap L w-v 1-Swap
o B-u 2-Swap 3 B-u 2-Swap
2 t ¢ Lloyd's t ¢ Lloyd's
£ 1500 A—A Hybrid c A—A Hybrid
° [2 — - Variance
b L R2
5 1000 E a
g 7 S
2 g
[
F g
S 500 g
a
o
| | | | |

10 12 14 16 18 20
Dimension

Dimension

Fig. 10: CPU time and average distortion versus dimensiog= (0, 000, kK = 50, ¢ ~ k—l/d/z.)

21

as the number of centers grew, the average distortion decreased. All the heuristics produced similar
average distortions.

Varying cluster standard deviation: Here we varied the standard deviation of the generated clusters from
0.01 (highly separated clusters) to 1 (overlapping clusters). Wefixed 0, 000, £ = 50, andd = 3.
The results are shown in Fig. 9. Running times were seen to increase as the clusters are less well
separated. This effect is anticipated in the analysis of the filtering algorithm given in [24]. When the
clusters are well separated, the hybrid heuristic tends to produce the smallest average distortions. In
the absence of well defined clusters, all the heuristics produced similar distortions.

Varying dimension: The dimension was varied, while fixing = 10,000 andk = 50. To maintain
similar cluster separation, we setto (1/k)'/?/3. The results are shown in Fig. 10. As with many
algorithms based on hierarchical spatial subdivision, the running time of the filtering algorithm grows
superlinearly with dimension. The curse of dimensionality would suggest that the growth rate should
be exponential in dimension, but these experiments indicate a more modest growth. This is likely
due to boundary effects. This phenomenon was described in [4] in the context of nearest neighbor
searching. The hybrid heuristic and iterated Lloyd’s performed comparably with respect to average
distortion, while the swap heuristics performed considerably worse. This suggests that the importance
of moving to a local minimum grows in significance as dimension increases.

6 Conclusions

We have presented an approximation algorithmifoneans clustering based on local search. The algorithm
achieves a factdy + ¢ approximation ratio. We presented an example showing that any approach based on
performing a fixed number of swaps achieves an approximation factor of a{%east) in all sufficiently

high dimensions. Thus, our approximation factor is almost tight for this class of local search algorithms. We
have also presented empirical evidence that by combining this algorithm with Lloyd’s algorithm (a simple
descent algorithm, which produces a locally minimal solution) the resulting hybrid approach has very good
practical performance.

This work provides further insights intb-means and other geometric clustering problems from both a
practical and theoretical perspective. This work shows that it is possible to provide theoretical performance
guarantees (albeit weak ones) on the performance of simple heuristics. It also shows the practical value
of combining discrete approximation algorithms with continuous approaches that produce locally optimal
solutions.

There are a number of open problems. Our analysis shows that if only single swaps are performed, the
best approximation bound 2 + e. However, we know of no centroidal configuration in any dimension for
which the algorithm is at a stable configuration and the performance ratio is worse-tharFurthermore,
in our tight example, we assume that the dimension may be chosen as a function of the number of swaps.
This raises the question of whether a tighter analysis might show that an approximation factor better than
25 can be achieved even for single swaps and/or in fixed dimensions. Our analysis makes use of the fact
that the optimal solution is centroidal. By alternating steps of the swap algorithm with Lloyd’s algorithm, it
is possible to assume that the heuristic solution is centroidal as well. Could such an assumption be used to
tighten our analysis? A final important question needed for empirical analysis of the approximation bounds
is how to generate good lower bounds on the optimal distortion.

22

7 Acknowledgements

We would like to thank Hiroshi Imai and Mary Inaba for motivating our initial interegt-means clustering.

We would also like to thank David Kirkpatrick and Sergei Bespamyatnikh for interesting discussions on
convergence properties of Lloyd’s algorithm. We would also like to thank the referees for a number of
suggestions, which improved the quality of the final paper.

References

[1] P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clusterifRyjobreedings
of the Ninth Annual ACM-SIAM Symposium on Discrete Algorittpages 658—667, San Francisco,
CA, January 1998.

[2] K. Alsabti, S. Ranka, and V. Singh. An efficiehtmeans clustering algorithm. Froceedings of the
First Workshop on High Performance Data Minin@rlando, FL, March 1998.

[3] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidesgdian and related
problems. InProceedings of the Thirtieth Annual ACM Symposium on Theory of Compptigs
106-113, Dallas, TX, May 1998.

[4] S.Arya, D. M. Mount, and O. Narayan. Accounting for boundary effects in nearest-neighbor searching.
Discrete Comput. Geonl6:155-176, 1996.

[5] V. Arya, N. Garg, R. Khandekar, V. Pandit, A. Meyerson, and K. Munagala. Local search heuristics
for k-median and facility location problems. Rroceedings of the 33rd Annual Symposium on Theory
of Computingpages 21-29, Crete, Greece, July 2001.

[6] G.H.Balland D. J. Hall. Some fundamental concepts and synthesis procedures for pattern recognition
preprocessors. Imternational Conference on Microwaves, Circuit Theory, and Information Theory
Tokyo, Japan, September 1964.

[7] S. Bandyopadhyay, U. Maulik, and M. K. Pakhira. Clustering using simulated annealing with proba-
bilistic redistribution.International J. Patt. Recog. and Artif. Intell5:269-285, 2001.

[8] V. Capoyleas, G. Rote, and G. Woeginger. Geometric clusterifmgnal of Algorithms12:341-356,
1991.

[9] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility locationkamédians
problem. InProceedings of the 4th Annual IEEE Symposium on Foundations of Computer $Science
pages 378-388, 1999.

[10] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tesselations: Applications and algorithms.
SIAM Review41:637—676, 1999.

[11] R. O. Duda and P. E. HarBattern Classification and Scene Analyslshn Wiley & Sons, New York,
NY, 1973.

23

[12] A.E. ElGamal, L. A. Hemanchandra, I. Shperling, and V. K. Wei. Using simulated annealing to design
good codeslEEE Trans. Information TheorB3:116-123, 1987.

[13] D. Eppstein. Faster construction of planar two-centersPrist. 8th ACM-SIAM Sympos. Discrete
Algorithms 1997.

[14] V. Faber. Clustering and the continugtisneans algorithmLos Alamos Scien¢g@2:138-144, 1994.

[15] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurus&ahyances in Knowledge Discovery
and Data Mining AAAI/MIT Press, 1996.

[16] W. Feller. An Introduction to Probability Theory and its Application’sohn Wiley & Sons, New York,
NY, 3rd edition, 1968.

[17] E. Forgey. Cluster analysis of multivariate data: Efficiency vs. interpretability of classificdion.
metrics 21:768, 1965.

[18] M. R. Garey and D. S. JohnsonComputers and Intractability: A Guide to the Theory of NP-
CompletenessV. H. Freeman, New York, NY, 1979.

[19] A. Gersho and R. M. Grayector Quantization and Signal Compressi#tiuwer Academic, Boston,
MA, 1992.

[20] M. Inaba, N. Katoh, and H. Imai. Applications of weighted Voronoi diagrams and randomization to
variance-basefl-clustering. InProceedings of the Tenth Annual ACM Symposium on Computational
Geometrypages 332-339, Stony Brook, NY, June 1994.

[21] A. K. Jain and R. C. DubesAlgorithms for Clustering Data Prentice Hall, Englewood Cliffs, NJ,
1988.

[22] A. K. Jain, P. W. Duin, and J. Mao. Statistical pattern recognition: A revi&iE Transactions on
Pattern Analysis and Machine Intelligen@2(1):4-37, 2000.

[23] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A revie’kCM Computing Surveys
31(3):264-323, 1999.

[24] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu. An efficient
k-means clustering algorithm: Analysis and implementatisEEE Trans. Patt. Anal. Mach. Inte]l.
24, 2002. (To appear).

[25] L. Kaufman and P. J. Rousseeurinding Groups in Data: An Introduction to Cluster Analysiohn
Wiley & Sons, New York, NY, 1990.

[26] S. Kirkpatrick, Jr. Gelatt, and M.P. Vecchi. Optimization by simulated anneaugence220:671-
680, 1983.

[27] T. Kohonen.Self-Organization and Associative Memo8pringer-Verlag, New York, NY, 3rd edition,
1989.

[28] S. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for the Euclidesdian
problem. In J. Nesetril, editoRroceedings of the Seventh Annual European Symposium on Algqgrithms
volume 1643 ol ecture Notes Comput. Sghages 362—-371. Springer-Verlag, July 1999.

24

[29] M. Korupolu, C. Plaxton, and R. Rajaraman. Analysis of a local search heuristic for facility location
problems. InProceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorigages
1-10, San Francisco, CA, January 1998.

[30] S. P. Lloyd. Least squares quantization in PAOEEE Transactions on Information Theor38:129—
137, 1982.

[31] J. MacQueen. Some methods for classification and analysis of multivariate observatiBrecdad-
ings of the Fifth Berkeley Symposium on Mathematical Statistics and Probakdityme 1, pages
281-296, Berkeley, CA, 1967.

[32] J. Matogek. On approximate geometikeclustering.Discrete and Computational GeometB4:61—
84, 2000.

[33] R. R. Mettu and C. G. Plaxton. Optimal time bounds for approximate clusteringroln 18th Conf.
on Uncertainty in Artif. Intell, pages 339-348, Edmonton, Canada, 2002.

[34] R.T.Ngand J. Han. Efficient and effective clustering methods for spatial data miniRgodeedings
of the Twentieth International Conference on Very Large Databhgssges 144-155, Santiago, Chile,
September 1994.

[35] D. Pelleg and A. Moore. Accelerating exdeimeans algorithms with geometric reasoning.Pho-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
pages 277-281, San Diego, CA, August 1999.

[36] D. Pelleg and A. Moore.z-means: Extending-means with efficient estimation of the number of
clusters. InProceedings of the Seventeenth International Conference on Machine LedralndAlto,
CA, July 2000.

[37] S. J. Phillips. Acceleration of k-means and related clustering problems. In D. M. Mount and C. Stein,
editors,Algorithm Engineering and Experiments (Proc. ALENEX ;8@)Jume 2409 ot ecture Notes
Comput. SciSpringer-Verlag, 2002. (to appear).

[38] S. Z. Selim and M. A. Ismail. K-means-type algorithms: A generalized convergence theorem and
characterization of local optimalityEEE Transactions on Pattern Analysis and Machine Intelligence
6:81-87, 1984.

[39] Micha Sharir. A near-linear algorithm for the plarZcenter problem. Discrete Comput. Geom.
18:125-134, 1997.

[40] M. Thorup. Quickk-median,k-center, and facility location for sparse graphs. Piroc. 28th Intl.
Collog. on Automata, Languages and Programming (ICABJume 2076 ot.ecture Notes Comput.
Sci, pages 249-260. Springer-Verlag, 2001.

[41] J. Vaisey and A. Gersho. Simulated annealing and codebook desidgProdnIEEE Int'l. Conf. on
Acoustics, Speech, and Signal Processing (ICAS&ges 1176-1179, 1988.

[42] G. Wesolowsky. The Weber problem: History and perspectieeation Sciencel:5-23, 1993.

25

