
KMlocal: A Testbed for k-means Clustering Algorithms

David M. Mount∗

Department of Computer Science and
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742
Email: mount@cs.umd.edu.

Version: 1.7
August 10, 2005

1 Introduction

This is a collection of programs for performing k-means clustering based on local search. In k-
means clustering we are given a set of n data points in d-dimensional space and an integer k, and
the problem is to determine a set of k points, called centers, so as to minimize the mean squared
distance from each data point to its nearest center, called the average distortion.

A popular algorithm for doing k-means clustering is called the k-means algorith, or Lloyd’s
algorithm. Lloyd’s algorithm is based on the simple observation that the optimal placement of a
center is at the centroid of the associated cluster. Given any set of k centers Z, for each center
z ∈ Z, let V (z) denote its neighborhood, that is, the set of data points for which z is the nearest
neighbor. Each stage of Lloyd’s algorithm moves every center point z to the centroid of V (z) and
then updates V (z) by recomputing the distance from each point to its nearest center. These steps
are repeated until some convergence condition is met.

However, Lloyd’s algorithm can get stuck in locally minimal solutions that are far from the
optimal. For this reason it is common to consider heuristics based on local search, in which centers
are swapped in and out of an existing solution (typically at random). Such a swap is accepted if
it decreases the average distortion, and otherwise it is ignored. It is also possible to combine these
two approaches (Lloyd’s algorithm and local search), producing a type of hybrid solution. There
are many variants on these themes.

This program provides a number of different algorithms for doing k-means clustering based on
these ideas and combinations. Further information can be found in the following paper.

T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu,
“A Local Search Approximation Algorithm for k-Means Clustering” Proc. of the 18th
ACM Symp. on Computational Geometry, 2002, 10–18.

∗Copyright (c) 2002–2005 University of Maryland and David Mount. All Rights Reserved. Partially supported by
the National Science Foundation under grant CCR-0098151.

1

It is also available from
http://www.cs.umd.edu/˜mount/pubs.html

2 Compilation

Let us assume that you are in the kmlocal root directory, from which the subdirectories src, bin,
and test branch off. To start, you can compile the kmltest program by entering (from the root
directory) “make”. This is set up for the g++ compiler, version 2.7.2 or higher on Solaris. It will
probably generate a number of error messages if you try it from another compiler or platform. The
executable binary will be left in the file bin/kmltest.

3 Overview of the Algorithms

There are three different procedures for performing k-means, which have been implemented here.
The main issue is how the neighbors are computed for each center.

Lloyd’s: Repeatedly applies Lloyd’s algorithm with randomly sampled starting points.

Swap: A local search heuristic, which works by performing swaps between existing centers and a
set of candidate centers.

Hybrid: A more complex hybrid of Lloyd’s and Swap, which performs some number of swaps
followed by some number of iterations of Lloyd’s algorithm. To avoid getting trapped in local
minima, an approach similar to simulated annealing is included as well.

EZ Hybrid: A simple hybrid algorithm, which does one swap followed by some number of itera-
tions of Lloyd’s.

All the algorithms are based around a generic local search structure. The generic algorithm
begins by generating an initial solution curr and saving it in best. These objects are local to the
KMlocal structure. The value of curr reflects the current solution and best reflects the best solution
seen so far. The generic algorithm consists of some number of basic iterations, called stages. Each
stage involves the execution of one step of either the swap heuristic or Lloyd’s algorithm. Each of
the algorithms differ in how they apply these stages.

Stages are grouped into runs. Intuitively, a run involves a (small) number of stages in search
of a better solution. A run might end, say, because a better solution was found or a fixed number
of stages have been performed without any improvement. After a run is finished, we check to see
whether we want to accept the solution. Presumably this happens if the cost is lower, but it may
happen even if the cost is inferior in other circumstances (e.g., as part of a simulated annealing
approach). Accepting a solution means copying the current solution to the saved solution. In some
cases, the acceptance may involve reseting the current solution to a random solution.

There are some concepts that are important to run/phase transitions. One is the maximum
number of stages. Most algorithms provide some sort of parameter that limits the number of stages

2

that the algorithm can spend in a particular run (before giving up). The second is the relative
distortion loss, or RDL. (See also KMterm.h.) The RDL is defined:

RDL =
initDistortion − currDistortion

initDistortion
.

Note that a positive value indicates that the distortion has decreased. The definition of “initDistor-
tion” depends on the algorithm. It may be the distortion of the previous stage (RDL = consecutive
RDL), or it may be the distortion at the beginning of the run (RDL = accumulated RDL).

3.1 Lloyds

This is Lloyd’s algorithm with random restarts The algorithm is broken into phases, and each
phase is broken into runs. Each phase starts by sampling center points at random. Each run is
provided two parameters, a maximum number of runs per stage (max run stage) and a minimum
accumulated relative distortion loss (min accum rdl). If the accumulated RDL for the run exceeds
this value, then the run ends in success. If the number of stages is exceeded before this happens,
the run ends in failure. The phase ends with the first failed run.

3.2 Swap

This algorithm iteratively changes centers by performing swaps. Each run consists of a given
number (max swaps) executions of the swap heuristic.

3.3 EZ Hybrid

This implements a simple hybrid algorithm (compared to the full hybrid). The algorithm performs
only one swap, followed by some number of iterations of Lloyd’s algorithm. Lloyd’s algorithm is
repeated until the consecutive RDL falls below a given threshold.

A stage constitutes one invocation of the Swap or Lloyd’s algorithm. A run consists of a single
swap followed by a consecutive sequence of Lloyd’s steps. A graphical representation of one run
is presented below. The decision to make another pass through Lloyd’s is based on whether the
relative improvement since the last stage (consecutive relative distortion loss) is above a certain
fixed threshold (min consec rdl).

3.4 Hybrid

This implements a more complex hybrid algorithm, which combines both of swapping and Lloyd’s
algorithm with a variant of simulated annealing. The algorithm’s execution is broken into the
following different processes: one swap, a consecutive sequence of Lloyd’s steps, and an acceptance
test. If we pass the acceptance test, we take the resulting solution, and otherwise we restore the
old solution.

The decision to perform another Lloyd’s step or go on to acceptance is based on whether the
relative improvement since the last stage (consecutive relative distortion loss) is above a certain
fixed threshold (min consec rdl). If the resulting solution is better than the saved solution, then we

3

accept it. Otherwise, we use the simulated annealing decision choice (described below) to decide
whether to accept it. The choice to accept a poorer solution occurs with probability

exp
(

RDL
T

)
,

where RDL is the relative distortion loss (relative to the saved solution), and T is the current
temperature. Note that if RDL > 0 (improvement) then this quantity is > 1, and so we always
accept. The temperature value T is a decreasing function of the number of the number of stages.
It starts at some initial value T0 and decreases slowly over time. Rather than using the standard
(slow) Boltzman annealing schedule, we use the following fast annealing schedule, every L stages
we set T = TF · T , where:

L (temp run length): is an integer parameter set by the user. (Presumably it depends on the
number of centers and the dimension of the space.)

TF (temp reduc factor): is a real number of the form 1 − x, for some small x.

The initial temperature T0 is a tricky parameter to set. The user supplies a parameter p0

(init prob accept), the initial probability of accepting a random swap. However, the probability of
acceting a swap depends on the given RDL value. To estimate this, for the first L runs we use p0

as the probability. Over these runs we compute the average rdl value. Once the first L runs have
completed, we set T0 so that:

exp
(
−avgRDL

T0

)
= p0.

or equivalently

T0 = −avgRDL
ln p0

.

4 The Kmltest Driver Program

Kmltest is a driver for testing and evaluating various algorithms for the k-means problem, for point
clustering in multi-dimensional spaces. It allows the user to generate or input data sets, to specify
the number of centers and generate or input their initial positions, and then to run one of a number
of k-means procedures. The test program is run as follows:

kmltest < test input > test output

where the test input file contains a list of directives as described below. Directives consist
of a directive name, followed by list of arguments (depending on the directive). Arguments and
directives are separated by white space (blank, tab, and newline). String arguments are not quoted,
and consist of a string of nonwhite characters. A character “#” denotes a comment. The following
characters up to the end of line are ignored. Comments may only be inserted between directives
(not within the argument list of a directive).

4

4.1 Basic operations

The test program can perform the following operations. How these operations are performed
depends on the options which are described later.

4.1.1 Data Generation

read data pts 〈file〉
Create a set of data points whose coordinates are input from file 〈file〉. Prior to this, data size
must be set. At most data size points will be read from the file. The actual number of points
in the file may be less.

gen data pts

Create a set of data points whose coordinates are generated from the current point distribu-
tion.

4.2 Running k-means

run kmeans 〈method〉
Apply k-means clustering to the current point set and clusters. The string specifies the desired
version of k-means. These include:

lloyd – runs Lloyd’s algorithm using the filtering algorithm.
swap – runs the swap heuristic.
hybrid – runs Lloyd’s algorithm and the swap heuristic in alternating steps.
EZ-hybrid – a simpler version of hybrid. One swap followed by some number of Lloyd’s.

See Section 3 for further details.

4.3 Miscellaneous

Note that in these commands, the string arguments may have no embedded blanks.

title 〈string〉
A title printed to the output file.

print 〈string〉
Outputs a string to console (cerr).

get distortion

Computes and prints distortion (the sum of squared distances for the current centers). Note
that the k-means algorithms compute and print the distortion for all stages but stage 0, if
the stats level is set to “stage.”

5

4.4 Options

How the above operations are performed depends on a set of options. If an option is not specified, a
default value is used. An option retains its value until it is set again. String inputs are not enclosed
in quotes, and must contain no embedded white space.

4.4.1 Options affecting nearest neighbor search

split rule 〈type〉
Type of splitting rule to use in building the search tree. Choices are:

kd – optimized kd-tree
fair – fair split
midpt – midpoint split
sl midpt – sliding midpt split
sl fair – sliding fair split
suggest – authors’ choice for best

The default is “suggest.” See the file kd split.cc for more detailed information. (Currently
this is ignored!)

bucket size 〈int〉
Bucket size, that is, the maximum number of points stored in each leaf node.

4.4.2 Options affecting data and query point generation

kcenters 〈int〉
Number of centers. Default = 5.

dim 〈int〉
Dimension of the space.

seed 〈int〉
Seed for random number generation.

data size 〈int〉
Number of data points to generate for gen data pts points and the maximum number of data
points to be read for read data pts. If this exceeds max data size, then max data size is
incremented to match this value. Default = 100.

std dev 〈float〉
Standard deviation (used in gauss, and clustered distributions). This is the “small” distribu-
tion for clus ellipsoids. Default = 1.

std dev lo 〈float〉, std dev hi 〈float〉
Low and high standard deviations (used in clus ellipsoids). Default = 1.

corr coef 〈float〉
Correlation coefficient (used in co-gauss and co lapace distributions). Default = 0.05.

6

colors 〈int〉
Number of color classes (clusters) (used in the clustered distributions). Def. = 5.

new clust

Once generated, cluster centers are not normally regenerated. This is so that both centers
and data points can be generated using the same set of clusters. This option forces new
cluster centers to be generated with the next generation of either data or center points.

max clus dim 〈int〉
Maximum dimension of clusters (used in clus orth flats and clus ellipsoids). Default = 1.

distribution 〈string〉
Type of input distribution

uniform – uniform over cube [−1, 1]d.
gauss – Gaussian with mean 0
laplace – Laplacian, mean 0 and var 1
co gauss – correlated Gaussian
co laplace – correlated Laplacian
clus gauss – clustered Gaussian
clus orth flats – clusters of orth flats
clus ellipsoids – clusters of ellipsoids
multi clus – multi-sized clusters

See the file rand.cc for further information.
replacement 〈string〉

Sampling option for sample centers.

on – sample with replacement
off – sample without replacement

4.4.3 Options affection general program behavior

stats 〈string〉
Level of statistics output

silent = no output,
exec time += execution time only
summary += summary of complete k-means
stage += summary of each stage
trace += show everything as it happens.

print points 〈string〉
Print the points after reading or generating them. The argument is either “yes” or “no”.
Default = “no”.

7

show assignments 〈string〉
After running the clustering algorithm, print the indices of the center point to which each
data point has been assigned along with its distance to this center. The argument is either
“yes” or “no”. Default = “no”.

dump 〈file〉
Dump summary to ¡file¿ (for analysis by some other program).

validate 〈string〉
Validate experiment and compute average error. Since validation causes exact nearest neigh-
bors to be computed by the brute force method, this can take a long time. Valid arguments
are:

yes (Not implemented!) turn validation on
no turn validation off

4.4.4 Options affecting termination

The way of controlling the program’s termination is to specify the maximum number of stages. (In
theory, a better way would be to determine when the algorithm has converged, but this seems to
be a very complex task to me.) Each time the algorithm moves the center points and recomputes
the distortion constitutes a stage. The maximum number of stages is based on the number of data
points n (data size) and the number of centers k (kcenters) and four coefficients, (a, b, c, d), using
the following formula:

MaxTotalStages = a + (b · k + c · n)d

If the final result is 0, then the algorithm runs without terminating.

max tot stage 〈4 × float〉
Maximum total stages for given as parameters. Default: 〈0, 0, 0, 0〉.

4.4.5 Options used in Lloyd’s Algorithm and Hybrid Algorithms

damp factor 〈float〉
A dampening factor in the interval (0,1]. The value 1 is the standard Lloyd’s algorithm.
Otherwise, each point is only moved by this fraction of the way from its current location to
the centroid. Default: 1

min accum rdl 〈float〉
This is used in Lloyd’s algorithm algorithm which perform multiple swaps. When performing
p swaps, we actually may perform fewer than p. We stop performing swaps, whenever the
total distortion (from the start of the run) has decreased by at least this amount. Default:
0.10

max run stage 〈int〉
This is used in Lloyd’s algorithm. A run terminates after this many stages. Default: 100

8

4.4.6 Options specific to the Swap algorithm

max swaps 〈int〉
Maximum swaps at any given stage. Default: 1

4.4.7 Options specific to the hybrid algorithms

min consec rdl 〈float〉
This is used in the hybrid algorithms. If the RDL of two consecutive runs is less than this
value Lloyd’s algorithm is deemed to have converged, and the run ends.

4.4.8 Options specific to the (complex) hybrid algorithm

init prob accept 〈float〉
The initial probability of accepting a solution that does not improve the distortion.

temp run length 〈int〉
The number of stages before changing the temperature.

temp reduc factor 〈float〉
The factor by which temperature is reduced at the end of a temperature run.

4.5 Example

Option directives (such as “dim,” “data size,” “seed”) that merely set option values are indented.
Operation directives (“gen data pts,” “run kmeans”) are not indented.

title Experiment_1A # experiment title
stats summary # print summary information
print_assignments yes # print final cluster assignments
dim 2 # dimension 2

data_size 5000 # 5000 data points
colors 30 # ...broken into 30 clusters
std_dev 0.025 # ...each with std deviation 0.025
distribution clus_gauss # clustered gaussian distribution
seed 1 # random number seed

gen_data_pts # generate the data points

kcenters 20 # place k=20 center points
distribution uniform # ...uniformly distributed
seed 2

gen_centers # generate initial center points

lloyd_max_tot_stage 20 0 0 0 # terminate Lloyd’s after 20 stages
print Running-lloyd’s
run_kmeans lloyd # run using Lloyd’s algorithm

9

seed 2 # use same seed
gen_centers # regenerate same center points

max_swaps 3 # at most 3 swaps
swap_max_tot_stage 0 3 0 2 # at most 3*k^2 = 1200 stages
swap_max_run_stage 50 0 0 0 # at most 50 stages per run
swap_min_run_gain 0.02 # stop run if distortion drops 2%

print Running-swap
run_kmeans swap # run using swap heuristic

5 Sample Program

Although KMlocal is not a library, it is possible to invoke the various algorithm directly from
program. The algorithm is designed around a collection of C++ objects. The include the following:

KMdata: (KMdata.h) This object stores the data points. The constructor is given the dimen-
sion and the number of points to allocate. If P is an object of this type, then P [i][d] refers
to the dth coordinate of the ith point.

One the key elements to the efficiency of the algorithms presented is the use of the filtering
algorithm for computing the nearest cluster center for each data point. This requires the
construction of a data structure called a kc-tree. This tree is constructed by the method
P.buildKcTree(), which should be done prior to running any of the clustering algorithms.

KMfilterCenters: (KMfilterCenters.h) This object stores the center points (in a manner that
makes the use of the filtering algorithm possible). The constructor is passed two arguments,
the desired number of center points k, and the associated data points.

On completion of the execution of the clustering algorithm, the centers are stored in this
structure. It supports a method print(), which prints the centers to the standard output,
and method getDist(), which returns the total distortion.

KMlocal: (KMlocal.h) There are currently four different clustering algorithms supported. They
are all designed around a common local search template, called KMlocal. This is a generic
template, and so cannot be invoked directly. The following derived objects can be invoked:

KMlocalLloyds: Repeated Lloyd’s algorithm.
KMlocalSwap: The swap heuristic.
KMlocalEZ Hybrid: A simple hybrid, which simply alternates Lloyd’s algorithm and the

swap algorithm.
KMlocalHybrid: A more complex hybrid algorithm, which involves simulated annealing.

These algorithms are described in Section 3, above.

The constructor to each algorithm is passed two things, the KMfilterCenter structure for the
center points and the KMterm structure (described below), which specifies the termination
conditions. It supports the method execute(), which initializes the center points to random
positions, executes the clustering algorithm, and returns with the center structure modified
to hold the final centers.

10

KMterm: (KMterm.h) Each of the local search algorithms consists of some number of incre-
mental movements of the center points, called stages. Stages are grouped into longer organi-
zational units called runs, and runs are grouped into longer units called phases. The meaning
of the transition from runs to phases depends on the individual algorithm. Intuitively, a run
involves a search for a better solution, through some local search operations. If this search
results in a better solution, the run is said to be successful. A phase consists of a series of
consecutive successful runs. When a run is unsuccessful, the phase ends.

The definition of when a run and a phase is complete depends on a number of parameters.
These parameters are stored in the KMterm object. See the files KMterm.h and KMlocal.h
for more detailed explanation of their exact meaning.

One important parameter in the termination condition is the maximum total stages. All the
current algorithms simply execute until reaching this number of stages. It is defined by a set
of four parameters (a, b, c, d). This was described earlier in Section 4.4.4. These are the first
four parameters in the constructor for KMterm.

A minimal sample program is given below. It generates a set of random data points (dataPoints).
This is done using a function kmUniformPts, which generates a set of uniformly distributed points
in the cube [−1, 1]d, where d is the dimension. It then constructs a kc-tree for these points. Next,
it generates a center point structure (ctrs). It declares a local search algorithm (kmAlg) with which
to perform the clustering. In this case it is the repeated Lloyd’s algorithm, but the commented
code indicates the possible choices for the other clustering algorithms. It creates KMterm object,
which (in addition to a number of cryptic options) requests that the algorithm be run for 100 stages
(given by the first four parameters being (100, 0, 0, 0)). It executes this algorithm, and prints the
resulting distortion and center points. (This file can be found in src/kmlminimal.cpp. A more
complete sample program can be found in src/kmlsample.cpp.)

#include <cstdlib> // C standard includes
#include <iostream> // C++ I/O
#include <string> // C++ strings
#include "KMlocal.h" // k-means algorithms

using namespace std; // make std:: available

// execution parameters (see KMterm.h and KMlocal.h)
KMterm term(100, 0, 0, 0, // run for 100 stages

0.10, 0.10, 3, // other typical parameter values
0.50, 10, 0.95);

int main()
{

int k = 4; // number of centers
int dim = 2; // dimension
int nPts = 20; // number of data points

KMdata dataPts(dim, nPts); // allocate data storage
kmUniformPts(dataPts.getPts(), nPts, dim); // generate random points
dataPts.buildKcTree(); // build filtering structure

11

KMfilterCenters ctrs(k, dataPts); // allocate centers
// run the algorithm

KMlocalLloyds kmAlg(ctrs, term); // repeated Lloyd’s
// KMlocalSwap kmAlg(ctrs, term); // Swap heuristic
// KMlocalEZ_Hybrid kmAlg(ctrs, term); // EZ-Hybrid heuristic
// KMlocalHybrid kmAlg(ctrs, term); // Hybrid heuristic
ctrs = kmAlg.execute(); // execute

// print number of stages
cout << "Number of stages: " << kmAlg.getTotalStages() << "\n";

// print average distortion
cout << "Average distortion: " << ctrs.getDist(false)/nPts << "\n";
ctrs.print(); // print final centers

return EXIT_SUCCESS;
}

The output of the minimal sample program when run on a Sun 5 running Solaris 5.8 is shown
below.

Number of stages: 100
Average distortion: 0.0806688

0 [0.538642 -0.747656] dist = 0.143903
1 [0.058456 -0.350953] dist = 0.0607307
2 [0.333405 0.368641] dist = 0.958262
3 [-0.677253 -0.534964] dist = 0.450481

The data used as input to this minimal program is generated randomly, and so the final re-
sult depend on your system’s random number generator. Different systems will likely produce
different results. For example, the same program when compiled on a PC under Microsoft Visual
Studio.NET, produced the following very different output.

Number of stages: 100
Average distortion: 0.137674

0 [0.767327 0.301355] dist = 0.999582
1 [-0.790716 0.392132] dist = 0.534576
2 [-0.215044 -0.942462] dist = 0.369202
3 [-0.200438 0.495125] dist = 0.850113

6 How Do I Get Started Quickly?

If you have some data that you wish to cluster, I would suggest starting with the program
src/kmlsample.cpp and modifying it for your purposes. The parameters that you will have to
change are the desired number of clusters (k), the dimension (dim), the maximum number of points
(maxPts). You should set the number of iteration stages (stages) to a value that you feel is large
enough to guarantee good convergence. A value on the order of 100–500 should be sufficient for
most instances. Larger values may be needed for higher dimensional or hard to cluster data sets.
You will also need to modify the section of the program that inputs the points.

This program tries all four of the various clustering algorithm. You should see which produces
the smallest distortion for your data. Based on our experience, the algorithm that has the best

12

overall performance is KMlocalHybrid. Finally, remove all the calls to the clustering algorithms,
except for the final one you wish to use.

If you are using a PC running Microsoft Windows, precompiled versions of kmlminimal, kmlsample,
and kmltest can be found in the directory KMLwin32/bin. The solution and project files can be
found in KMLwin32 as well, for compilation using Microsoft Visual Studio.NET (under Visual C++).

13

