
ABSTRACT

Title of dissertation: TOOLS AND EXPERIMENTS
FOR SOFTWARE SECURITY

Andrew Ruef
Doctor of Philosophy, 2018

Dissertation directed by: Professor Michael Hicks
Department of Computer Science

The computer security problems that we face begin in computer programs that

we write.

The exploitation of vulnerabilities that leads to the theft of private information

and other nefarious activities often begins with a vulnerability accidentally created

in a computer program by that program’s author. What are the factors that lead

to the creation of these vulnerabilities? Software development and programming is

in part a synthetic activity that we can control with technology, i.e. different pro-

gramming languages and software development tools. Does changing the technology

used to program software help programmers write more secure code? Can we create

technology that will help programmers make fewer mistakes?

This dissertation examines these questions. We start with the Build It Break

It Fix It project, a security focused programming competition. This project provides

data on software security problems by allowing contestants to write security focused

software in any programming language. We discover that using C leads to memory

safety issues that can compromise security.

Next, we consider making C safer. We develop and examine the Checked C

programming language, a strict super-set of C that adds types for spatial safety. We

also introduce an automatic re-writing tool that can convert C code into Checked

C code. We evaluate the approach overall on benchmarks used by prior work on

making C safer.

We then consider static analysis. After an examination of different parameters

of numeric static analyzers, we develop a disjunctive abstract domain that uses a

novel merge heuristic, a notion of volumetric difference, either approximated via

MCMC sampling or precisely computed via conical decomposition. This domain is

implemented in a static analyzer for C programs and evaluated.

After static analysis, we consider fuzzing. We consider what it takes to perform

a good evaluation of a fuzzing technique with our own experiments and a review of

recent fuzzing papers. We develop a checklist for conducting new fuzzing research

and a general strategy for identifying root causes of failure found during fuzzing. We

evaluate new root cause analysis approaches using coverage information as inputs

to statistical clustering algorithms.

TOOLS AND EXPERIMENTS
FOR SOFTWARE SECURITY

by

Andrew Ruef

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Michael Hicks, Chair/Advisor
Professor Jeffrey Foster
Professor Michelle Mazurek
Professor David Levin
Professor Joseph JaJa, Dean’s Representative

c© Copyright by
Andrew Ruef

2018

Acknowledgments

Thank you Mike, my advisor, for your support, encouragement, feedback,

criticism, and suggestions. They have summed to form a vector nudging me in the

direction of becoming a scientist. Thank you to my collaborators over the years,

it was fun, and when it wasn’t fun, it was educational. I would like to thank

the following people and institutions, the order is not important: the University

System of Maryland, Oreo cookies, Anna, Dana, Earth Treks, Joman, the students

and alumni of PLUM, Dr. Elizabeth Lovegrove, Hoppy, Car, Arlen, Mike, David,

Mike, David, and the other Mike, The Board and Brew, Kelly, the Howard County

Public Library system, Rachel, my family, Trail of Bits and affiliates, Holly, all the

members of each “bad attitude” channel I am or was a member of, “The Institute

for the Advancement of Memory Corruption”, the University of Oregon and OPLSS,

and Infected Mushroom. If you are not named here, you could assume that I thought

about you but decided not to name you for privacy reasons. Especial thanks to my

wife.

ii

Table of Contents

Acknowledgements ii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Build It, Break It, Fix It 12
2.1 Build-it, Break-it, Fix-it . 17

2.1.1 Competition phases . 17
2.1.2 Competition scoring . 19

2.1.2.1 Build-it scores . 20
2.1.2.2 Break-it scores . 21

2.1.3 Discussion . 22
2.1.3.1 Minimizing manual effort 22
2.1.3.2 Limitations . 23
2.1.3.3 Discouraging collusion 25

2.1.4 Implementation . 26
2.2 Contest Problems . 28

2.2.1 Secure log (Spring 2015) . 29
2.2.2 Securing ATM interactions (Fall 2015) 31

2.3 Quantitative Analysis . 35
2.3.1 Data collection . 36
2.3.2 Analysis approach . 37
2.3.3 Contestants . 38
2.3.4 Ship scores . 39
2.3.5 Code quality measures . 44
2.3.6 Breaking success . 52

2.4 Qualitative Analysis . 56
2.4.1 Success Stories . 57
2.4.2 Failure Stories . 58

iii

2.5 Related work . 60
2.6 Conclusions . 62

3 Checked C 66
3.1 Checked C . 71

3.1.1 Basics . 71
3.1.2 Simple pointers . 72
3.1.3 Arrays . 72
3.1.4 NUL-terminated Arrays . 75
3.1.5 Checked and Unchecked Regions 76
3.1.6 Restrictions and Limitations 78

3.2 Implementation . 80
3.2.1 Overview . 80
3.2.2 Checking Bounds . 80
3.2.3 Run-time Checks . 83

3.3 Automatic Porting . 84
3.3.1 Conversion tool design and overview 84
3.3.2 Constraint logic and solving 85
3.3.3 Example . 90

3.4 Empirical Evaluation . 91
3.4.1 Compiler evaluation . 92

3.4.1.1 Code Changes . 94
3.4.1.2 Observed Overheads 95

3.4.2 Porting Tool Evaluation . 96
3.5 Related work . 99
3.6 Summary . 104

4 Volume Estimation for Numeric Invariant Generation 105
4.1 Introduction . 105
4.2 Overview and Example . 109
4.3 Semantic Comparison of Polytopes 111
4.4 Sampling and Counting Points . 114

4.4.1 Integer-Point-Based Affinity 115
4.4.2 Volume-Ratio-Based Affinity 115
4.4.3 Segment-Sample Volume-Ratio-Based Affinity 117
4.4.4 Inflating Polytopes . 118

4.5 Disjunctive Abstract Domain . 119
4.6 Implementation . 122

4.6.1 Random Sampling Within Polytopes 123
4.7 Evaluation . 125

4.7.1 Experimental Setup . 126
4.7.2 Results . 128
4.7.3 Limitations and Discussion . 131

4.8 Related Work . 133
4.9 Conclusion . 134

iv

5 Evaluating Fuzz Testing 136
5.1 Backround and overview . 136
5.2 Background . 142

5.2.1 Fuzzing Procedure . 142
5.2.2 Recent Advances in Fuzzing 144

5.3 Overview and Experimental Setup . 149
5.4 Statistically Sound Comparisons . 153
5.5 Seed Selection . 161
5.6 Timeouts . 165
5.7 Performance . 167

5.7.1 Code Coverage . 168
5.8 Target Programs . 170

5.8.1 Real programs . 170
5.8.2 Suites of artificial programs (or bugs) 172
5.8.3 Toward a Fuzzing Benchmark Suite 174

5.9 Conclusions and Future Work . 176

6 De-duplication, clustering, and root cause analysis 180
6.1 Ground Truth: Bugs Found . 181

6.1.1 Methodology . 183
6.1.2 Discussion of bugs . 186

6.2 Approximating ground truth: AFL coverage profiles 192
6.3 Approximating ground truth: Stack hashes 195
6.4 Approximating ground truth: Clustering 201

6.4.1 Clustering Methods . 204
6.4.2 Results and discussion . 210

6.5 Using symbolic path conditions for root cause analysis 211
6.6 Conclusion . 213

6.6.1 Future work . 215

7 Conclusion 217

A Patches applied to cxxfilt 220

Bibliography 229

v

List of Tables

2.1 BIBIFI Contestants by country . 39
2.2 BIBIFI Contestant demographics . 40
2.3 Linear regression model of team’s ship scores 44
2.4 Break-it teams bug reports . 47
2.5 Logistic regression model of a security bug being found 49
2.6 BIBFI linear regression model of break-it scores 53
2.7 BIBFI security bug linear regression 55

3.1 Compiler Benchmarks . 92
3.2 Compiler benchmark results . 93
3.3 Pointer types converted . 98

4.1 Affinity scores . 112
4.2 Descriptions of the different affinity scores considered. 126
4.3 Description of benchmark programs used 126
4.4 Results of evaluation . 128
4.5 Performance of implementation . 129

5.1 Summary of past fuzzing evaluation 147
5.2 Crashes found with different seeds . 163

6.1 Stack hashing results for cxxfilt . 197
6.2 Clustering results . 209

vi

List of Figures

1.1 Merging different abstractions . 7

2.1 BIBIFI implementation overview . 26
2.2 BIBFI build it submissions . 42
2.3 BIBFI ship scores . 45
2.4 BIBFI resilience scores . 46
2.5 BIBFI security bugs found by team 50
2.6 BIBFI types of security bugs found 51
2.7 BIBFI break-it team scores Spring 2015 64
2.8 BIBFI break-it team scores Fall 2015 64
2.9 BIBFI break-it team scores . 64
2.10 BIBFI security bugs found by team 65

3.1 Example use of _Ptr<T> . 72
3.2 Example use of _Array_ptr<T> . 73
3.3 Example use of _Nt_array_ptr<T> . 75
3.4 _Unchecked and _Checked regions (and array) 77
3.5 Standard library checked interface . 78

4.1 Example of merging disjuncts . 110
4.2 Example polytopes . 112
4.3 Segments approximating hull . 118
4.4 Algorithm for disjunction management 121
4.5 Graph of run-time performance . 129

5.1 Fuzzing, in a nutshell . 143
5.2 nm crashes . 153
5.3 objdump crashes . 154
5.4 cxxfilt crashes . 154
5.5 FFmpeg crashes . 154
5.6 gif2png crashes . 155
5.7 FFMpeg empty seed . 157
5.8 FFMpeg 1-made seed . 158

vii

5.9 FFMpeg 3-made seeds . 158
5.10 FFMpeg 1-sampled seeds . 159
5.11 FFMpeg 3-sampled seeds . 159
5.12 FFMpeg 9-sampled seeds . 160
5.13 nm with three sampled seeds . 167

6.1 Crashes with unique bugs found per run for cxxfilt 186
6.2 How coverage-based deduplication can overcount 192
6.3 Unique bugs by run for cxxfilt . 194
6.4 How stack hashing can over- and undercount bugs 196

A.1 int/long patch . 220
A.2 NULL check patch . 221
A.3 Patch adding NULL checks . 222
A.4 Patch checking for exit conditions . 223
A.5 Patch attempting to control unbounded recursion 224
A.6 Addition of new fields . 224
A.7 Using new functions . 225
A.8 Checks in do_type . 225
A.9 Additional recursion patch . 226
A.10 Set field to 0 to avoid use after free 226
A.11 Check of return value for failure . 227
A.12 Additional boundary tests . 228

viii

Chapter 1: Introduction

The computer security problems that we face begin in computer programs

that we write. The theft of private information and other nefarious activities of-

ten begin with a vulnerability accidentally created in a computer program by the

program’s author. What are the factors that lead to the creation of these vulnera-

bilities? Software development and programming is in part a synthetic activity that

we can control with technology, i.e. different programming languages and software

development tools. Does changing the technology used to program software help

programmers write more secure code? Finally, can we create technology that will

help programmers make fewer mistakes?

There are many variables that could effect the presence and severity of defects

in software, such as the choice of programming language, the use (or non-use) of

static analyzers, the use of fuzzing or after the fact audits of the code, and develop-

ment methodology, to name a few. When Equifax was hacked, resulting in the loss

of millions of records, an old version of a library used in web applications, Apache

Struts, was to blame [1,2]. A simple static analyzer would have revealed the presence

of a component that was known to be vulnerable, if the analysis was run at some

point during software development or maintenance. The Heartbleed vulnerability in

1

openSSL tells a different story, where a low level programming error in a C library

allowed attackers to read sensitive information from SSL server applications [3].

Different methods one might use to make software more secure have different

trade-offs, this dissertation is a partial enumeration and consideration of these trade-

offs, across a spectrum of secure software development: from language design, to

software design, and then with the design and use of tools to help secure software

such as static analyzers and fuzzers. Specifically, in Chapter 2 we consider a study

of secure software development. In Chapter 3, we consider how to make C a safer

language. In Chapter 4, we consider improvements to numeric static analyzers. In

Chapter 5, we consider the evaluation of fuzz testers. In Chapter 6, we consider

root cause analysis, input minimization, and fault clustering.

A study of secure software development: Build It, Break It, Fix It

How would we experimentally study secure software development? Study-

ing this seems useful because different software development projects (e.g. Mozilla

Firefox vs. Google Chrome) seem to have different security successes and failures.

However, retroactively studying their histories has some problems. In the case of

Firefox and Chrome, for example, there are similarities between the projects that

make a comparison seem fruitful, but sufficient differences that the two projects are

probably incomparable. Both projects implement web browsers with feature parity,

both enjoy popular use, and both are written in a low level programming language

(C/C++). However, there are many differences as well, they have been developed

2

with different amounts of financial support for different periods of time, and with

differing amounts of focus on security.

In Chapter 2, we describe the Build It Break It Fix It contest. Build It Break

It Fix It is a programming contest designed to provide an environment in which

we could study the interaction between software development and security. This

contest has incentives similar to the “real world” but with controls in place for the

previously identified confounds inherent in empirically analyzing software security

projects. The contest was split into distinct phases: in the first phase, contestants

wrote software to a specification and were scored based on that software’s perfor-

mance. In the next phase, contestants tried to find security bugs in the software

that was written in the first phase. Contestants could write their software in any

programming language. In the final phase, contestants receive evidence of security

bugs in their programs and try to fix them. At the end, contestants have two scores:

a break score, for the number of bugs they identified in the software of others, and

a build score, which is a factor of the performance of their software in terms of both

computational efficiency as well as the number of security bugs discovered during

the break phase.

The fix it phase has a necessary logistical purpose: de-duplication of bugs

reported during the break it phase. What if two teams discover “the same” bug in

a program? What if there is one particularly bad program which has a glaringly

obvious flaw that is discovered by every team? We thought that, like in the real

world, it is better to discover bugs that no one else has, that breadth is good. To

incentivise this behavior, we outline in the rules that “duplicate” bugs are scaled in

3

value proportional to the number of teams that discover it. However, this leaves us

with the problem of determining if two reported bugs are the same or not. This is a

question that haunts us through the rest of the dissertation, specifically in Chapter

5 and Chapter 6. In Chapter 2, we approximate the solution to this problem by

presenting bug reports to the original authors and asking them to disambiguate the

bugs with patches to their own programs. Here, perhaps, the incentives line up:

as a contestant identifies duplicates, they lose fewer points, as points are detracted

from their Build It score only for unique bugs.

In addition to providing a platform for gathering data, the contest is also a

natural learning environment for secure software development. Our experiments

use a student population from a massive online open course (MOOC) with a mix

of demographics. Learners had many positive experiences to share from learning

about software security in this environment.

The contest outcomes provide data we can analyze about the interaction be-

tween programming languages, developer experience and practices, tool usage, and

security bugs [4]. Some of the evidence supports our intuitive understanding of the

world. For example, writing safe C programs is very difficult, which is supported by

both a casual analysis of vulnerabilities reported in the Common Vulnerabilities and

Exposures (CVE) database as well as evidence gathered during the Build It Break

It contest. However, also during Build It Break It, we observed that C programs

had better performance overall, leading us to ask, is there a way to get the best

of both worlds with C? Can we achieve C’s expressiveness and performance, but

coupled with freedom from memory safety bugs?

4

Making safer languages: Checked C

The programming language community has responded to this challenge by

developing a series of ”safer” languages, but adoption has been slow because using

these languages is costly: programmers would have to learn a safer language and

then re-write all of their code in that language. We propose extending the C language

to allow programmers to avoid security bugs like buffer overflows by having them

express and reason about invariants describing the extents of memory objects. We

present this extension in Chapter 3 as the Checked C project [5].

The Checked C project aims to solve the problem of spatial safety by having

the programmer explicitly express the bounds for memory objects used by a C

program, and checking those bounds. The bounds are expressed as new types in the

C programming language: _Array_ptr<T, l, u> for bounded arrays and _Ptr<T> for

checked-nullable pointers. As an example, consider the following code declarations:

size_t dst_count;

_Array_ptr <char > dst : count(dst_count);

The _Array_ptr<char> type is a Checked C type for a bounds-checked array, and

the count annotation indicates how the bounds should be computed. In this case

dst’s bounds are stored in the variable dst_count, but other specifications, such as

pointer ranges, are also possible. Checked type information is used by the compiler

to either prove that an access is safe, or else to insert a bounds check when such a

proof is too difficult.

To help with porting old C code to use these new types, we develop an au-

5

tomatic re-writer that will translate old C code into new C code that uses these

types. We evaluate both the re-writer and the Checked C language against several

different open source projects and benchmarks, examining how many pointer types

can be converted automatically, what overhead is introduced by dynamic checking,

and the difficulty of manual conversion. We find that ∼ 30% of the pointer values in

open source code can be converted automatically to _Ptr<T>, and that the run-time

overhead of our checking is modest at ∼ 8%.

Improving numeric static analyzers: managing disjunctive invariants

The Checked C re-writer is a static analyzer that performs a mixture of local

and global reasoning on pointer properties. This is useful for some safety properties,

but not all. Numeric static analyzers can help with finding and proving other

properties like side channels [6], properties about NUL-terminated strings [7], and

array bounds checks [8].

In Chapter 4, we look at how to extend a numeric static analysis to allow

for disjunctive constraints [9]. This allows the inference and use of non-convex

constraints in describing numeric invariants, which could be much more precise.

Our contribution is concerned with how these constraints should be abstracted to

balance precision and performance.

Frequently, numeric static analysis is called upon to produce program invari-

ants that describe the relationship between numerics in the program. These invari-

ants take the form of, for example, x < 0 or x < y. Individual variables (x,y) are

6

“abstracted” using a representation that soundly over-approximates the values that

the variable might take on. These approximations are referred to in the literature as

“domains”. One domain that is frequently used is that of convex polyhedra. When

a static analyzer is using this domain to approximate the values of program vari-

ables, the precision of the invariants is constrained by the precision of the convex

polyhedra.

assume (0 <= y <= 3);

assume(-5 <= x <= 4)

;

if(x <= -2) {

assume(y <= 1);

// A

} else if(x == 0) {

// B

} else if(x >= 1) {

// C

} else {

assume(false);

}

x

y

A

B C

A tB

B t C

a b

Figure 1.1: Example of merging disjuncts. (a) Program that produces three dis-

juncts. (b) Three disjuncts shown as three convex polytopes. Red (resp. blue)

dashed lines show the merge results of A and B (resp. B and C). Dots show integer

points added in merging.

A loss of precision results in false alarms from the static analyzer. Precision

loss can arise when the program contains branches and the same numeric variable

7

is manipulated in mutually exclusive branches. When the two branches “merge”

the analyzer must also merge the abstractions of the variables. For an example,

consider Figure 1.1. In this example, we have precise abstractions of the values that

may be taken by x and y in each branch. However, when we merge them together,

we lose precision and our invariants could lead us to false alarms. Avoiding this is

challenging. We would need to change our abstraction to allow for a non-convex

representation, which has other costs. Another option is to “lift” our abstraction up

from a single polyhedra to a list of polyhedra, where the list signifies a disjunction

of constraint systems. This allows us to maintain the best of both worlds: when

considering only two abstractions, we enjoy the benefits of a convex representation,

but when considering two disjunctions, we have some practical benefits of concavity.

Though now we have a problem: how do we manage which disjunctive elements

to keep separate, and which to join together? We introduce the notion of “volume

affinity” as a heuristic to manage which disjunctive elements to join. This heuristic is

different from previous heuristics in that it considers the semantics of polytopes via

their volume, rather than relying on syntactic elements as previous work does. This

heuristic guides the choice of which polytopes under management by the disjunctive

domain are merged and which are left stand-alone.

Computing the volume of higher dimensional polytopes is complicated. We

use two different methods: approximating the real relaxation volume via Markov

Chain Monte Carlo sampling, and computing the exact count of contained integer

points via a conical decomposition, implemented in an existing open source library,

libbarvinok [10].

8

We implement this heuristic as an abstract domain on top of an existing C

static analyzer, CRAB [11]. We evaluated the finished analyzer on a benchmark

suite of C programs drawn from the verification community, and compare to prior

syntactic measures along dimensions of both precision and performance. We also

compare using approximate real volume to exact integer point counts as a heuris-

tic. We find that, counter-intuitively, using exact algorithms is both more precise

and more efficient than using approximate real volume when managing disjunctive

numeric domains.

Evaluating fuzz testing

Static analysis is one method to find bugs and prove their absence, but fuzzing

and dynamic analysis are popular in both industry and research. In Chapter 5, we

consider the problem of evaluating fuzzing.

Fuzzing is used to identify bugs in programs by automatically generating and

executing a large quantity of test cases in the program. Fuzzing has a good track

record in the software security ecosystem, but exactly why and under what cir-

cumstances fuzzers will be successful is not well understood. Sometimes a fuzzing

campaign can find 2 bugs, and other times it can find 4 bugs, or even 6 bugs. The

fuzzing process is randomized, so there being variance makes sense, however this

poses a problem for the interpretation of papers from the fuzzing literature and

complicates the matter of evaluating fuzzing in general.

We conducted a survey of existing fuzzing papers to identify how well the

9

existing research literature accounts for variance in their evaluation of fuzzers, as

well as how explicitly their evaluations call out and control for different “knobs”

or configurable parameters of the fuzzing process. We found that few papers have

“tight” evaluation stories. We conducted our own experiments with fuzzing, but

with a large number of independent trials while also varying knobs, and configuration

parameters. The experiments produce data demonstrating a high variance in the

number of crashes found from one trial to the next. Analyzing our experimental

setup, we create a check list for fuzzing evaluators to follow when designing their

evaluation [12].

Root cause analysis

In Chapter 6, we consider the problems of test case de-duplication, root cause

analysis, and input minimization, as applied to fuzzing. Even when the problems of

Chapter 5 are put to rest, we still have the problem of interpreting the results of a

given fuzzing campaign. Fuzzers will find inputs that crash the program (or violate

some other property) but they will not immediately disambiguate two inputs that

exhibit “the same bug.” What exactly does it mean for two bugs to be “the same?”

We present a strategy to use historical commit information to dis-ambiguate

crashing inputs in one setting. Then, we analyze the root causes of the bugs identi-

fied and discuss why it is difficult for current techniques to dis-ambiguate, or cluster,

inputs that trigger those bugs. The historical analysis consumes a large amount of

resources as it requires the cross product of the crashing inputs found with the num-

10

ber of “buildable” commits over a long period. This analysis gives us a good sense

of the actual number of bugs found during our fuzzing campaign and the actual

number of bugs found on a trial by trial basis.

We investigate existing methods to perform crashing input clustering, includ-

ing stack hashing, minimization, and encoding of coverage information as feature

vectors to off the shelf clustering algorithms. We report on the accuracy of each of

these measures, compared to ground truth established by our historical analysis.

Contributions

This dissertation contributes:

• Build It Break It Fix It, a contest for measuring software security

• Checked C and an automatic re-writing tool that converts C programs to

Checked C

• A novel disjunctive abstract domain for numeric invariant generation via ab-

stract interpretation

• A framework for evaluating fuzz testers

• An investigation of methodologies to measure the effectiveness of fuzzers

11

Chapter 2: Build It, Break It, Fix It

Cybersecurity contests [13–17] are popular proving grounds for cybersecurity

talent. Existing contests largely focus on breaking (e.g., exploiting vulnerabilities or

misconfigurations) and mitigation (e.g., rapid patching or reconfiguration). They do

not, however, test contestants’ ability to build (i.e., design and implement) systems

that are secure in the first place. Typical programming contests [18–20] do focus

on design and implementation, but generally ignore security. This state of affairs

is unfortunate because experts have long advocated that achieving security in a

computer system requires treating security as a first-order design goal [21], and is

not something that can be added after the fact. As such, we should not assume that

good breakers will necessarily be good builders [22], nor that top coders necessarily

produce secure systems.

This chapter presents Build-it, Break-it, Fix-it (BIBIFI), a new security

contest with a focus on building secure systems. A BIBIFI contest has three phases.

The first phase, Build-it, asks small development teams to build software according

to a provided specification that includes security goals. The software is scored for

being correct, efficient, and feature-ful. The second phase, Break-it, asks teams

to find defects in other teams’ build-it submissions. Reported defects, proved via

12

test cases vetted by an oracle implementation, benefit a break-it team’s score and

penalize the build-it team’s score; more points are assigned to security-relevant

problems. (A team’s break-it and build-it scores are independent, with prizes for

top scorers in each category.) The final phase, Fix-it, asks builders to fix bugs

and thereby get points back if the process discovers that distinct break-it test cases

identify the same defect.

BIBIFI’s design aims to minimize the manual effort of running a contest, help-

ing it scale. BIBIFI’s structure and scoring system also aim to encourage meaningful

outcomes, e.g., to ensure that the top-scoring build-it teams really produce secure

and efficient software. Behaviors that would thwart such outcomes are discouraged.

For example, break-it teams may submit a limited number of bug reports per build-

it submission, and will lose points during fix-it for test cases that expose the same

underlying defect or a defect also identified by other teams. As such, they are en-

couraged to look for bugs broadly (in many submissions) and deeply (to uncover

hard-to-find bugs).

In addition to providing a novel educational experience, BIBIFI presents an

opportunity to study the building and breaking process scientifically. In particular,

BIBIFI contests may serve as a quasi-controlled experiment that correlates partici-

pation data with final outcome. By examining artifacts and participant surveys, we

can study how the choice of build-it programming language, team size and experi-

ence, code size, testing technique, etc. can influence a team’s (non)success in the

build-it or break-it phases. To the extent that contest problems are realistic and

contest participants represent the professional developer community, the results of

13

this study may provide useful empirical evidence for practices that help or harm real-

world security. Indeed, the contest environment could be used to incubate ideas to

improve development security, with the best ideas making their way to practice.

This chapter studies the outcomes of three BIBIFI contests that we held dur-

ing 2015, involving two different programming problems. The first contest asked

participants to build a secure, append-only log for adding and querying events gen-

erated by a hypothetical art gallery security system. Attackers with direct access

to the log, but lacking an “authentication token,” should not be able to steal or

corrupt the data it contains. The second and third contests were run simultane-

ously. They asked participants to build a pair of secure, communicating programs,

one representing an ATM and the other representing a bank. Attackers acting as a

man in the middle (MITM) should neither be able to steal information (e.g., bank

account names or balances) nor corrupt it (e.g., stealing from or adding money to

accounts). Two of the three contests drew participants from a MOOC (Massive

Online Open Courseware) course on cybersecurity. These participants (278 total,

comprising 109 teams) had an average of 10 years of programming experience and

had just completed a four-course sequence including courses on secure software and

cryptography. The third contest involved U.S.-based graduate and undergraduate

students (23 total, comprising 6 teams) with less experience and training.

BIBIFI’s design permitted it to scale reasonably well. For example, one full-

time person and two part-time judges ran the first 2015 contest in its entirety. This

contest involved 156 participants comprising 68 teams, which submitted more than

20,000 test cases. And yet, organizer effort was limited to judging whether the few

14

hundred submitted fixes addressed only a single conceptual defect; other work was

handled automatically or by the participants themselves.

Rigorous quantitative analysis of the contests’ outcomes revealed several in-

teresting, statistically significant effects. Considering build-it scores: Writing code

in C/C++ increased build-it scores initially, but also increased chances of a security

bug found later. Interestingly, the increased insecurity for C/C++ programs appears

to be almost entirely attributable to memory-safety bugs. Teams that had broader

programming language knowledge or that wrote less code also produced more secure

implementations. Considering break-it scores: Larger teams found more bugs dur-

ing the break-it phase. Greater programming experience and knowledge of C were

also helpful. Break-it teams that also qualified during the build-it phase were signif-

icantly more likely to find a security bug than those that did not. Use of advanced

tools such as fuzzing or static analysis did not provide a significant advantage among

our contest participants.

We manually examined both build-it and break-it artifacts. Successful build-it

teams typically employed third-party libraries—e.g., SSL, NaCL, and BouncyCastle—

to implement cryptographic operations and/or communications, which freed up

worry of proper use of randomness, nonces, etc. Unsuccessful teams typically failed

to employ cryptography, implemented it incorrectly, used insufficient randomness,

or failed to use authentication. Break-it teams found clever ways to exploit security

problems; some MITM implementations were quite sophisticated.

In summary, this chapter makes two main contributions. First, it presents

BIBIFI, a new security contest that encourages building, not just breaking. Sec-

15

ond, it presents a detailed description of three BIBIFI contests along with both a

quantitative and qualitative analysis of the results. We made the BIBIFI code and

infrastructure available to other institutions and organizations, which have run their

own versions of this event; we hope that this opens up a line of research built on

empirical experiments with secure programming methodologies.

The rest of this chapter is organized as follows. We present the design of

BIBIFI in §2.1 and describe specifics of the contests we ran in §2.2. We present

the quantitative analysis of the data we collected from these contests in §2.3, and

qualitative analysis in §2.4. We review related work in §2.5 and conclude in §2.6.

Attribution and acknowledgments

This chapter was adapted from a paper appearing at ACM CCS 2016 [4]. The

paper was written in collaboration with James Parker, Mike Hicks, Dave Levin, Piotr

Mardziel, and Michelle Mazurek. That paper, in turn, was based on a prior paper

that was additionally authored with Jandelyn Plane. Andrew and Mike conceived of

the contest design and structure, which was refined through further discussion with

Dave, James, Jan, and Michelle. The contest infrastructure was implemented by

James and Andrew, and execution of the contests was supervised (at different times)

by James, Andrew and Mike. Data analysis was conducted by James, Andrew and

Michelle.

16

2.1 Build-it, Break-it, Fix-it

This section describes the goals, design, and implementation of the BIBIFI

competition. At the highest level, our aim is to create an environment that closely

reflects real-world development goals and constraints, and to encourage build-it

teams to write the most secure code they can, and break-it teams to perform the

most thorough, creative analysis of others’ code they can. We achieve this through

a careful design of how the competition is run and how various acts are scored (or

penalized). We also aim to minimize the manual work required of the organizers—

to allow the contest to scale—by employing automation and proper participant

incentives.

2.1.1 Competition phases

We begin by describing the high-level mechanics of what occurs during a

BIBIFI competition. BIBIFI may be administered on-line, rather than on-site, so

teams may be geographically distributed. The contest comprises three phases, each

of which last about two weeks for the contests we describe in this chapter.

BIBIFI begins with the build-it phase. Registered build-it teams aim to

implement the target software system according to a published specification created

by the contest organizers. A suitable target is one that can be completed by good

programmers in a short time (just about two weeks, for the contests we ran), is

easily benchmarked for performance, and has an interesting attack surface. The

software should have specific security goals—e.g., protecting private information or

17

communications—which could be compromised by poor design and/or implementa-

tion. The software should also not be too similar to existing software to ensure that

contestants do the coding themselves (while still taking advantage of high-quality

libraries and frameworks to the extent possible). The software must build and run

on a standard Linux VM made available prior to the start of the contest. Teams

must develop using Git [23]; with each push, the contest infrastructure downloads

the submission, builds it, tests it (for correctness and performance), and updates the

scoreboard. §2.2 describes the two target problems we developed: (1) an append-

only log; and (2) a pair of communicating programs that simulate a bank and an

ATM.

The next phase is the break-it phase. Break-it teams can download, build,

and inspect all qualifying build-it submissions, including source code; to qualify,

the submission must build properly, pass all correctness tests, and not be purposely

obfuscated (accusations of obfuscation are manually judged by the contest organiz-

ers). We randomize each break-it team’s view of the build-it teams’ submissions,1

but organize them by meta-data, such as programming language. When they think

they have found a defect, breakers submit a test case that exposes the defect and an

explanation of the issue. To encourage coverage, a break-it team may only submit

up a fixed number of test cases per build-it submission. BIBIFI’s infrastructure

automatically judges whether a submitted test case truly reveals a defect. For ex-

ample, for a correctness bug, it will run the test against a reference implementation

1This avoids spurious unfair effects, such as if break-it teams investigating code in the order in

which we give it to them.

18

(“the oracle”) and the targeted submission, and only if the test passes on the former

but fails on the latter will it be accepted.2 More points are awarded to bugs that

clearly reveal security problems, which may be demonstrated using alternative test

formats. The auto-judgment approaches we developed for the two different contest

problems are described in §2.2.

The final phase is the fix-it phase. Build-it teams are provided with the

bug reports and test cases implicating their submission. They may fix flaws these

test cases identify; if a single fix corrects more than one failing test case, the test

cases are “morally the same,” and thus points are only deducted for one of them.

The organizers determine, based on information provided by the build-it teams and

other assessment, whether a submitted fix is “atomic” in the sense that it corrects

only one conceptual flaw; if not, the fix is rejected. This problem is a thorny one

in general, we will re-visit this problem and possibly automated solutions to it in

Chapter 6.

Once the final phase concludes, prizes are awarded to the best builders and

best breakers as determined by the scoring system described next.

2.1.2 Competition scoring

BIBIFI’s scoring system aims to encourage the contest’s basic goals, which are

that the winners of the build-it phase truly produced the highest quality software,

and that the winners of the break-it phase performed the most thorough, creative

2Teams can also earn points by reporting bugs in the oracle, i.e., where its behavior contradicts

the written specification; these reports are judged by the organizers.

19

analysis of others’ code. The scoring rules create incentives for good behavior (and

disincentives for bad behavior).

2.1.2.1 Build-it scores

To reflect real-world development concerns, the winning build-it team would

ideally develop software that is correct, secure, and efficient. While security is of

primary interest to our contest, developers in practice must balance these other

aspects of quality against security [24,25], leading to a set of trade-offs that cannot

be ignored if we wish to understand real developer decision-making.

To encourage these, each build-it team’s score is the sum of the ship score3

and the resilience score. The ship score is composed of points gained for correctness

tests and performance tests. Each mandatory correctness test is worth M points, for

some constant M , while each optional correctness test is worth M/2 points. Each

performance test has a numeric measure depending on the specific nature of the

programming project—e.g., latency, space consumed, files left unprocessed—where

lower measures are better. A test’s worth is M · (worst − v)/(worst − best), where v

is the measured result, best is the measure for the best-performing submission, and

worst is the worst performing. As such, each performance test’s value ranges from

0 to M .

The resilience score is determined after the break-it and fix-it phases, at which

point the set of unique defects against a submission is known. For each unique bug

found against a team’s submission, we subtract P points from its resilience score;

3The name is meant to evoke a quality measure at the time software is shipped.

20

as such, it is non-positive, and the best possible resilience score is 0. For correctness

bugs, we set P to M/2; for crashes that violate memory safety we set P to M , and

for exploits and other security property failures we set P to 2M .

2.1.2.2 Break-it scores

Our primary goal with break-it teams is to encourage them to find as many

defects as possible in the submitted software, as this would give greater confidence in

our assessment that one build-it team’s software is of higher quality than another’s.

While we are particularly interested in obvious security defects, correctness defects

are also important, as they can have non-obvious security implications.

After the break-it phase, a break-it team’s score is the summed value of all

defects they have found, using the above P valuations. After the fix-it phase, this

score is reduced. In particular, each of the N break-it teams’ scores that identified

the same defect are adjusted to receive P/N points for that defect, splitting the P

points among them.

Through a combination of requiring concrete test cases and scoring, BIBIFI

encourages break-it teams to follow the spirit of the competition. First, by requiring

them to provide test cases as evidence of a defect or vulnerability, we ensure they

are providing useful bug reports. By providing 4× more points for security-relevant

bugs than for correctness bugs, we nudge break-it teams to look for these sorts

of flaws, and to not just focus on correctness issues. (But a different ratio might

work better; see §2.1.3.2.) Because break-it teams are limited to a fixed number

21

of test cases per submission, and because they could lose points during the fix-it

phase for submitting test cases that could be considered “morally the same,” break-it

teams are encouraged to submit tests that demonstrate different bugs. Limiting per-

submission test cases also encourages examining many submissions. Finally, because

points for defects found by other teams are shared, break-it teams are encouraged

to look for hard-to-find bugs, rather than just low-hanging fruit.

2.1.3 Discussion

The contest’s design also aims to enable scalability by reducing work on contest

organizers. In our experience, BIBIFI’s design succeeds at what it sets out to achieve,

but is not perfect. We close by discussing some limitations.

2.1.3.1 Minimizing manual effort

Once the contest begins, manual effort by the organizers is, by design, limited.

All bug reports submitted during the break-it phase are automatically judged by

the oracle; organizers only need to vet any bug reports against the oracle itself.

Organizers may also need to judge accusations by breakers of code obfuscation by

builders. Finally, organizers must judge whether submitted fixes address a single

defect; this is the most time-consuming task. It is necessary because we cannot

automatically determine whether multiple bug reports against one team map to the

same software defect. Instead, we incentivize build-it teams to demonstrate overlap

through fixes; organizers manually confirm that each fix addresses only a single

22

defect, not several.

Previewing some of the results presented later, we can confirm that the design

works reasonably well. For example, as detailed in Table 2.4, 68 teams submitted

24,796 test cases in our Spring 2015 contest. The oracle auto-rejected 15,314 of these,

and build-it teams addressed 2,252 of those remaining with 375 fixes, a 6× reduction.

Most confirmations that a fix truly addressed a single bug took 1–2 minutes each.

Only 30 of these fixes were rejected. No accusations of code obfuscation were made

by break-it teams, and few bug reports were submitted against the oracle. All told,

the Spring 2015 contest was successfully managed by one full-time person, with two

others helping with judging.

2.1.3.2 Limitations

While we believe BIBIFI’s structural and scoring incentives are properly de-

signed, we should emphasize several limitations.

First, there is no guarantee that all implementation defects will be found.

Break-it teams may lack the time or skill to find problems in all submissions, and

not all submissions may receive equal scrutiny. Break-it teams may also act con-

trary to incentives and focus on easy-to-find and/or duplicated bugs, rather than

the harder and/or unique ones. Finally, break-it teams may find defects that the

BIBIFI infrastructure cannot automatically validate, meaning those defects will go

unreported. However, with a large enough pool of break-it teams, and sufficiently

general defect validations automation, we still anticipate good coverage both in

23

breadth and depth.

Second, builders may fail to fix bugs in a manner that is in their best interests.

For example, in not wanting to have a fix rejected as addressing more than one

conceptual defect, teams may use several specific fixes when a more general fix

would have been allowed. Additionally, teams that are out of contention for prizes

may simply not participate in the fix-it phase.4 We observed this behavior for our

contests, as described in §2.3.5. Both actions decrease a team’s resilience score

(and correspondingly increase breakers’ scores). We can mitigate these issues with

sufficiently strong incentives, e.g., by offering prizes to all participants commensurate

with their final score, rather than offering prizes only to the top scorers.

Finally, there are several design points in the problem definition that may

skew results. For example, too few correctness tests may leave too many correct-

ness bugs to be found during break-it (distracting break-it teams’ attention from

security issues); too many correctness tests may leave too few (meaning teams are

differentiated insufficiently by general bug-finding ability). Scoring prioritizes se-

curity problems 4 to 1 over correctness problems, but it is hard to say what ratio

makes the most sense when trying to maximize real-world outcomes; both higher

and lower ratios could be argued. Finally, performance tests may fail to expose

important design trade-offs (e.g., space vs. time), affecting the ways that teams ap-

proach maximizing their ship scores. For the contests we report in this chapter,

we are fairly comfortable with these design points. In particular, our earlier con-

4Hiding scores during the contest might help mitigate this, but would harm incentives during

break-it to go after submissions with no bugs reported against them.

24

test [26] prioritized security bugs 2-to-1 and had fewer interesting performance tests,

and outcomes were better when we increased the ratio.

2.1.3.3 Discouraging collusion

BIBIFI contestants may form teams however they wish, and may participate

remotely. This encourages wider participation, but it also opens the possibility of

collusion between teams, as there cannot be a judge overseeing their communication

and coordination. There are three broad possibilities for collusion, each of which

BIBIFI’s scoring discourages.

First, two break-it teams could consider sharing bugs they find with one an-

other. By scaling the points each finder of a particular bug obtains, we remove

incentive for them to both submit the same bugs, as they would risk diluting how

many points they both obtain.

The second class of collusion is between a build-it team and a break-it team,

but neither have incentive to assist one another. The zero-sum nature of the scoring

between breakers and builders places them at odds with one another; revealing a

bug to a break-it team hurts the builder, and not reporting a bug hurts the breaker.

Finally, two build-it teams could collude, for instance by sharing code with one

another. It might be in their interests to do this in the event that the competition

offers prizes to two or more build-it teams, since collusion could obtain more than

one prize-position. We use judging and automated tools (and feedback from break-

it teams) to detect if two teams share the same code (and disqualify them), but

25

BIBIFI Infrastructure

Contest
Website

Surveys
Scoreboard

Break-it subs

Contest
Database

Build-it subs
Metadata

Git Listener Tester

Amazon EC2

Contest VM

Build
Test

Benchmark
Oracle

Build-it &
Break-it
Teams

Organizers

Git Repos

Participants

Figure 2.1: Overview of BIBIFI’s implementation.

it is not clear how to detect whether two teams provided out-of-band feedback to

one another prior to submitting code (e.g., by holding their own informal “break-it”

and “fix-it” stages). We view this as a minor threat to validity; at the surface, such

assistance appears unfair, but it is not clear that it is contrary to the goals of the

contest, that is, to develop secure code.

2.1.4 Implementation

Figure 2.1 provides an overview of the BIBIFI implementation. It consists of

a web frontend, providing the interface to both participants and organizers, and

a backend for testing builds and breaks. Two key goals of the infrastructure are

security—we do not want participants to succeed by hacking BIBIFI itself—and

scalability.

26

Web frontend

Contestants sign up for the contest through our web application frontend, and

fill out a survey when doing so, to gather demographic and other data potentially

relevant to the contest outcome (e.g., programming experience and security train-

ing). During the contest, the web application tests build-it submissions and break-it

bug reports, keeps the current scores updated, and provides a workbench for the

judges for considering whether or not a submitted fix covers one bug or not.

To secure the web application against unscrupulous participants, we imple-

mented it in ∼11,000 lines of Haskell using the Yesod [27] web framework backed

by a PostgreSQL [28] database. Haskell’s strong type system defends against use-

after-free, buffer overrun, and other memory safety-based attacks. The use of Yesod

adds further automatic protection against various attacks like CSRF, XSS, and SQL

injection. As one further layer of defense, the web application incorporates the in-

formation flow control framework LMonad [29], which is derived from LIO [30],

in order to protect against inadvertent information leaks and privilege escalations.

LMonad dynamically guarantees that users can only access their own information.

Testing backend

The backend infrastructure is used during the build-it phase to test for cor-

rectness and performance, and during the break-it phase to assess potential vulner-

abilities. It consists of ∼5,100 lines of Haskell code (and a little Python).

To automate testing, we require contestants to specify a URL to a Git [23]

27

repository hosted on either Github or Bitbucket, and shared with a designated

bibifi username, read-only. The backend “listens” to each contestant repository

for pushes, upon which it downloads and archives each commit. Testing is then

handled by a scheduler that spins up an Amazon EC2 virtual machine which builds

and tests each submission. We require that teams’ code builds and runs, without

any network access, in an Ubuntu Linux VM that we share in advance. Teams can

request that we install additional packages not present on the VM. The use of VMs

supports both scalability (Amazon EC2 instances are dynamically provisioned) and

security (using fresh VM instances prevents a team from affecting the results of

future tests, or of tests on other teams’ submissions).

All qualifying build-it submissions may be downloaded by break-it teams at the

start of the break-it phase. As break-it teams identify bugs, they prepare a (JSON-

based) file specifying the buggy submission along with a sequence of commands

with expected outputs that demonstrate the bug. Break-it teams commit and push

this file (to their Git repository). The backend uses the file to set up a test of the

implicated submission to see if it indeed is a bug.

2.2 Contest Problems

This section presents the two programming problems we developed for the

contests held during 2015, including problem-specific notions of security defect and

how breaks exploiting such defects are automatically judged.

28

2.2.1 Secure log (Spring 2015)

The secure log problem was motivated as support for an art gallery security

system. Contestants write two programs. The first, logappend, appends events to

the log; these events indicate when employees and visitors enter and exit gallery

rooms. The second, logread, queries the log about past events. To qualify, submis-

sions must implement two basic queries (involving the current state of the gallery

and the movements of particular individuals), but they could implement two more

for extra points (involving time spent in the museum, and intersections among dif-

ferent individuals’ histories). An empty log is created by logappend with a given

authentication token, and later calls to logappend and logread on the same log

must use that token or the requests will be denied.

A canonical way of implementing the secure log is to treat the authentication

token as a symmetric key for authenticated encryption, e.g., using a combination of

AES and HMAC. There are several tempting shortcuts that we anticipated build-

it teams would take (and that break-it teams would exploit). For instance, one

may be tempted to encrypt and sign individual log records as opposed to the entire

log, thereby making logappend faster. But this could permit integrity breaks that

duplicate or reorder log records. Teams may also be tempted to implement their

own encryption rather than use existing libraries, or to simply sidestep encryption

altogether. §2.4 reports several cases we observed.

A submission’s performance is measured in terms of time to perform a partic-

ular sequence of operations, and space consumed by the resulting log. Correctness

29

(and crash) bug reports comprise sequences of logread and/or logappend opera-

tions with expected outputs (vetted by the oracle). Security is defined by privacy

and integrity : any attempt to learn something about the log’s contents, or to change

them, without the use of the logread and logappend and the proper token should be

disallowed. How violations of these properties are specified and tested is described

next.

Privacy breaks

When providing a build-it submission to the break-it teams, we also included

a set of log files that were generated using a sequence of invocations of that sub-

mission’s logappend program. We generated different logs for different build-it

submissions, using a distinct command sequence and authentication token for each.

All logs were distributed to break-it teams without the authentication token; some

were distributed without revealing the sequence of commands (the “transcript”)

that generated them. For these, a break-it team could submit a test case involving

a call to logread (with the authentication token omitted) that queries the file. The

BIBIFI infrastructure would run the query on the specified file with the authentica-

tion token, and if the output matched that specified by the breaker, then a privacy

violation is confirmed.

30

Integrity breaks

For about half of the generated log files we also provided the transcript of the

logappend operations (sans auth token) used to generate the file. A team could

submit a test case specifying the name of the log file, the contents of a corrupted

version of that file, and a logread query over it (without the authentication token).

For both the specified log file and the corrupted one, the BIBIFI infrastructure

would run the query using the correct authentication token. An integrity violation

is detected if the query command produces a non-error answer for the corrupted log

that differs from the correct answer (which can be confirmed against the transcript

using the oracle).

This approach to determining privacy and integrity breaks has the drawback

that it does not reveal the source of the issue, only that there is (at least) one. As

such, we cannot automatically tell two privacy or two integrity breaks apart. We

sidestep this issue by counting only up to one integrity break and one privacy break

against the score of each build-it submission, even if there are multiple defects that

could be exploited to produce privacy/integrity violations.

2.2.2 Securing ATM interactions (Fall 2015)

The ATM problem asks builders to construct two communicating programs:

atm acts as an ATM client, allowing customers to set up an account, and deposit

and withdraw money, while bank is a server that processes client requests, tracking

bank balances. atm and bank should only permit a customer with a correct card

31

file to learn or modify the balance of their account, and only in an appropriate

way (e.g., they may not withdraw more money than they have). In addition, atm

and bank should only communicate if they can authenticate each other. They can

use an auth file for this purpose; it will be shared between the two via a trusted

channel unavailable to the attacker.5 Since the atm is communicating with bank over

the network, a “man in the middle” (MITM) could observe and modify exchanged

messages, or insert new messages. The MITM could try to compromise security

despite not having access to auth or card files.

A canonical way of implementing the atm and bank programs would be to use

public key-based authenticated and encrypted communications. The auth file could

be used as the bank’s public key to ensure that key negotiation initiated by the

atm is with the bank and not the MITM. When creating an account, the card file

should be a suitably large random number, so that the MITM is unable to feasibly

predict it. It is also necessary to protect against replay attacks by using nonces or

similar mechanisms. As with the secure log, a wise approach would be use a library

like OpenSSL to implement these features. Both good and bad implementations we

observed in the competition are discussed further in §2.4.

Build-it submissions’ performance is measured as the time to complete a series

of benchmarks involving various atm/bank interactions.6 Correctness (and crash)

5In a real deployment, this might be done by “burning” the auth file into the ATM’s ROM

prior to installing it.
6This transcript was always serial, so there was no direct motivation to support parallelism for

higher throughput.

32

bug reports comprise sequences of atm commands where the targeted submission

produces different outputs than the oracle (or crashes). Security defects are specified

as follows.

Integrity breaks

Integrity violations are demonstrated using a custom MITM program that

acts as a proxy: It listens on a specified IP address and TCP port,7 and accepts

a connection from the atm while connecting to the bank. The MITM program can

thus observe and/or modify communications between atm and bank, as well as drop

messages or initiate its own. We provided a Python-based proxy as a starter MITM:

It sets up the connections and forwards communications between the two endpoints.

To demonstrate an integrity violation, the MITM sends requests to a command

server. It can tell the server to run inputs on the atm and it can ask for the card file

for any account whose creation it initiated. Eventually the MITM will declare the

test complete. At this point, the same set of atm commands is run using the oracle’s

atm and bank without the MITM. This means that any messages that the MITM

sends directly to the target submission’s atm or bank will not be replayed/sent to

the oracle. If the oracle and target both complete the command list without error,

but they differ on the outputs of one or more commands, or on the balances of

accounts at the bank whose card files were not revealed to the MITM during the

test, then there is evidence of an integrity violation.

As an example (based on a real attack we observed), consider a submission

7All submissions were required to communicate via TCP.

33

that uses deterministic encryption without nonces in messages. The MITM could

direct the command server to withdraw money from an account, and then replay

the message it observes. When run on the vulnerable submission, this would debit

the account twice. But when run on the oracle without the MITM, no message is

replayed, leading to differing final account balances. A correct submission would

reject the replayed message, which would invalidate the break.

Privacy breaks

Privacy violations are also demonstrated using a MITM. In this case, at the

start of a test the command server will generate two random values, “amount” and

“account name.” If by the end of the test no errors have occurred and the attacker

can prove it knows the actual value of either secret (by sending a command that

specifies it), the break is considered successful. Before demonstrating knowledge of

the secret, the MITM can send commands to the server with a symbolic “amount”

and “account name”; the server fills in the actual secrets before forwarding these

messages. The command server does not automatically create a secret account or

an account with a secret balance; it is up to the breaker to do that (referencing the

secrets symbolically when doing so).

As an example, suppose the target does not encrypt exchanged messages. Then

a privacy attack might be for the MITM to direct the command server to create an

account whose balance contains the secret amount. Then the MITM can observe an

unencrypted message sent from atm to bank; this message will contain the actual

34

amount, filled in by the command server. The MITM can then send its guess to the

command server showing that it knows the amount.

As with the log problem, we cannot tell whether an integrity or privacy test

is exploiting the same underlying weakness in a submission, so we only accept one

violation of each category against each submission.

Timeouts and denial of service

One difficulty with our use of a MITM is that we cannot reliably detect bugs

in submissions that would result in infinite loops, missed messages, or corrupted

messages. This is because such bugs can be simulated by the MITM by dropping

or corrupting messages it receives. Since the builders are free to implement any

protocol they like, our auto-testing infrastructure cannot tell if a protocol error

or timeout is due to a bug in the target or due to misbehavior of the MITM. As

such, we conservatively disallow reporting any such errors. Such flaws in builder

implementations might exist but evidence of those bugs might not be realizable in

our testing system.

2.3 Quantitative Analysis

This section analyzes data we have gathered from three contests we ran during

2015.8 We consider participants’ performance in each phase of the contest, includ-

ing which factors contribute to high scores after the build-it round, resistance to

8We also ran a contest during Fall 2014 [26] but exclude it from consideration due to differences

in how it was administered.

35

breaking by other teams, and strong performance as breakers.

We find that on average, teams that program in languages other than C and

C++, and those whose members know more programming languages (perhaps a

proxy for overall programming skill), are less likely to have security bugs identified

in their code. However, when memory management bugs are not included, program-

ming language is no longer a significant factor, suggesting that memory safety is the

main discriminator between C/C++ and other languages. Success in breaking, and

particularly in identifying security bugs in other teams’ code, is correlated with hav-

ing more team members, as well as with participating successfully in the build-it

phase (and therefore having given thought to how to secure an implementation).

Somewhat surprisingly, use of advanced techniques like fuzzing and static analysis

did not appear to affect breaking success. Overall, integrity bugs were far more

common than privacy bugs or crashes. The Fall 2015 contest, which used the ATM

problem, was associated with more security bugs than the Spring 2015 secure log

contest.

2.3.1 Data collection

For each team, we collected a variety of observed and self-reported data. When

signing up for the contest, teams reported standard demographics and features such

as coding experience and programming language familiarity. After the contest, each

team member optionally completed a survey about their performance. In addition,

we extracted information about lines of code written, number of commits, etc. from

36

teams’ Git repositories.

Participant data was anonymized and stored in a manner approved by our

institution’s human-subjects review board. Participants consented to have data

related to their activities collected, anonymized, stored, and analyzed. A few par-

ticipants did not consent to research involvement, so their personal data was not

used in the data analysis.

2.3.2 Analysis approach

To examine factors that correlated with success in building and breaking, we

apply regression analysis. Each regression model attempts to explain some outcome

variable using one or more measured factors. For most outcomes, such as partic-

ipants’ scores, we can use ordinary linear regression, which estimates how many

points a given factor contributes to (or takes away from) a team’s score. To analyze

binary outcomes, such as whether or not a security bug was found, we apply logistic

regression. This allows us to estimate how each factor impacts the likelihood of an

outcome.

We consider many variables that could potentially impact teams’ results. To

avoid over-fitting, we initially select as potential factors those variables that we be-

lieve are of most interest, within acceptable limits for power and effect size. (Our

choices are detailed below.) In addition, we test models with all possible com-

binations of these initial factors and select the model with the minimum Akaike

Information Criterion (AIC) [31]. Only the final models are presented.

37

This was not a completely controlled experiment (e.g., we do not use random

assignment), so our models demonstrate correlation rather than causation. Our

observed effects may involve confounding variables, and many factors used as in-

dependent variables in our data are correlated with each other. This analysis also

assumes that the factors we examine have linear effect on participants’ scores (or

on likelihood of binary outcomes); while this may not be the case in reality, it is a

common simplification for considering the effects of many factors. We also note that

some of the data we analyze is self-reported, and thus may not be entirely precise

(e.g., some participants may have exaggerated about which programming languages

they know); however, minor deviations, distributed across the population, act like

noise and have little impact on the regression outcomes.

2.3.3 Contestants

We consider three contests offered at two times:

Spring 2015: We held one contest during May–June 2015 as the capstone to

a Cybersecurity MOOC sequence.9 Before competing in the capstone, participants

passed courses on software security, cryptography, usable security, and hardware

security. The contest problem was the secure log problem (§2.2.1).

Fall 2015: During Oct.–Nov. 2015, we offered two contests simultaneously,

one as a MOOC capstone, and the other open to U.S.-based graduate and under-

graduate students. We merged the contests after the build-it phase, due to low

participation in the open contest; from here on we refer to these two as a single

9https://www.coursera.org/specializations/cyber-security

38

https://www.coursera.org/specializations/cyber-security

Contest USA Brazil Russia India Other

Spring 2015 30 12 12 7 120

Fall 2015 64 20 12 14 110

Table 2.1: Contestants, by self-reported country.

contest. The contest problem was the ATM problem (§2.2.2).

The U.S. had more contestants than any other country. There was represen-

tation from developed countries with a reputation both for high technology and

hacking acumen. Details of the most popular countries of origin can be found in

Table 2.1, and additional information about contestant demographics is presented

in Table 2.2.

2.3.4 Ship scores

We first consider factors correlating with a team’s ship score, which assesses

their submission’s quality before it is attacked by the other teams (§2.1.1). This

data set contains all 101 teams from the Spring 2015 and Fall 2015 contests that

qualified after the build-it phase. Both contests have nearly the same number of

correctness and performance tests, but different numbers of participants. We set

the constant multiplier M to be 50 for both contests, which effectively normalizes

the scores.

39

Contest Spring ’15† Fall ’15† Fall ’15

Contestants 156 122 23

% Male 91% 89% 100%

% Female 5% 9% 0%

Age 34.8/20/61 33.5/19/69 25.1/17/31

% with CS degrees 35% 38% 23%

Years programming 9.6/0/30 9.9/0/37 6.6/2/13

Build-it teams 61 34 6

Build-it team size 2.2/1/5 3.1/1/5 3.1/1/6

Break-it teams 65 39 4

(that also built) (58) (32) (3)

Break-it team size 2.4/1/5 3.0/1/5 3.5/1/6

PLs known per team 6.8/1/22 10.0/2/20 4.2/1/8

Table 2.2: Demographics of contestants from qualifying teams. † indicates MOOC

participants. Some participants declined to specify gender. Slashed values represent

mean/min/max.

Model setup

To ensure enough power to find meaningful relationships, we decided to aim

for a prospective effect size roughly equivalent to Cohen’s medium effect heuristic,

f 2 = 0.15 [32]. An effect this size suggests the model can explain up to 13% of the

variance in the outcome variable. With an assumed power of 0.75 and population

40

N = 101, we limited ourselves to nine degrees of freedom, which yields a prospective

f 2 = 0.154. (Observed effect size for the final model is reported with the regression

results below.) Within this limit, we selected the following potential factors:

Contest: Whether the team’s submission was for the Spring 2015 contest or

the Fall 2015 contest.

Team members: A team’s size.

Knowledge of C: The fraction of team members who listed C or C++ as a

programming language they know. We included this variable as a proxy for com-

fort with low-level implementation details, a skill often viewed as a prerequisite for

successful secure building or breaking.

Languages known: How many unique programming languages team

members collectively claim to know (see the last row of Table 2.2). For exam-

ple, on a two-member team where member A claims to know C++, Java, and Perl

and member B claims to know Java, Perl, Python, and Ruby, the language count

would be 5.

Coding experience: The average years of programming experience reported

by a team’s members.

Language category: We manually identified each team’s submission as hav-

ing one “primary” language. These languages were then assigned to one of three

categories: C/C++, statically-typed (e.g., Java, Go, but not C/C++) and dynam-

ically-typed (e.g., Perl, Python). C/C++ is the baseline category for the regression.

Precise category allocations, and total submissions for each language, segregated by

contest, are given in Figure 2.2.

41

Figure 2.2: The number of build-it submissions in each contest, organized by primary

programming language used. The brackets group the languages into categories.

Lines of code: The SLOC10 count of lines of code for the team’s final sub-

mission at qualification time.

MOOC: Whether the team was participating in the MOOC capstone project.

10http://www.dwheeler.com/sloccount

42

http://www.dwheeler.com/sloccount

Results

Our regression results (Table 2.3) indicate that ship score is strongly correlated

with language choice. Teams that programmed in C or C++ performed on average

121 and 92 points better than those who programmed in dynamically typed or

statically typed languages, respectively. Figure 2.3 illustrates that while teams in

many language categories performed well in this phase, only teams that did not use

C or C++ scored poorly.

The high scores for C/C++ teams could be due to better scores on performance

tests and/or due to implementing optional features. We confirmed the main cause is

the former. Every C/C++ team for Spring 2015 implemented all optional features,

while six teams in the other categories implemented only 6 of 10, and one team

implemented none; the Fall 2015 contest offered no optional features. We artificially

increased the scores of those seven teams as if they had implemented all optional

features and reran the regression model. The resulting model had very similar

coefficients.

Our results also suggest that teams that were associated with the MOOC

capstone performed 119 points better than non-MOOC teams. MOOC participants

typically had more programming experience and CS training.

Finally, we found that each additional line of code in a team’s submission

was associated with a drop of 0.03 points in ship score. Based on our qualitative

observations (see §2.4), we hypothesize this may relate to more reuse of code from

libraries, which frequently are not counted in a team’s LOC (most libraries were

43

Factor Coef. SE p-value

Fall 2015 -21.462 28.359 0.451

Lines of code -0.031 0.014 0.036*

Dynamically typed -120.577 40.953 0.004*

Statically typed -91.782 39.388 0.022*

MOOC 119.359 58.375 0.044*

Table 2.3: Final linear regression model of teams’ ship scores, indicating how many

points each selected factor adds to the total score. Overall effect size f 2 = 0.163.

installed directly on the VM, not in the submission itself). We also found that, as

further noted below, submissions that used libraries with more sophisticated, lower-

level interfaces tended to have more code and more mistakes; their use required

more code in the application, lending themselves to missing steps or incorrect use,

and thus security and correctness bugs. As shown in Figure 2.3, LOC is also (as

expected) associated with the category of language being used. While LOC varied

widely within each language type, dynamic submissions were generally shortest,

followed by static submissions, and then those written in C/C++ (which has the

largest minimum size).

2.3.5 Code quality measures

Now we turn to measures of a build-it submission’s quality—in terms of its

correctness and security—based on how it held up under scrutiny by break-it teams.

44

Figure 2.3: Each team’s ship score, compared to the lines of code in its implemen-

tation and organized by language category. Fewer LOC and using C/C++ correlate

with a higher ship score.

Resilience

The total build-it score is the sum of ship score, just discussed, and resilience.

Resilience is a non-positive score that derives from break-it teams’ test cases that

prove the presence of defects. Builders may increase this score during the fix-it phase,

as fixes prevent double-counting test cases that identify the same defect (see §2.1.1).

Unfortunately, upon studying the data we found that a large percentage of

build-it teams opted not to fix any bugs reported against their code, forgoing the

45

Figure 2.4: Final resilience scores, ordered by team, and plotted for each contest

problem. Build-it teams who did not bother to fix bugs generally had lower scores.

scoring advantage of doing so. We can see this in Figure 2.4, which graphs the

resilience scores (Y-axis) of all teams, ordered by score, for the two contests. The

circles in the plot indicate teams that fixed at least one bug, whereas the triangles

indicate teams that fixed no bugs. We can see that, overwhelmingly, the teams with

the lower resilience scores did not fix any bugs. We further confirmed that fixing, or

not, was a dominant factor by running a regression on resilience score that included

fix-it phase participation as a factor (not shown). Overall, teams fixed an average

of 34.5% of bugs in Spring 2015 and 45.3% of bugs in Fall 2015. Counting only

“active” fixers who fixed at least one bug, these averages were 56.9% and 72.5%

46

Spring 2015 Fall 2015

Bug reports submitted 24,796 3,701

Bug reports accepted 9,482 2,482

Fixes submitted 375 166

Bugs addressed by fixes 2,252 966

Table 2.4: Break-it teams in each contest submitted bug reports, which were judged

by the automated oracle. Build-it teams then submitted fixes, each of which could

potentially address multiple bug reports.

respectively.

Table 2.4 digs a little further into the situation. It shows that of the bug

reports deemed acceptable by the oracle (the second row), submitted fixes (row 3)

addressed only 23% of those from Spring 2015 and 38% of those from Fall 2015 (row

4 divided by row 2).

This situation is disappointing, as we cannot treat resilience score as a good

measure of code quality (when added to ship score). Our hypothesis is that partic-

ipants were not sufficiently incentivized to fix bugs, for two reasons. First, teams

that are sufficiently far from the lead may have chosen to fix no bugs because win-

ning was unlikely. Second, for MOOC students, once a minimum score is achieved

they were assured to pass; it may be that fixing (many) bugs was unnecessary for

attaining this minimum score.

47

Presence of security bugs

While resilience score is not sufficiently meaningful, a useful alternative is the

likelihood that a build-it submission contains a security-relevant bug; by this we

mean any submission against which at least one crash, privacy, or integrity defect is

demonstrated. In this model we used logistic regression over the same set of factors

as the ship model.

Table 2.5 lists the results of this logistic regression; the coefficients repre-

sent the change in log likelihood associated with each factor. Negative coefficients

indicate lower likelihood of finding a security bug. For categorical factors, the ex-

ponential of the coefficient (Exp(coef)) indicates roughly how strongly that factor

being true affects the likelihood relative to the baseline category.11 For numeric

factors, the exponential indicates how the likelihood changes with each unit change

in that factor.

Fall 2015 implementations were 296× as likely as Spring 2015 implementations

to have a discovered security bug.12 We hypothesize this is due to the increased

security design space in the ATM problem as compared to the gallery problem.

Although it is easier to demonstrate a security error in the gallery problem, the

ATM problem allows for a much more powerful adversary (the MITM) that can

11In cases (such as the Fall 2015 contest) where the rate of security bug discovery is close to

100%, the change in log likelihood starts to approach infinity, somewhat distorting this coefficient

upwards.
12This coefficient is somewhat exaggerated (see prior footnote), but the difference between con-

tests is large and significant.

48

Factor Coef. Exp(coef) SE p-value

Fall 2015 5.692 296.395 1.374 <0.001*

Languages known -0.184 0.832 0.086 0.033*

Lines of code 0.001 1.001 0.0003 0.030*

Dynamically typed -0.751 0.472 0.879 0.393

Statically typed -2.138 0.118 0.889 0.016*

MOOC 2.872 17.674 1.672 0.086

Table 2.5: Final logistic regression model, measuring log likelihood of a security bug

being found in a team’s submission.

interact with the implementation; breakers often took advantage of this capability,

as discussed in §2.4.

The model also shows that C/C++ implementations were more likely to con-

tain an identified security bug than either static or dynamic implementations. For

static languages, this effect is significant and indicates that a C/C++ program was

about 8.5× (that is, 1/0.118) as likely to contain an identified bug. This effect is

clear in Figure 2.5, which plots the fraction of implementations that contain a se-

curity bug, broken down by language type and contest problem. Of the 16 C/C++

submissions (see Figure 2.2), 12 of them had a security bug: 5/9 for Spring 2015

and 7/7 for Fall 2015. All 5 of the buggy implementations from Spring 2015 had a

crash defect, and this was the only security-related problem for three of them; none

of the Fall 2015 implementations had crash defects.

If we reclassify crash defects as not security relevant and rerun the model we

49

Figure 2.5: The fraction of teams in whose submission a security bug was found, for

each contest and language category.

find that the impact due to language category is no longer statistically significant.

This may indicate that lack of memory safety is the main disadvantage to using

C/C++ from a security perspective, and thus a memory-safe C/C++ could be of

significant value. Figure 2.6 shows how many security bugs of each type (memory

safety, integrity, privacy) were found in each language category, across both contests.

This figure reports bugs before unification during the fix-it phase, and is of course

affected by differences among teams’ skills and language choices in the two contests,

but it provides a high-level perspective.

Our model shows that teams that knew more unique languages (even if they

did not use those languages in their submission) performed slightly better, about

50

Figure 2.6: How many of each type of security bug were found, across both contests,

for each language category. Counts are normalized by the number of qualified Build-

it submissions in each language category.

1.2× for each language known. Additional LOC in an implementation were also

associated with a very small increase in the presence of an identified security bug.

Finally, the model shows two factors that played a role in the outcome, but

not in a statistically significant way: using a dynamically typed language, and

participating in the MOOC. We see the effect of the former in Figure 2.5. For the

latter, the effect size is quite large; it is possible that the MOOC security training

played a role.

51

2.3.6 Breaking success

Now we turn our attention to break-it team performance, i.e., how effective

teams were at finding defects in others’ submissions. First, we consider how and why

teams performed as indicated by their (normalized) break-it score prior to the fix-it

phase. We do this to measure a team’s raw output, ignoring whether other teams

found the same bug (which we cannot assess with confidence due to the lack of fix-it

phase participation per §2.3.5). This data set includes 108 teams that participated in

the break-it phase in Spring and Fall 2015. We also model which factors contributed

to security bug count, or how many total security bugs a break-it team found.

Doing this disregards a break-it team’s effort at finding correctness bugs.

We model both break-it score and security bug count using several of the same

potential factors as discussed previously, but applied to the breaking team rather

than the building team. In particular, we include which contest they participated in,

whether they were MOOC participants, the number of break-it Team members,

average team-member Coding experience, average team-member Knowledge of

C, and unique Languages known by the break-it team members. We also add

two new potential factors:

Build participant: Whether the breaking team also qualified during the

build-it phase.

Advanced techniques: Whether the breaking team reported using software

analysis or fuzzing to aid in bug finding. Teams that only used manual inspec-

tion and testing are categorized as false. 26 break-it teams (24%) reported using

52

Factor Coef. SE p-value

Fall 2015 -2406.89 685.73 <0.001*

Team members 430.01 193.22 0.028*

Knowledge of C -1591.02 1006.13 0.117

Coding experience 99.24 51.29 0.056

Build participant 1534.13 995.87 0.127

Table 2.6: Final linear regression model of teams’ break-it scores, indicating how

many points each selected factor adds to the total score. Overall effect size f 2 =

0.039.

advanced techniques.

For these two initial models, our potential factors provide eight degrees of

freedom; again assuming power of 0.75, this yields a prospective effect size f 2 =

0.136, indicating we could again expect to find effects of roughly medium size by

Cohen’s heuristic [32].

Break score

The model considering break-it score is given in Table 2.6. It shows that teams

with more members performed better, with an average of 430 additional points per

team member. Auditing code for errors is an easily parallelized task, so teams with

more members could divide their effort and achieve better coverage. Recall that

having more team members did not help build-it teams (see Tables 2.3 and 2.5);

this makes sense as development requires more coordination, especially during the

53

early stages.

The model also indicates that Spring 2015 teams performed significantly bet-

ter than Fall 2015 teams. Figure 2.9 illustrates that correctness bugs, despite being

worth fewer points than security bugs, dominate overall break-it scores for Spring

2015. In Fall 2015 the scores are more evenly distributed between correctness and

security bugs. This outcome is not surprising to us, as it was somewhat by design.

The Spring 2015 problem defines a rich command-line interface with many oppor-

tunities for subtle errors that break-it teams can target. It also allowed a break-it

team to submit up to 10 correctness bugs per build-it submission. To nudge teams

toward finding more security-relevant bugs, we reduced the submission limit from

10 to 5, and designed the Fall 2015 interface to be far simpler.

Interestingly, making use of advanced analysis techniques did not factor into

the final model; i.e., such techniques did not provide a meaningful advantage. This

makes sense when we consider that such techniques tend to find generic errors such

as crashes, bounds violations, or null pointer dereferences. Security violations for

our problems are more semantic, e.g., involving incorrect design or use of cryptogra-

phy. Many correctness bugs were non-generic too, e.g., involving incorrect argument

processing or mishandling of inconsistent or incorrect inputs.

Being a build participant and having more coding experience is identified as a

postive factor in the break-it score, according to the model, but neither is statistically

significant (though they are close to the threshold). Interestingly, knowledge of

C is identified as a strongly negative factor in break-it score (though again, not

54

Factor Coef. SE p-value

Fall 2015 3.847 1.486 0.011*

Team members 1.218 0.417 0.004*

Build participant 5.430 2.116 0.012*

Table 2.7: Final linear regression modeling the count of security bugs found by

each team. Coefficients indicate how many security bugs each factor adds to the

count. Overall effect size f 2 = 0.035.

statistically significant). Looking closely at the results, we find that lack of C

knowledge is extremely uncommon, but that the handful of teams in this category

did unusually well. However, there are to few of them for the result to be significant.

Security bugs found

We next consider breaking success as measured by the count of security bugs

a breaking team found. This model (Table 2.7) again shows that team size is im-

portant, with an average of one extra security bug found for each additional team

member. Being a qualified builder also significantly helps one’s score; this makes

intuitive sense, as one would expect to gain a great deal of insight into how a sys-

tem could fail after successfully building a similar system. Figure 2.10 shows the

distribution of the number of security bugs found, per contest, for break-it teams

that were and were not qualified build-it teams. Note that all but three of the 108

break-it teams made some attempt, as defined by having made a commit, to partic-

55

ipate during the build-it phase—most of these (93) qualified, but 12 did not. If the

reason was that these teams were less capable programmers, that may imply that

programming ability generally has some correlation with break-it success.

On average, four more security bugs were found by a Fall 2015 team than

a Spring 2015 team. This contrasts with the finding that Spring 2015 teams had

higher overall break-it scores, but corresponds to the finding that more Fall 2015

submissions had security bugs found against them. As discussed above, this is

because correctness bugs dominated in Spring 2015 but were not as dominant in Fall

2015. Once again, the reasons may have been the smaller budget on per-submission

correctness bugs in Fall 2015, and the greater potential attack surface in the ATM

problem.

2.4 Qualitative Analysis

As part of the data gathered, we also have the entire program produced during

the build-it phase as well as the programs patched during the fix-it phase. We can

then perform a qualitative analysis of the programs which is guided by knowing

the security outcome of a given program. Did lots of break-it teams find bugs in

the program, or did they not? What are traits or characteristics of well-designed

programs?

56

2.4.1 Success Stories

The success stories bear out some old chestnuts of wisdom in the security

community: submissions that fared well through the break-it phase made heavy

use of existing high-level cryptographic libraries with few “knobs” that allow for

incorrect usage [33].

One implementation of the ATM problem, written in Python, made use of the

SSL PKI infrastructure. The implementation used generated SSL private keys to

establish a root of trust that authenticated the atm program to the bank program.

Both the atm and bank required that the connection be signed with the certificate

generated at run-time. Both the bank and the atm implemented their communi-

cation protocol as plain text then wrapped in HTTPS. This put the contestant on

good footing; to find bugs in this system, other contestants would need to break the

security of OpenSSL.

Another implementation, also for the ATM problem, written in Java, used the

NaCl library. This library intentionally provides a very high level API to “box” and

“unbox” secret values, freeing the user from dangerous choices. As above, to break

this system, other contestants would need to first break the security of NaCl.

An implementation of the log reader problem, also written in Java, achieved

success using a high level API. They used the BouncyCastle library to construct a

valid encrypt-then-MAC scheme over the entire log file.

57

2.4.2 Failure Stories

The failure modes for build-it submissions are distributed along a spectrum

ranging from “failed to provide any security at all” to “vulnerable to extremely

subtle timing attacks.” This is interesting because it is a similar dynamic observed

in the software marketplace today.

Many implementations of the log problem lacked encryption or authentication.

Exploiting these design flaws was trivial for break-it teams. Sometimes log data was

written as plain text, other times log data was serialized using the Java object

serialization protocol.

One break-it team discovered a privacy flaw which they could exploit with at

most fifty probes. The target submission truncated the “authentication token,” so

that it was vulnerable to a brute force attack.

The ATM problem allows for interactive attacks (not possible for the log), and

the attacks became cleverer as implementations used cryptographic constructions

incorrectly. One implementation used cryptography, but implemented RC4 from

scratch and did not add any randomness to the key or the cipher stream. An

attacker observed that the ciphertext of messages was distinguishable and largely

unchanged from transaction to transaction, and was able to flip bits in a message

to change the withdrawn amount.

Another implementation used encryption with authentication, but did not use

randomness; as such error messages were always distinguishable success messages.

An attack was constructed against this implementation where the attack leaked

58

the bank balance by observing different withdrawal attempts, distinguishing the

successful from failed transactions, and performing a binary search to identify the

bank balance given a series of withdraw attempts.

Some failures were common across ATM problem implementations. Many

implementations kept the key fixed across the lifetime of the bank and atm pro-

grams and did not use a nonce in the messages. This allowed attackers to replay

messages freely between the bank and the atm, violating integrity via unauthorized

withdrawals. Several implementations used encryption, but without authentication.

These implementations used a library such as OpenSSL, the Java cryptographic

framework, or the Python pycrypto library to have access to a symmetric cipher

such as AES, but either did not use these libraries at a level where authentication

was provided in addition to encryption, or they did not enable authentication.

Some failures were common across log implementations as well: if an imple-

mentation used encryption, it might not use authentication. If it used authentica-

tion, it would authenticate records stored in the file individually and not globally.

The implementations would also relate the ordering of entries in the file to the or-

dering of events in time, allowing for an integrity attack that changes history by

re-ordering entries in the file.

As a corpus for research, this data set is of interest for future mining. What

common design patterns were used and how did they impact the outcome? Are there

any metrics we can extract from the code itself that can predict break-it scores? We

defer this analysis to future work.

59

2.5 Related work

BIBIFI bears similarity to existing programming and security contests but is

unique in its focus on building secure systems. BIBIFI also is related to studies of

code and secure development, but differs in its open-ended contest format.

Contests

Cybersecurity contests typically focus on vulnerability discovery and exploita-

tion, and sometimes involve a system administration component for defense. One

popular style of contest is dubbed capture the flag (CTF) and is exemplified by a

contest held at DEFCON [34]. Here, teams run an identical system that has buggy

components. The goal is to find and exploit the bugs in other competitors’ systems

while mitigating the bugs in your own. Compromising a system enables a team to

acquire the system’s key and thus “capture the flag.” In addition to DEFCON CTF,

there are other CTFs such as iCTF [35,36] and PicoCTF [37]. The use of this style

of contest in an educational setting has been explored in prior work [38–40]. The

Collegiate Cyber Defense Challenge [14, 41, 42] and the Maryland Cyber Challenge

& Competition [13] have contestants defend a system, so their responsibilities end

at the identification and mitigation of vulnerabilities. These contests focus on bugs

in systems as a key factor of play, but neglect software development.

Programming contests challenge students to build clever, efficient software,

usually with constraints and while under (extreme) time pressure. The ACM pro-

gramming contest [19] asks teams to write several programs in C/C++ or Java

60

during a 5-hour time period. Google Code Jam [43] sets tasks that must be solved

in minutes, which are then graded according to development speed (and implicitly,

correctness). Topcoder [18] runs several contests; the Algorithm competitions are

small projects that take a few hours to a week, whereas Design and Development

competitions are for larger projects that must meet a broader specification. Code is

judged for correctness (by passing tests), performance, and sometimes subjectively

in terms of code quality or practicality of design. All of these resemble the build-

it phase of BIBIFI but typically consider smaller tasks; they do not consider the

security of the produced code.

Studies of secure software development

There have been a few studies of different methods and techniques for ensuring

security. Work by Finifter and Wagner [44] and Prechelt [45] relates to both our

build-it and break-it phases: they asked different teams to develop the same web

application using different frameworks, and then subjected each implementation to

automated (black box) testing and manual review. They found that both forms of

review were effective in different ways, and that framework support for mitigating

certain vulnerabilities improved overall security. Other studies focused on the ef-

fectiveness of vulnerability discovery techniques, e.g., as might be used during our

break-it phase. Edmundson et al. [46] considered manual code review; Scandariato

et al. [47] compared different vulnerability detection tools; other studies looked at

software properties that might co-occur with security problems [48–50]. BIBIFI dif-

61

fers from all of these in its open-ended, contest format: Participants can employ any

technique they like, and with a large enough population and/or measurable impact,

the effectiveness of a given technique will be evident in final outcomes.

2.6 Conclusions

This chapter has presented Build-it, Break-it, Fix-it (BIBIFI), a new secu-

rity contest that brings together features from typical security contests, which focus

on vulnerability detection and mitigation but not secure development, and pro-

gramming contests, which focus on development but not security. During the first

phase of the contest, teams construct software they intend to be correct, efficient,

and secure. During the second phase, break-it teams report security vulnerabilities

and other defects in submitted software. In the final, fix-it, phase, builders fix re-

ported bugs and thereby identify redundant defect reports. Final scores, following

an incentives-conscious scoring system, reward the best builders and breakers.

During 2015, we ran three contests involving a total of 116 teams and two dif-

ferent programming problems. Quantitative analysis from these contests found that

the best performing build-it submissions used C/C++, but submissions coded in a

statically-typed language were less likely to have a security flaw; build-it teams with

diverse programming-language knowledge also produced more secure code. Shorter

programs correlated with better scores. Break-it teams that were also successful

build-it teams were significantly better at finding security bugs.

There are many interesting areas of future work that BIBIFI opens up. The

62

BIBIFI design lends itself well to conducting more focused studies; our competitions

allow participants to use any languages and tools they desire, but one could narrow

their options for closer evaluation. Although we have reduced manual judging con-

siderably, an interesting technical problem that often arises is determining whether

two bugs are morally equivalent; an automated method for determining this could

be broadly applicable. Finally, one limitation of our study is that we do not evaluate

whether break-it teams find all of the bugs there are to find; one improvement would

be to apply a set of fuzzers and static analyzers, or to recruit professional teams to

effectively participate in the break-it phase as a sort of baseline against which to

compare the break-it teams’ performance.

63

Figure 2.7: Spring 2015

Figure 2.8: Fall 2015

Figure 2.9: Scores of break-it teams prior to the fix-it phase, broken down by points

from security and correctness bugs. The final score of the break-it team (after fix-it

phase) is noted as a dot. Note the different ranges in the y-axes; in general, the

Spring 2015 contest (secure log problem) had higher scores for breaking.

64

Figure 2.10: Count of security bugs found by each break-it team, organized by

contest and whether the team also participated in build-it. The heavy vertical line

in the box is the median, the boxes show the first and third quartiles, and the

whiskers extend to the most outlying data within ±1.5× the interquartile range.

Dots indicate further outliers.

65

Chapter 3: Checked C

Vulnerabilities that compromise memory safety are at the heart of many dev-

astating attacks. Memory safety has two aspects. Temporal safety is ensured when

memory is never used after it is freed. Spatial safety is ensured when any pointer

dereference is always within the memory allocated to that pointer. Buffer over-

runs—a spatial safety violation—still constitute a frequent and pernicious source of

vulnerability, despite their long history. During the period 2012–2016, buffer over-

runs were the source of 9.7% to 18.4% of CVEs reported in the NIST vulnerability

database [51], with the highest numbers occurring in 2016. During that time, buffer

overruns were the leading single cause of CVEs. Additionally, many problems dis-

covered in Chapter 2 were related to violations of spatial memory safety, when C

was used by contestants.

Spatial safety violations commonly arise when programming low-level, per-

formance critical code in C and C++. While a type-safe language disallows such

violations [52], using one is impractical when low-level control is needed. Building

on research from projects such as Cyclone [53] and Deputy [54], modern languages

like Rust [55] and Go [56] provide a promising balance of safety and performance,

but to use them requires programmer retraining and extensive rewrites of legacy

66

code.

As discussed in depth in Section 3.5, several efforts have attempted to make

C programs safe. Static analysis tools [57–59] aim to find vulnerabilities pre-

deployment, but may miss bugs, have trouble scaling, or emit too many alarms.

Security mitigations, such as W⊕X [60] and CFI [61], can mute the impact of vul-

nerabilities by making them harder to exploit, but provide no guarantee; e.g., data

leaks and mimicry attacks may still be possible. Several efforts have aimed to provide

spatial safety by adding run-time checks; these include CCured [62], Softbound [63],

and ASAN [64]. The added checks can add substantial overhead and can complicate

interoperability with legacy code if pointer representations are changed. Lower over-

head can be achieved by reducing safety, e.g., by checking only writes, or ignoring

overruns within a memory region (e.g., from one stack variable to another, or one

struct field to another). In the end, no existing approach is completely satisfying.

This chapter presents a new effort towards achieving a spatially-safe C that

we call Checked C. Checked C borrows many ideas from prior safe-C efforts but

ultimately differs in that its design focuses on interoperability, developer usability,

and enabling highly performant code. Checked C and legacy C can coexist, so

developers are able to port legacy code incrementally. This approach does allow

for defects and vulnerabilities in non-converted regions of the program. However,

taking inspiration from work on gradual typing [65–67], Checked C gives developers

a way to distinguish “checked” from “unchecked” regions. The former can be held

blameless as the source of any safety violation, so software assurance attention can

be focused on the latter.

67

Technically speaking, Checked C’s design has three key features. First, all

pointers in Checked C are represented as in normal C—no changes to pointer layout

are imposed. This eases interoperability.
Second, the legal boundaries of pointed-to memory are specified explicitly;

the goal here is to enhance human readability and maintainability while supporting
efficient compilation and running times. As an example, consider the following code
declarations:

size_t dst_count;

_Array_ptr <char > dst : count(dst_count);

The _Array_ptr<char> type is a Checked C type for a bounds-checked array, and the

count annotation indicates how the bounds should be computed. In this case dst’s

bounds are stored in the variable dst_count, but other specifications, such as pointer

ranges, are also possible. Checked C also has a _Ptr<T> type for pointers to single T

values, and a _Nt_array_ptr<T> type for pointers to NUL (zero) terminated arrays.

Checked type information is used by the compiler to either prove that an access is

safe, or else to insert a bounds check when such a proof is too difficult. Programmers

can also use annotations to help the compiler safely avoid adding unnecessary checks

in performance-critical code.

Finally, Checked C supports the concept of designated checked regions of code.

Within these regions, use of unchecked pointers is essentially disallowed, so the

above-mentioned checks are sufficient to ensure that execution is spatially safe: no

failure will occur within the region assuming its checked pointers are well formed

(i.e., they have not been corrupted through prior execution of unchecked code). In

short, in the parlance of gradual typing, “checked code cannot be blamed” [67] for

a spatial safety violation.

68

Several prior efforts have eschewed annotations, citing the programmer cost of

adding them to legacy code. However, in our experience programmers have a sense

of the extents and invariants of memory objects and prefer to document and enforce

them, but C gives them no easy mechanism to write them down. To assist in the

process of updating legacy code, Checked C employs an automated tool to partially

rewrite an application to use Checked C types. We believe this approach strikes the

right balance: A best-effort analysis can be applied to the whole program to assist

in porting, but once ported, a program’s annotations ensure efficient checking and

assist readability and maintainability. The rewriter uses a global, path-insensitive

unification-based algorithm to infer when variables, structure fields, function pa-

rameters, and function return values might be converted to Checked C _Ptr<T>

and _Array_ptr<T> types. It automatically rewrites the program to add the former

types, and points to locations for the latter, at which the programmer can convert

them by hand, adding needed bounds expressions. To avoid one unsafe pointer use

forcing all transitive uses to be unchecked, the rewriter may insert casts, taking

advantage of Checked C’s ability to mix checked and unchecked code.

Contributions

This chapter makes four main contributions.

First, in Section 3.1, we present Checked C’s design and its rationale, intro-

ducing its various features by example.

Second, as described in Section 3.2, we have implemented Checked C as an

69

extension to Clang and LLVM. Since Checked C is a backwards compatible superset

of C, any project that compiles today with Clang and LLVM can compile with

Checked C. As reported in Section 3.4, we converted most of the standard Olden

and Ptrdist benchmark suites to use Checked C. On average, we modified 17.5% of

the benchmark code so that 90.7% of it could be placed in checked regions. The

mean run-time slowdown is 8.6%, which generally matches or betters Deputy [54]

and CCured [62] on the same benchmarks.

Finally, as described in Section 3.3 we have implemented a tool to automat-

ically convert existing C programs to Checked C programs. This tool performs a

whole-program, context- and flow-insensitive analysis to identify types that can be

replaced with Checked C types, and automatically rewrites them. In about 35 min-

utes of work the rewriter was able to replace between 37% and 69% of C pointer types

with _Ptr<T> types in six benchmark programs, comprising more than 290KLOC.

Checked C is under active and ongoing development, and available on the

Internet at https://github.com/Microsoft/checkedc.

Attribution and acknowledgments

This chapter was adapted from a paper appearing at IEEE SecDev, authored

by Sam Elliott, Andrew Ruef, David Tarditi, and Mike Hicks. Checked C the lan-

guage was designed by David Tarditi. The compiler was implemented by David

Tarditi and Sam Elliott with review and feedback from Andrew Ruef. Some ele-

ments of the Checked C language were designed by David, Andrew and Mike after

70

https://github.com/Microsoft/checkedc

discussion and thought about C programming idioms and past experiences with

other language research projects. The rewriting tool was designed, implemented

and evaluated by Andrew.

3.1 Checked C

This section presents an overview of Checked C.

3.1.1 Basics

The Checked C extension extends the C language with two additional checked

pointer types : _Ptr<T>, _Array_ptr<T> and _Nt_array_ptr<T>.1 The _Ptr<T> type

indicates a pointer that is used for dereference only and has no arithmetic performed

on it, while _Array_ptr<T> and _Nt_array_ptr<T> support arithmetic with bounds

declarations provided in the type. The latter requires NUL termination, which

affords some flexibility on determining bounds. The compiler dynamically confirms

that checked pointers are valid when they are de-referenced. In blocks or functions

designated as checked code, it imposes stronger restrictions to uses of unchecked

pointers that could corrupt checked pointers, e.g., via aliases. We would expect a

Checked C program to involve a mixed of both checked and unchecked code, and a

mix of checked and unchecked pointer types.

1We use the C++ style syntax for programmer familiarity, and precede the names with an

underscore to avoid parsing conflicts in legacy libraries.

71

void next(int *b, int idx , _Ptr <int >out) {

int tmp = *(b+idx);

*out = tmp;

}

Figure 3.1: Example use of _Ptr<T>

3.1.2 Simple pointers

Using _Ptr<T> is straightforward: any pointer to an object that is only ref-

erenced indirectly, without any arithmetic or array subscript operations, can be

replaced with a _Ptr<T>. For example, one frequent idiom in C programs is an out

parameter, used to indicate an object found or initialized during parsing. Figure 3.1

shows using a _Ptr<int> for the out parameter. When this function is called, the

compiler will confirm that it is given a valid pointer, or null. Within the function,

the compiler will insert a null check before writing to out. Null checks are elided

when the compiler can prove they are unnecessary.

3.1.3 Arrays

The _Array_ptr<T> type identifies a pointer to an array of values. Prior

safe-C efforts sometimes involve the use of fat pointers, which consist both of the

actual pointer and information about the bounds of pointed-to memory. Rather

than changing the run-time representation of a pointer in order to support bounds

checking, in Checked C the programmer associates a bounds expression with each

_Array_ptr<T>-typed variable and member to indicate where the bounds are stored.

The compiler inserts a run-time check that ensures that deferencing an _Array_ptr

72

void append(

_Array_ptr <char > dst : count(dst_count),

_Array_ptr <char > src : count(src_count),

size_t dst_count , size_t src_count)

{

_Dynamic_check(src_count <= dst_count);

for (size_t i = 0; i < src_count; i++) {

if (src[i] == ’\0’) {

break;

}

dst[i] = src[i];

}

}

Figure 3.2: Example use of _Array_ptr<T>

<T> is safe (the compiler may optimize away the run-time check if it can prove it

always passes). Bounds expressions consist of non-modifying C expressions and can

involve variables, parameters, and struct field members. For bounds on members,

the bounds can refer only to other members declared in the same structure. Bounds

declarations on members are type-level program invariants that can be suspended

temporarily when updating a specific struct object.

Figure 3.2 shows using _Array_ptr<T> with declared bounds as parameters to a

function. In particular, the types of the dst and src arrays have bound expressions

that refer to the function’s other two respective parameters. In the body of the

function, both src and dst are accessed as expected. The compiler inserts run-time

checks before accessing the memory locations src[i] and dst[i]. The compiler

optimizes away the check on src[i] because it can prove that i < src_count, the

size of src. The compiler also optimizes away the check dst[i] thanks to the

73

_Dynamic_check placed outside the loop. Like an assert, this predicate evaluates

the given condition and signals a run-time error if the condition is false; unlike

assert, this predicate is not removed unless proven redundant. Here, its existence

assures the compiler that i < dst_count (transitively), so no per-iteration checks

are needed.

There are two other ways to specify array bounds. The first is a range, specified

by base and upper bound pointers. For example, the bounds expression on dst from

Figure 3.2 could have been written bounds(dst,dst+dst_count). The second is

an alternative to count called bytecount, which can be applied to either void* or

_Array_ptr<void> types. A bytecount(n) expression applied to a pointer p would

be equivalent to the range p through (char *)p+n. An example of this is given at

the end of this section.

We can also annotate an array declaration as _Checked. Any implicit con-

version of the array to a pointer value is treated as a _Array_ptr<T>. We add a

restriction that all inner dimensions of checked arrays also be checked. We see both

of these situations in Figure 3.4, shortly. Parameters with checked array types are

treated as having _Array_ptr<T> types. If no bounds are declared, the bounds are

implied by the array size, if it is known. T _Checked[] is a synonym for _Array_ptr

<T>.

74

size_t my_strlcpy(

_Nt_array_ptr <char > dst: count(dst_sz),

_Nt_array_ptr <char > src , size_t dst_sz)

{

size_t i = 0;

_Nt_array_ptr <char > s : count(i) = src;

while (s[i] != ’\0’ && i < dst_sz) {

dst[i] = s[i];

++i;

}

dst[i] = ’\0’;

return i;

}

Figure 3.3: Example use of _Nt_array_ptr<T>

3.1.4 NUL-terminated Arrays

The _Nt_array_ptr<T> type identifies a pointer to an array of values (often

chars) that ends with a NUL (’\0’). The bounds expression identifies the known-to-

be-valid range of the pointer. This range can be expanded by reading the character

just past the bounds to see if it is NUL.2 If not, then the bounds can be expanded

by one. Otherwise, the current bounds cannot be expanded, and only a ’\0’ may be

written to this location. _Nt_array_ptr<T> types without explicit bounds default to

bounds of count(0), meaning that index 0 can be read safely. A _Nt_array_ptr<T>

can be cast to a _Array_ptr<T> safely; as an _Array_ptr<T> the character just past

the bounds can no longer be read or written, thus preserving the zero-termination

invariant for any aliases.

An example use of _Nt_array_ptr<T> is given in Figure 3.3. It implements the

strlcpy libC routine, which copies src to dst, which can contain at most dst_sz

2This means that bounds of count(n) requires allocating n+1 bytes.

75

characters. We must alias src into the local variable s so that its count, i, can grow

dynamically as the loop executes.

3.1.5 Checked and Unchecked Regions

The safety provided by checked pointers can be thwarted by unsafe operations,
such as writes to traditional pointers. For example, consider this variation of the
code in Figure 3.1:

void more(int *b, int i, _Ptr <int *>out) {

int oldi = i, c;

do {

c = readvalue ();

b[i++] = c;

} while (c != 0);

*out = b+i-oldi;

}

This function repeatedly reads an input value into b until a 0 is read, at which point

it returns an updated b pointer via the checked out parameter. While we might

expect that writing to out is safe, since it is a checked pointer, it will not be safe if

the loop overflows b and in the process modifies out to point to invalid memory.

In a program with a mix of checked and unchecked pointers we cannot and

should not expect complete safety. However, we would like to isolate which code is

possibly dangerous, i.e., whether it could be the source of a safety violation. Code

review and other efforts can then focus on that code. For this purpose Checked C

introduces the notion of checked code regions. Such code is designated specifically

at the level of a file (using a pragma), a function (by annotating its prototype), or

a single block (by labeling that block, similar to an asm block). Explicitly labeled

unchecked regions may also appear within checked ones.

76

int *out;

_Checked void foo(void) {

_Ptr <int > ptrout = 0;

_Unchecked {

if (out != (int *)0) {

ptrout = (_Ptr <int >)out; // cast OK

} else { return; }

}

int b _Checked [5][5];

for (int i = 0; i < 5; i++) {

for (int j = 0; j < 5; j++) {

b[i][j] = -1; // access safe

} }

*ptrout = b[0][0];

}

Figure 3.4: _Unchecked and _Checked regions (and array)

Figure 3.4 shows a checked function foo, which references unchecked pointer

out within an explicitly labeled _Unchecked block. Without this label, the compiler

would forbid this cast since it is a potential source of problems (i.e., if out was

bogus). Within a checked region both null and bounds checks on checked pointers

are employed as usual, but additional restrictions are also imposed. In particular,

explicit declarations of and casts, reads, and writes from unchecked pointer types

are disallowed. Checked regions may neither use varargs nor K&R-style prototypes.

These restrictions are meant to ensure that the entire execution of a checked region

is spatially safe. This means that assuming checked pointers have been constructed

properly (in particular, they have not been corrupted by the execution of unchecked

code prior to entering the checked region), no safety violations will occur due to

dereferencing a pointer into illegal memory.

Checked C also permits ascribing checked types to unchecked functions. We

77

size_t fwrite(

const void * ptr : byte_count(size*nmemb),

size_t size , size_t nmemb ,

FILE * stream : itype(_Ptr <FILE >));

Figure 3.5: Standard library checked interface

use this feature in a set of checked headers for the C standard library. As an example,

the type we give to the fwrite function is shown in Figure 3.5. The first argument

to the function is the target buffer whose size (in bytes) is given by the second

and third arguments. The final argument is a FILE pointer whose type depends on

whether it is being called from checked or unchecked code. For the former, the type

is given by the itype annotation, indicating it is expected to be a checked pointer.

For the latter, it is the “normal” type of the argument.

3.1.6 Restrictions and Limitations

Checked C’s design currently imposes several restrictions.

First, to ensure that checked pointers are valid by construction, we require that

checked pointer variables be initialized when they are declared. In addition, heap-

allocated memory that contains checked pointers (like a struct or array of checked

pointers) or is pointed to by a _Nt_array_ptr<T> must use calloc to ensure safe

initialization. We plan to employ something akin to Java’s definite initialization

analysis to relax this requirement, at least somewhat.

Second, we disallow taking the address of variables/members with bounds,

variables used in bounds expressions, and members used in structure member bounds

expressions. These pointers could be used to subvert the validity of bounds decla-

78

rations.

Third, _Array_ptr<T> values can be dereferenced following essentially arbi-

trary arithmetic; e.g., if x is an _Array_ptr<int> we could dereference it via *(x+

y-n+1) and the compiler will insert any needed checks to ensure the access is le-

gal. However, updates to _Array_ptr<T> variables are currently more limited. The

bounds for a variable are declared when the variable is declared. It is possible, how-

ever, that a variable may need different bounds at different points in the program.

For example, we might like to replace the loop in Figure 3.2 with:

size_t i = 0;

for (; i < src_count; i++) {

if (*src == ’\0’) break;

*dst = *src;

src ++; dst ++;

}

The problem is that the bounds declared for src are tantamount to the range (src

,src+src_count). This means that updating src to src+1 would invalidate them, as

the upper bound would be off by one. We would like to declare src to have new

bounds before entering the loop, such as (src - i, src + src_count - i). We plan

to support flow-sensitive declarations of bounds, so that variables can have different

bounds at different program points.

Finally, some elements of our static analysis for confirming safe usage are

designed but not fully implemented. We elaborate on these in Section 3.2.

79

3.2 Implementation

We have implemented Checked C as an extension to the Clang/LLVM 5.0

compiler, comprising about 16.5k LoC added or changed (per git diff). This section

describes the various changes we made. Our fork of Clang is available online at

https://github.com/Microsoft/checkedc-clang.

3.2.1 Overview

We extended the Clang C front-end to support the changes described in Sec-

tion 3.1; the LLVM IR’s analyses and optimizers were unchanged. We extended

the C grammar to support checked pointers, bounds expressions, and (un)checked

blocks, and made corresponding changes to Clang’s data structures and static type

checker. The compiler enforces the restrictions described in Section 3.1 by statically

confirming that array pointer bounds are correctly ascribed and maintained, and

by inserting run-time bounds and non-null checks on pointer accesses, which are

optimized away by LLVM if they can be proved redundant.

3.2.2 Checking Bounds

Checked C’s bounds expressions provide a static description of the bounds

on a pointer. We check statically that the sub-expressions of a bounds expression

are non-modifying expressions : they do not contain any assignment, increment or

decrement operators, or function calls. This ensures that using the expressions at

bounds checks does not cause unexpected side-effects.

80

https://github.com/Microsoft/checkedc-clang

Checked C performs inference to compute a bounds expression that conserva-

tively describes the bounds on a pointer-typed expression. Inference uses bounds

expressions normalized into bounds(l,u) form. The inferred bounds are used to

check memory accesses using the value of the pointer expression.

For pointer variables, the inferred bounds are the declared bounds. For pointer

arithmetic expressions, the inferred bounds are those of the pointer-typed subex-

pression. When taking the address of a struct’s member (&p->f), the bounds are

those of the particular field. On the other hand, the address of an array element

retains the bounds of the whole array. For example, the bounds of int x[5] are

bounds(x, x+5* sizeof(int))

as are the bounds of &x[3], rather than (say)

bounds(x+3* sizeof(int),x+4* sizeof(int))

The compiler must statically ensure that bounds declarations are valid af-

ter assignments and initialization. This requires two steps. First, a subsumption

check confirms that assigning to a variable (an lvalue, more generally) meets the

bounds required of pointers stored in the variable (lvalue). The required pointer

bounds must be within (subsumed) by the inferred bounds of the right-hand ex-

pression. (Subsumption also applies to initialization and function parameter pass-

ing.) This check allows assignment to narrow, but not to widen, the bounds of

the right-hand side value. Determining the required bounds is generally straight-

forward. In the simplest case, the bounds for pointers stored in a variable (lvalue)

are directly declared, e.g., for a local variable or function parameter. For assign-

ments to struct members, uses of struct members within the bounds expression for

81

the member are replaced with an appropriate struct access, For example, given:

struct S {

int len;

_Array_ptr <int > buf : count(len);

};

the required bounds for an assignment to a.buf are a.len.

Second, the compiler ensures bounds expressions are still valid after a state-

ment modifies a variable in that expression. For example, in Figure 3.3 the bounds

of s is count(i), but i is modified in a loop that iterates over s looking for a NUL

terminator. For _Array_ptr<T> types, the modification is justified by subsumption:

The updated bounds can be narrowed but not widened. For _Nt_array_ptr<T>

types, we can widen the bounds by 1 byte if we know that the rightmost byte is

’\0’, e.g., due to a prior check, as is the case in Figure 3.3.

At the moment subsumption checking is rather primitive. Some subsumption

checks for bounds declarations that could be statically proven are not. Currently,

the static analysis can only reason about bounds expressions that are syntactically

equivalent (modulo constant-folding and ignoring non-value changing operations)

and bounds expressions that are constant-sized ranges (syntactically equivalent base

expressions +/- constant offsets). The main issue is the need to perform a more

sophisticated dataflow analysis (at the Clang AST level) to gather and consider

relevant facts about relationships between variables (such as equalities and inequal-

ities).

The compiler complains when it cannot (dis)prove a subsumption check in

checked code. In our experimental evaluation, we manually review the warnings.

We insert the code in an _Unchecked block (for checks that are trivially obvious)

82

or perform a dynamic subsumption check with _Dynamic_bounds_cast (which elim-

inates the error).

We have designed but not yet implemented the analysis that checks assign-

ments to variables used in bounds declarations. For our experimental evaluation,

we verified by hand that such assignments do not happen.

3.2.3 Run-time Checks

The compiler inserts run-time checks into the evaluation of lvalue expressions

whose lvalue is derived from a checked pointer and whose lvalue will be used to

access memory. For example, *p produces an lvalue; the run-time check is part of

the evaluation of *p. These checks are added to the AST, which allows LLVM’s

optimizers to remove them if it can prove they will always pass.

Before any _Ptr<T> accesses the compiler inserts a check that the pointer

is non-null. Before any _Array_ptr<T> or _Nt_array_ptr<T> access the compiler

inserts a non-null check followed by the required bounds check computed from

the inferred bounds. The compiler does not perform any bounds checks during

pointer arithmetic. Programmers can insert dynamic checks (per Figure 3.2) via

_Dynamic_check and _Dynamic_bounds_cast; these, too, may be optimized away.

In some cases, such as a nested dereference expression like **p, we may have to

emit more than one set of dynamic checks: the first for the outer pointer dereference

and another for the inner pointer dereference. Similarly, these checks can be emitted

during the calculation of the upper or lower bounds for a bounds check.

83

The compiler should also disallow arithmetic on a checked pointer if (a) that

pointer is null, or (b) the arithmetic would overflow, since both operations could

produce a bogus pointer. We have not implemented these checks yet, but doing so

should be straightforward. The lack of these checks should not negatively impact

our experimental comparison in Section 3.4. Closely related systems Deputy [54]

and CCured [62] lack the overflow check, too, and null checks on pointer arithmetic

should be inexpensive because they are easily optimized. E.g., the null check on for

loop-guard *p would make redundant the null check on p++. Prior instructions and

control-flow often imply that null checks are redundant and we’re already doing null

checks for all checked memory access and struct base expressions. For example *p;

p++ is already doing the null check needed on p, as is p-¿f; p++. p[i] already has

a null check built in too (we check p before doing the pointer computation).

3.3 Automatic Porting

Porting legacy code to use Checked C’s features can be time consuming. To as-

sist the process, we developed a source-to-source translator called checked-c-convert

that discovers safely-used pointers and rewrites them to be checked. This section

describes the tool; it is evaluated in Section 3.4.2.

3.3.1 Conversion tool design and overview

checked-c-convert aims to be sound while also producing edits that are minimal

and unsurprising. A rewritten program should be recognizable by the author and

84

it should be usable as a starting point for both the development of new features

and additional porting. A particular challenge is to preserve syntactic structure of

the program. Previous, similar analyses rarely interact well with the preprocessor

(e.g., they consider macro expansions rather than the original macro) and sometimes

require combining multiple source files into one, prior to analysis. These choices are

problematic for us: We prefer to rewrite one file at a time (perhaps taking into

account whole-program knowledge) and preserve the definition and use of macros,

and other formatting, in the source code.

The checked-c-convert tool is implemented as a clang libtooling application. It

traverses a program’s abstract syntax tree (AST) to generate constraints based on

pointer usage, solves those constraints, and rewrites the program by promoting some

declared pointer types to be checked, and inserting some casts. The tool operates on

post-preprocessed code, but has sufficient location information to be able to rewrite

the original source files. Moreover, for macro expansions that have parameters, it

considers all expansions of those parameters together, so as to be able to rewrite the

original macro’s definition. In effect, this produces a context- and flow-insensitive

rewriting of macros, just as would occur for functions.

3.3.2 Constraint logic and solving

The basic approach is to infer a qualifier qi for each defined pointer variable

i. Inspired by CCured’s approach [62], qualifiers can be either PTR, ARR and

UNK, ordered as a lattice PTR < ARR < UNK. Those variables with inferred

85

qualifier PTR can be rewritten into _Ptr<T> types, while those with UNK are left

as is. Those with the ARR qualifier are eligible to have _Array_ptr<T> type. For

the moment we only signal this fact in a comment and do not rewrite because we

cannot always infer proper bounds expressions.

Qualifiers are introduced at each pointer declaration, i.e., parameter, variable,

field, etc. Constraints are introduced as a pointer is used, and take one of the

following forms:

qi = PTR | ARR | UNK | qj
qi = ARR ⇒ qj = ARR
qi = UNK ⇒ qj = UNK
¬(qi = PTR | ARR | UNK)

An expression that performs arithmetic on a pointer with qualifier qi, either

via + or [], introduces a constraint qi = ARR. Assignments between pointers

introduce aliasing constraints of the form qi = qj. Casts introduce implication

constraints based on the relationship between the sizes of the two types. If the sizes

are not comparable, then both constraint variables in an assignment-based cast are

constrained to UNK via an equality constraint. One difference from CCured is

the use of negation constraints, which are used to fix a constraint variable to a

particular Checked C type (e.g., due to a _Ptr<T> annotation). These would cause

problems for CCured, as they might introduce unresolvable conflicts. But Checked

C’s allowance of checked and unchecked code can resolve them using explicit casts

and bounds-safe interfaces, as discussed below.

Constraints are generated for each file individually, at first. Then these con-

straints are “linked” when it can be determined that they refer to the same global

86

definition. Solving the constraints produces a qualifier assignment qi = X where

X is PTR, ARR, or UNK. Each qualifier is initially assigned to PTR. Solving

the constraints works iteratively by propagating aliasing and equality constraints

to UNK first; then aliasing, equality and implication constraints involving UNK;

then aliasing, implication and equality constraints to ARR. This algorithm runs in

linear time proportional to the number of pointer variables in the program.

One problem with unification-based analysis is that a single unsafe use might

“pollute” the constraint system by introducing an equality constraint to UNK that

transitively constrains unified qualifiers to UNK as well. For example, casting

a struct pointer to a unsigned char buffer to write to the network would cause

all transitive uses of that pointer to be unchecked. The tool takes advantage of

Checked C’s ability to mix checked and unchecked pointers to solve this problem.

In particular, constraints for each function are solved locally, using separate qualifier

variables for each external function’s declared parameters.

Our modular algorithm runs as follows:

1. The AST for every compilation unit is traversed and constraints are generated

based on the uses of pointer variables. Each pointer variable that appears at

a physical location in the program is given a unique constraint variable. A

distinction is made for parameter and return variables depending on if the

associated function definition is a declaration or a definition:

• Declaration: There may be multiple declarations. The constraint vari-

ables for the parameters and return values in the declarations are all

87

constrained to be equal to each other.

• Definition: There will only be one definition. These constraint variables

are not constrained to be equal to the variables in the declarations. This

enables modular reasoning.

At call sites, the constraint variables used for a functions parameters and

return values come from those in the declaration, not the definition.

2. After the AST is traversed, the constraints are solved using unification. The

result is a set of satisfying assignments to pointer constraint variables.

3. Then, the AST is re-traversed. At each physical location associated with a

constraint variable, a re-write decision is made based on the value of the con-

straint variable. These physical locations are variable declaration statements,

either as members of a struct, function variable declarations, or parameter

variable declarations. There is a special case, which is any constraint variable

appearing at a parameter position, either at a function declaration/definition,

or, a call site.

• Declaration or definition: The re-write decision is based off of the imbal-

ance between the constraint variables on the declaration, and the con-

straint variables on the definition. There are three cases:

– No imbalance: In this case, the re-write is made based on the value

of the constraint variable in the solution to the unification

– Declaration is safer than definition: In this case, there is nothing to

88

do for the function, since the function does unknown things with the

pointer. This case will be dealt with at the call site.

– Decalaration is less safe than definition: In this case, there are call

sites that are unsafe, but the function itself is fine. We can re-write

the function declaration and definition with a bounds-safe interface.

• Call site: The only decision here is whether or not the declaration is

safer than definition case holds for the function called at the call site. If

it does, a cast is inserted.

4. All of the re-write decisions are then applied to the source code of the program.

This modular reasoning can result in conflicting constraints once completed,

i.e. the constraint variable for the parameter in the function definition has a different

valuation than the constraint variable for the parameter at the functions use. These

conflicts are the result of two different cases: either the caller is less safe than the

callee, or vice versa. These cases can be determined by considering the relationship

between the valuations on the PTR to UNK lattice.

For an example of when the caller is less safe than the callee, consider the

case where a function might make safe use of the parameter within the body of

the function, but a caller of the function might perform casts or operations on the

parameter value that would prohibit the value from becoming a _Ptr<T>. In this

situation, we would like to make the parameter a _Ptr<T>, to allow for checked

uses of the function and to check the function itself, but we cannot do so straight

away because the function is used in at least one “unsafe” context. Our solution is

89

to instead change the parameter to a bounds safe interface type. This allows the

function to be simultaneously addressed from both checked and unchecked code.

If instead the caller is safer than the callee (e.g., the caller passes a _Ptr<int>

to a function that requires a int*), we insert a cast at the call site. This cast makes

evident to the programmer the potential risk of the call, and can be fixed manually

if the callee is conservatively misclassified by the tool.

This approach has advantages and disadvantages. It favors making the fewest

number of modifications across a project. One alternative would be to change the

parameter type to a _Ptr<T>directly, and then insert casts at each call site. This

would tell the programmer where potentially bogus pointer values were, but would

also increase the size of the changes made. Our approach does not immediately tell

the programmer where the pointer changes need to be made. However, the Checked

C compiler will, if the programmer takes a bounds-safe interface and manually

converts it into a non-interface _Ptr<T>type. Every location that would require a

cast will fail to type check.

3.3.3 Example

Consider the following function and it’s calling context:

void f1(int *a) {

*a = 0;

}

void caller(void) {

int q = 0;

f1(&q);

f1(((int*) 0x8f8000));

}

90

The function f1 is safe and the parameter could be re-written to be a _Ptr

<T>if considered in isolation. However, it is used from an unsafe context. This

is unfortunate - perhaps the unsafe context ought to be re-visited. Either way, it

would be nice to have an incremental conversion that makes f1 a little safer than it

was before.

Instead of tying the constraints for formal and actual parameters together

globally, we can keep them separate, run unification, and then compare the difference

between the formal and actual parameters to functions. If the actual parameters,

i.e. the variables constrained by uses of f1 in caller, are less permissive than those

in the function definition, then that implies there is an “unsafe” context the function

is called from, but the function itself is “safe”. Checked C gives us a mechanism

to reason about and express this situation: bounds-safe interfaces. The re-writer

would, in the face of the above situation, output the following re-write to f1:

void f1(int *a : itype(_Ptr <int >)) {

*a = 0;

}

The itype syntax indicates that a can be supplied by the caller as either an

int* or a _Ptr<T>, but the function body will treat a as a _Ptr<T>.

3.4 Empirical Evaluation

This section presents an evaluation of the Checked C compiler and porting

tool, considering performance and efficacy.

91

Name LoC Description

bh 1,162 Barnes & Hut N-body force computation
bisort 262 Sorts using two disjoint bitonic sequences
em3d 476 Simulates electromagnetic waves in 3D
health 338 Simulates Columbian health-care system
mst 325 Minimum spanning tree using linked lists
perimeter 399 Perimeter of quad-tree encoded images
power 452 The Power System Optimization problem
treadd 180 Sums values in a tree
tsp 415 Estimates Traveling-salesman problem
voronoi 814 Voronoi diagram of a set of points

anagram 346 Generates anagrams from a list of words
bc 5,194 An arbitrary precision calculator
ft 893 Fibonacci heap Minimum spanning tree
ks 549 Schweikert-Kernighan partitioning
yacr2 2,529 VLSI channel router

Table 3.1: Compiler Benchmarks. Top group is the Olden suite, bottom group is
the Ptrdist suite. Descriptions are from [68,69]. We were unable to convert voronoi
from the Olden suite and bc from the Ptrdist suite using the current version of
Checked C.

3.4.1 Compiler evaluation

We converted two existing C benchmarks as an initial evaluation of the con-

sequences of porting code to Checked C. We quantify both the changes required

for the code to become checked, and the overhead imposed on compilation, running

time, and executable size.

We chose the Olden [68] and Ptrdist [69] benchmark suites, described in Ta-

ble 3.1, because they are specifically designed to test pointer-intensive applica-

tions, and they are the same benchmarks used to evaluate both Deputy [54] and

CCured [62]. We did not convert bc from the Ptrdist suite and voronoi from the

Olden suite for lack of time, but plan to soon.

92

Code Changes Observed Overheads

Name LM % EM % LU % RT ±% CT ±% ES ±%

bh 10.0 76.7 5.2 +0.2 +23.8 +6.2
bisort 21.8 84.3 7.0 0.0 +7.3 +3.8
em3d 35.3 66.4 16.9 +0.8 +18.0 -0.4
health 24.0 97.8 9.3 +2.1 +18.5 +6.7
mst 30.1 75.0 19.3 0.0 +6.3 -5.0
perimeter 9.8 92.3 5.2 0.0 +4.9 +0.8
power 15.0 69.2 3.9 0.0 +21.6 +8.5
treadd 17.2 92.3 20.4 +8.3 +83.1 +7.0
tsp 9.9 94.5 10.3 0.0 +47.6 +4.6

anagram 26.6 67.5 10.7 +23.5 +16.8 +5.1
ft 18.7 98.5 6.3 +25.9 +16.5 +11.3
ks 14.2 93.4 8.1 +12.8 +32.3 +26.7
yacr2 14.5 51.5 16.2 +49.3 +38.4 +24.5

Mean: 17.5 80.1 9.3 +8.6 +24.3 +7.4

Table 3.2: Benchmark Results. Key: LM % : Percentage of Source LoC Modified,
including Additions; EM % : Percentage of Code Modifications deemed to be Easy
(see 3.4.1.1); LU % : Percentage of Lines remaining Unchecked; RT ±% : Percentage
Change in Run Time; CT ±% : Percentage Change in Compile Time; ES ±% :
Percentage Change in Executable Size (.text section only). Mean: Geometric
Mean.

The evaluation results are presented in Table 3.2. These were produced using a

12-Core Intel Xeon X5650 2.66GHz, with 24GB of RAM, running Red Hat Enterprise

Linux 6. All compilation and benchmarking was done without parallelism. We ran

each benchmark 21 times with and without the Checked C changes using the test

sizes from the LLVM versions of these benchmarks. We report the median; we

observed little variance.

93

3.4.1.1 Code Changes

On average, we modified around 17.5% of benchmark lines of code. Most

of these changes were in declarations, initializers, and type definitions rather than

in the program logic. In the evaluation of Deputy [70], the reported figure of lines

changed ranges between 0.5% and 11% for the same benchmarks, showing they have

a lower annotation burden than Checked C.

We modified the benchmarks to use checked blocks and the top-level checked

pragma. We placed code that could not be checked because it used unchecked point-

ers in unchecked blocks. On average, about 9.3% of the code remained unchecked

after conversion, with a minimum and maximum of 3.9% and 20.4%. The cause was

almost entirely variable-argument printf functions.

We manually inspected changes and divided them into easy changes and hard

changes. Easy changes include: replacing included headers with their checked ver-

sions; converting a T* to a _Ptr<T>; adding the _Checked keyword to an array

declaration; introducing a _Checked or _Unchecked region; adding an initializer; and

replacing a call to malloc with a call to calloc. Hard changes are all other changes,

including changing a T* to a _Array_ptr<T> and adding a bounds declaration,

adding structs, struct members, and local variables to represent run-time bounds

information, and code modernization.

In all of our benchmarks, we found the majority of changes were easy. In six of

the benchmarks, the only “hard” changes were adding bounds annotations relating

to the parameters of main.

94

In three benchmarks—em3d, mst, and yacr2—we had to add intermediate

structs so that we could represent the bounds on _Array_ptr<T>s nested inside

arrays. In mst we also had to add a member to a struct to represent the bounds on

an _Array_ptr<T>. In the first case, this is because we cannot represent the bounds

on nested _Array_ptr<T>s, in the second case this is because we only allow bounds

on members to reference other members in the same struct. In em3d and anagram

we also added local temporary variables to represent bounds information. In yacr2

there are a lot of bounds declarations that are all exactly the same where global

variables are passed as arguments, inflating the number of “hard” changes.

3.4.1.2 Observed Overheads

The average run-time overhead introduced by added dynamic checks was 8.6%.

In more than half of the benchmarks the overhead was less than 1%. We believe

this to be an acceptably low overhead that better static analysis may reduce even

further.

In all but two benchmarks—treadd and ft—the added overhead matches (is

within 2%) or betters that of Deputy. For yacr2 and em3d, Checked C does substan-

tially better than Deputy, whose overheads are 98% and 56%, respectively. Checked

C’s overhead betters or matches that reported by CCured in every case but ft.

On average, the compile-time overhead added by using Checked C is 24.3%.

The maximum overhead is 83.1%, and the minimum is 4.9% faster than compiling

with C.

95

We also evaluated code size overhead, by looking at the change in the size of

.text section of the executable. This excludes data that might be stripped, like

debugging information. Across the benchmarks, there is an average 7.4% code size

overhead from the introduction of dynamic checks. Ten of the programs have a code

size increase of less than 10%.

3.4.2 Porting Tool Evaluation

We also evaluated the efficacy of our porting tool. To do so, we ran it on six

programs and libraries and recorded how many pointer types the rewriter converted

and how many casts were inserted. We chose these programs as they represent

legacy, low level libraries that are used in commodity systems and frequently in

security-sensitive contexts.

Table 3.3 contains the results. The value in the _Ptr<T> column indicates

the number of _Ptr<T> added to the program that replace standard C pointers.

These are re-written at the location they are declared. After investigation, there

are usually two reasons that a pointer cannot be replaced with a _Ptr<T>: either

some arithmetic is performed on the pointer, or it is passed as a parameter to a

library function for which a bounds-safe interface does not exist. We consider a

value replaced by _Ptr<T>whether or not it was inserted as a bounds-safe interface.

The table also indicates the versions of each program as computed with cloc and

the number of casts inserted, compared to the percentage of call sites re-written to

include casts, as well as the number of functions replaced with bounds-safe interfaces.

96

This experiment represents the first step a developer would take to adopting

Checked C into their project. The values converted into _Ptr<T> by the re-writer

need never be considered again during the rest of the conversion or by subsequent

software assurance / bug finding efforts.

97

P
ro

g
ra

m
#

o
f
*

%
/#

P
tr

A
rr

.
U

n
k
.

C
a
st

s(
C

a
ll

s)
In

te
rf

a
ce

s(
F
u
n
ct

io
n

s)
L

O
C

zl
ib

1.
2.

8
45

14
46

%
/2

07
6

5%
/2

22
49

%
/2

21
6

8
(3

00
)

46
4

(1
18

8)
17

38
8

sq
li
te

3.
18

.1
34

23
0

38
%
/1

31
48

3%
/9

10
59

%
/2

01
72

20
96

(2
94

62
)

91
32

(2
33

05
)

10
68

06
p
ar

so
n

11
32

35
%
/3

92
1%

/1
4

64
%
/7

26
3

(3
78

)
34

0
(4

54
)

23
20

lu
a

5.
3.

4
15

11
4

23
%
/3

46
4

1%
/1

03
76

%
/1

15
47

17
5

(1
44

3)
78

4
(2

70
8)

13
57

7
li
b
ti

ff
4.

0.
6

34
51

8
26

%
/8

94
0

1%
/4

24
73

%
/2

51
54

49
5

(1
98

6)
19

16
(5

81
2)

62
43

9

T
ab

le
3.

3:
N

u
m

b
er

of
p

oi
n
te

r
ty

p
es

co
n
ve

rt
ed

.
T

h
e

#
of

*
co

lu
m

n
re

p
re

se
n
ts

th
e

n
u
m

b
er

of
p

oi
n
te

r
ty

p
es

in
th

e
p
ro

gr
am

.
T

h
e

A
rr

an
d

U
n
k

co
lu

m
n
s

re
p
re

se
n
t

co
n
st

ra
in

ts
w

h
er

e
th

e
re

w
ri

te
r

d
et

er
m

in
ed

th
at

th
e

ac
ce

ss
in

to
th

e
p

oi
n
te

r
w

as
v
ia

in
d
ex

in
g

(A
rr

)
or

th
at

th
e

co
n
st

ra
in

ts
ca

n
’t

b
e

ca
p
tu

re
d

b
y

th
e

re
w

ri
te

r
(U

n
k
)

d
u
e

to
ca

st
s,

as
si

gn
m

en
t

to
a

n
on

-z
er

o
li
te

ra
l,

or
so

m
e

ot
h
er

op
er

at
io

n
.

T
h
e

C
as

ts
co

lu
m

n
re

p
re

se
n
ts

th
e

n
u
m

b
er

of
ca

st
s

in
se

rt
ed

,
co

m
p
ar

ed
to

th
e

p
er

ce
n
ta

ge
of

ca
ll

si
te

s
th

at
w

er
e

re
-w

ri
tt

en
to

in
cl

u
d
e

a
ca

st
.

T
h
e

In
te

rf
ac

es
co

lu
m

n
re

p
re

se
n
ts

th
e

fu
n
ct

io
n
s

th
at

w
er

e
m

o
d
ifi

ed
to

u
se

a
b

ou
n
d
s-

sa
fe

in
te

rf
ac

e.

98

3.5 Related work

There has been extensive research addressing out-of-bounds memory accesses

in C [52]. The research falls into 4 categories: languages, implementations, static

analysis, and security mitigations.

Safe languages

Cyclone [53] and Deputy [54, 70] are type-safe dialects of C. Cyclone’s key

novelty is its support for GC-free temporal safety [71, 72]. Checked C differs from

Cyclone by being backward compatible (Cyclone disallowed many legacy idioms)

and avoiding pointer format changes (e.g., Cyclone used “fat” pointers to support

arithmetic). Deputy keeps pointer layout unchanged by allowing a programmer to

describe the bounds using other program expressions. Checked C builds on this,

but make bounds checking a first-class part of the language. Deputy incorporates

the bounds information into the types of pointers by using dependent types. This

makes type checking hard to understand. Deputy requires that values of all pointers

stay in bounds so that they match their types. To enforce this invariant (and make

type checking decidable), it inserts run-time checks before pointer arithmetic, not

at memory accesses. Checked C uses separate annotations that describe bounds

invariants instead of incorporating bounds into pointer types and inserts run-time

checks at memory accesses.

Like Cyclone, programming languages like D [73] and Rust [55] aim to support

safe, low-level systems-oriented programming without requiring GC. Go [56] and C#

99

[74] target a similar domain. Legacy programs would need to be ported wholesale

to take advantage of these languages, which could be a costly affair.

Safe C implementations

Rather than use a new language, several projects have looked at new ways to

implement legacy C programs so as to make them spatially safe. The bcc source-

to-source translator [75] and the rtcc compiler [76] changed the representations of

pointers to include bounds. The rtcc-generated code was 3 times larger and about

10 times slower. Fail-Safe C [77] changed the representation of pointers and integers

to be pairs. Benchmarks were 2 to 4 times slower. CCured [62] employed a whole-

program analysis for transforming programs to be safe. Its transformation involved

changes to data layout (e.g., fat and “wild” pointers), which could cause interop-

eration headaches. Compilation was all-or-nothing: unhandled code idioms in one

compilation unit could inhibit compilation of the entire program. Our rewriting

algorithm is inspired by CCured’s analysis with the important differences that (a)

not every pointer need be made safe, and (b) the output is not a step in compilation,

but programmer-maintainable source code.

Safety can also be offered by the loader and run-time system. “Red zones”,

used by Purify [78, 79] are inserted before and after dynamically-allocated object

and between statically-allocated objects, where bytes in the red zone are marked as

inaccessible (at a cost of 2 bits per protected byte). Red-zone approaches cannot

detect out-of-bounds accesses that occur entirely within valid memory for other

100

objects or stack frames or intra-object buffer overruns (a write to an array in a

struct that overwrites another member of the struct). Checked C detects accesses

to unrelated objects and intra-object overruns.

Similar tools include Bounds Checker [80], Dr. Memory [81, 82], Intel In-

spector [83], Oracle Solaris Studio Code Analyzer [84], Valgrind Memcheck [85,86],

Insure++ [87], and AddressSanitizer (ASAN) [64]. ASAN is incorporated into the

LLVM and GCC compilers. It tracks the state of 8-byte chunks in memory. It in-

creases SPEC CPU program execution time by 73% when checking reads and writes

and 26% when only checking writes. SPEC CPU2006 average memory usage is 3.37

times larger. Light-weight Bounds Checking [88] uses a two-level table to reduce

memory overhead.

Checking that accesses are to the proper objects can be done using richer side

data structures that track object bounds and by checking that pointer arithmetic

stays in bounds [63,89–94]. Baggy Bounds Checking [92] provides a fast implemen-

tation of object bounds by reserving 1/n of the virtual address space for a table,

where n is the smallest allowed object size and requiring object sizes be powers of

2. It increases SPECINT 2000 execution time by 60% and memory usage by 20%.

SoftBound [63] tracks bounds information by using a hash table or a shadow copy

of memory. It increases execution time for a set of benchmarks by 67% and av-

erage memory footprint by 64%. SoftBound can check only writes, in which case

execution time increases by 22%. For libraries that cannot be recompiled, wrapper

functions must be provided that update metadata. Checked C only requires that

checked headers be provided.

101

There is also work on adding temporal safety with different memory allocation

implementations, e.g., via conservative garbage collection [95] or regions [71, 72].

Checked C focuses on spatial safety both due to its importance at stopping code

injection style attacks as well as information disclosure attacks, though temporal

safety is important and we plan to investigate it in the future.

Static analysis

Static analysis tools take source or binary code and attempt to find possible

bugs, such as out-of-bounds array accesses, by analyzing the code. Commercial tools

include CodeSonar, Coverity Static Analysis, HP Fortify, IBM Security AppScan,

Klocwork, Microsoft Visual Studio Code Analysis for C/C++, and Polyspace Static

Analysis [57, 96, 97]. Static analysis tools have difficulty balancing precision and

performance. To be precise, they may not scale to large programs. While impre-

cision can aid scalability, it can result in false positives, i.e., error reports that do

not correspond to real bugs. False positives are a significant problem [57]. As a

result, tools may make unsound assumptions (e.g., inspecting only a limited num-

ber of paths through function [96]) but the result is they may also miss genuine

bugs (false negatives). Alternatively, they may focus on supporting coding styles

that avoid problematic code constructs, e.g., pointer arithmetic and dynamic mem-

ory allocation [58, 59, 98, 99]. Or, they may require sophisticated side conditions on

specifications, i.e., as pre- and post-conditions at function boundaries, so that the

analysis can be modular, and thus more scalable [100]. Additionally, some work [7]

102

focuses on analyzing string manipulating programs written in C and inferring mod-

ular contracts for those programs.

Checked C occupies a different design point than static analysis tools. It

avoids problems with false positives by deferring bounds checks to run-time—in

essence, it trades run-time overhead for soundness and coding flexibility. In ad-

dition, Checked C avoids complicated specifications on functions. For example, a

modular static analysis might have required the code in Figure 3.2 to include that

src_count ≤ dst_count as a function pre-condition. While this constraint is not

particularly onerous, some specifications can be. In Checked C, such side conditions

are unnecessary; instead, soundness ensured by occasional dynamic checks.

Security mitigations

Security mitigations employ run-time-only mechanisms that detect whether

memory has been corrupted or prevent an attacker from taking control of a system

after such corruption. They include data execution prevention (DEP), software

fault isolation (SFI) [101] , address-space layout randomization (ASLR) [102, 103],

stack canaries [104], shadow stacks [105, 106], and control-flow integrity (CFI) [61].

DEP, ASLR, and CFI focus on preventing execution of arbitrary code and control-

flow modification. Stack protection mechanisms focus on protecting data or return

addresses on the stack.

Checked C provides protection against data modification and data disclosure

attacks, which the other approaches do not. For example, ASLR does not protect

103

against data modification or data disclosure attacks. Data may be located on the

stack adjacent to a variable that is subject to a buffer overrun; the buffer overrun

can be be used reliably to overwrite or read the data. Shadow stacks do not protect

stack-allocated buffers or arrays, heap data, and statically-allocated data. Chen et

al. [107] show that data modification attacks that do not alter control-flow pose a

serious long-term threat. The Heartbleed attack illustrates the damage possible.

3.6 Summary

This chapter presented Checked C, an extension to C to help enforce spatial

safety. Checked C’s design is focused on interoperability with legacy C, usability,

and efficiency. Checked C’s novel notion of checked regions ensures that “checked

code cannot be blamed” for a safety violation. Our implementation of Checked

C as a Clang/LLVM extension enjoys good performance. To assist in incremen-

tally strengthening legacy code, we have developed a porting tool for automatically

rewriting code to use checked pointers.

104

Chapter 4: Volume Estimation for Numeric Invariant Generation

4.1 Introduction

One approach taken to identify defects in software is static analysis via ab-

stract interpretation. A key part of this analysis is choosing an abstraction for pro-

gram states, usually program variables. Sometimes this abstraction can be simple

while enabling useful analyses, for example identifying unused variables or constant

pointer values. However, sometimes a numeric abstraction is required that will relate

numeric variables to either each other or numeric constants. We first encountered

this when conceptualizing a static analyzer that could be used to prove the absence

of timing based side channels [6], a project for which we wrote a static analyzer for

Java bytecode that used numeric abstractions.

While implementing this analyzer, we surveyed the literature on the design

and implementation of static analyzers, especially with regards to key features:

should the analyzer operate in a top down or bottom up manner? Should the

analysis be intra-procedural or inter-procedural? What abstraction should be made

of references or the heap? We saw no clear systematic evaluation of the trade-

offs involved in constructing such analyzer, so we conducted one, published in the

European Symposium on Programming (ESOP) 2018 [8].

105

This evaluation instantiated our numeric analyzer with the different combina-

tion of configurations. Each analyzer configuration tried to prove whether or not

array accesses contained within the DaCapo [108] were in bounds, and a configura-

tion was judged to be better than another if it could prove more accesses in bounds

than the other.

However, we only implemented and evaluated numeric abstraction using single

element abstractions. One restriction with these abstractions, such as intervals [109],

octagons [110], and polyhedra [111] is that they are convex. A convex abstraction

is unable to represent the absence of one or more concrete states within its volume.

This causes problems, for instance, when attempting to prove that a division by

zero is not possible because the set of all integers except zero is not representable

with a single convex abstraction. To work around this problem, a common ap-

proach [112, 113] is to use a powerset abstraction [114]. A powerset abstraction

represents a non-convex set of states as a finite set of convex abstractions. Since

(linear) convex abstractions are representable as a conjunction of hyperplanes, we

refer to these powerset abstractions as disjunction abstractions. For instance, we

can represent that x is equal to any integer except zero using a disjunction of two

interval constraints: x ≤ −1 ∨ x ≥ 1.

While disjunction abstractions solve the problem of representing holes within

a convex numeric abstraction, they also introduce a new problem: performance. In-

stead of performing an operation on a single convex abstraction, the analysis must

perform operations on each convex abstraction. Furthermore, if a disjunction is

introduced at each branch in the program [115], the number of disjuncts is expo-

106

nential in the number of branches. Loops cause further problems because they can

effectively introduce an unbounded number of branches, leading to an analysis that

does not terminate.

To resolve this problem we turn to merging. A merge heuristic is responsible

for determining whether two convex numeric abstractions should be combined using

a hulling operation or maintained as separate disjuncts. In [112], the authors propose

a heuristic based on Hausdorff distance. In [113], the authors propose a heuristic

based on the number of common hyperplanes. The problem with both of these

approaches is that they do not relate directly to what the abstractions represent:

concrete states.

This chapter studies merge heuristics based on the number of concrete states

that are affected by a potential merge. For instance, if two abstract states have no

concrete states in common, then perhaps they should not be merged. Alternatively,

if hulling two abstract states yields the same set of concrete states as taking their

union, they should be merged as in [116].

In this chapter we focus on bounded polytope abstractions, which are poly-

tope abstractions with finite bounds. We study polytopes because, unlike inter-

vals [117,118], appropriate merge heuristics for polytopes are non-obvious. Further-

more, operations on polytopes have higher complexity than operations on octagons

or intervals and thus make differences between merge heuristics more obvious in

empirical study. Regardless, we expect that the precision results would extend to

other convex numeric abstractions. In order to study volume-based merge heuris-

tics, we require computable volumes. Therefore we restrict polytopes to machine

107

integer bounds with the assumption that integer overflow is checked. We make the

following contributions.

• In Section 4.3 we develop heuristics based on the volume of the intersection of

two polytopes relative to the volume of their union. We also develop heuristics

based on the volume of the hull of two polytopes relative to the volume of their

union.

• In Section 4.4 we describe how to use Markov Chain Monte Carlo algorithms

to incrementally approximate relative volumes of polytopes, and we show how

to use Barvinok’s algorithm [119] to count integer points in polytopes. We

also describe a segments-based affinity score that does not require a direct

hull computation.

• In Section 4.5 we present a disjunctive abstract domain that utilizes various

heuristics to determine which disjuncts to merge.

• In Sections 4.6 and 4.7 we integrate the abstract domain into an analyzer

and use that analyzer to produce invariants for a range of programs in the

SV-COMP and WCET benchmark suites.

Attribution and acknowledgment

This work was previously published in the 2018 proceedings of the Static

Analysis Symposium as ”Volume-Based Merge Heuristics for Disjunctive Numeric

Domains” with co-authors Kesha Hietala and Arlen Cox. Arlen had the insight to

108

use volume as a heuristic, Andrew investigated and implemented the inclusion of the

heuristic into a static analyzer. Arlen, Andrew and Kesha all thought about how

intersection and hull volume could be used for affinity, Andrew conceived of and

implemented using Barvinok for affinity measurement. Andrew also implemented

the static analysis integration and carried out the experiments. Kesha and Arlen

implemented the MCMC hull relaxation volume estimator.

4.2 Overview and Example

Consider a typical forward abstract interpretation [120] of the program shown

in Figure 4.1a. The analysis should establish as strong an invariant as possible at

the point where the branches A, B, and C have been joined together. We want to

strike a balance between precision and performance: our invariant should be strong

enough to allow us to prove interesting properties of the program, but we should

not have to spend an unreasonable amount of computational power.

Figure 4.1b shows the situation that arises. There are three disjoint polytopes.

Each describes a range of values that can be assumed by x and y when the branches

are joined together at the end of Figure 4.1a. Now consider a case where we are

allowed to describe the state using a disjunction of at most two polytopes. Then we

must choose to merge two of A, B, or C. The question is, which two will result in

the least loss of precision? The observation we make is that precision loss is related

to volume. When the volume increases as a result of a merge, that represents

a precision loss. The magnitude of the increase in volume is also related to the

109

assume (0 <= y <= 3);

assume(-5 <= x <= 4)

;

if(x <= -2) {

assume(y <= 1);

// A

} else if(x == 0) {

// B

} else if(x >= 1) {

// C

} else {

assume(false);

}

x

y

A

B C

A tB

B t C

a b

Figure 4.1: Example of merging disjuncts. (a) Program that produces three dis-

juncts. (b) Three disjuncts shown as three convex polytopes. Red (resp. blue)

dashed lines show the merge results of A and B (resp. B and C). Dots show integer

points added in merging.

magnitude of the loss of precision. It is therefore desirable to merge the disjuncts

that minimize the change in volume. In short: can we speculatively calculate or

estimate the volume increase from a proposed disjunctive merge, and let that guide

the management of our disjuncts? We will consider answering this question using

two different volume calculation methods.

First, we consider an integer point counting method. We can see in Figure 4.1b

that merging A and B will cause four new points (shown in red) to be added to

the approximation of the state space, while merging B and C will not result in any

110

change in the number of integer points. Therefore we choose to merge disjuncts B

and C while keeping A distinct.

Second, we consider a real approximation of the integer points methods. We

can see that if we merge A and B, the volume increases by 7 (red dashed shape),

whereas if we merge B and C the volume increases by 3 (blue dashed shape). There-

fore we choose to merge disjuncts B and C while keeping A distinct.

In the remainder of the chapter we precisely describe the comparison tech-

niques used in this section. Both integer point methods and real approximation

methods are considered.

4.3 Semantic Comparison of Polytopes

This section develops affinity scores between polytopes. An affinity score is

a value in the range [0,1] assigned to a pair of polytopes where a 0 suggests that

the polytopes may not be related and a 1 suggests that the polytopes are definitely

related. Polytopes with an affinity score higher than a (user-specified) threshold will

be merged. Table 4.1 summarizes the two affinity scoring mechanisms evaluated in

this chapter.

Each affinity score is defined in two ways: over integers and over reals. For

integers, the affinity score is given by the cardinality of point sets. For reals, the

affinity score is given by the volume of the solids. The computation of both the

cardinality of the point sets and the volume of the solids requires that the polytopes

are bounded to avoid infinite results. Integer affinity scores are given a Z subscript

111

Table 4.1: Affinity scores measure the similarity between two convex polytopes and

can be used to determine which polytopes to merge. We define |A|Z to be the

cardinality of
{

x ∈ Zd
∣∣ x ∈ A

}
and |A|R to be the volume of the polytope A.

Affinity Score Integer Real

Intersection volume iZ(A,B) =
|A ∩B|Z
|A ∪B|Z

iR(A,B) =
|A ∩B|R
|A ∪B|R

Added hull volume hZ(A,B) =
|A ∪B|Z
|hull(A,B)|Z

hR(A,B) =
|A ∪B|R
|hull(A,B)|R

and real affinity scores are given a R subscript.

x

y

A

B

x

y

A

B

x

y

A

B

a b c

Figure 4.2: Example polytopes that motivate different affinity scoring systems

To motivate the different affinity scoring systems, we use the examples shown

in Figure 4.2. Figure 4.2a shows two polytopes that are similar because they have a

large overlap. Figure 4.2b shows two polytopes that are similar because they abut

(and hence merging them will result in no loss of precision). During static analysis,

we often encounter examples like the one in Figure 4.2b because when we branch

on an if statement, for the ‘then’ branch we assume one half-space and for the ‘else’

branch we assume the other half-space (in this case separated by x = 3). We also

112

often encounter examples like Figure 4.2c, which has a gap of size one. This is due to

branching on integer variables: if we branch on x ≥ 3, our else constraint is x ≤ 2.

Definition 1 (Intersection volume affinity). Intersection volume affinity is defined

as the ratio between the volume of the intersection of the polytopes and the volume

of the union of the polytopes. It is defined in the first row of Table 4.1.

Intuitively, intersection volume is a good scoring mechanism because it merges

polytopes that have large overlaps. The hull of two polytopes with a large intersec-

tion will not be significantly larger than the polytopes themselves. However, a small

or non-existent intersection between two polytopes does not indicate anything about

the size of their hull. What is particularly useful about this scoring mechanism is

that the hulling operation can be skipped if unneeded. Since the hulling operation is

potentially exponential time for arbitrary polytopes, this could lead to performance

benefits.

Example 1 (Intersection volume affinity). For Figure 4.2a, iZ is 9
23
≈ 0.39 and iR

is 4
14
≈ 0.29. For Figure 4.2b, iZ is 1

5
= 0.2 and iR is 0. For Figure 4.2c, both iZ

and iR are 0.

Definition 2 (Added hull volume affinity). Added hull volume affinity is defined as

the ratio between the volume of the union of the polytopes and the volume of the hull

of the polytopes. It is defined in the second row of Table 4.1.

Due to the situation that occurs in Figures 4.2b and 4.2c, we also consider hull

volume affinity, which corresponds directly to the volume/number of points that are

113

gained through the hulling process. This scoring mechanism aims to minimize the

total number of points represented by an abstraction.

Example 2 (Added hull volume affinity). For Figure 4.2a, hR is 14
15
≈ 0.93. For

Figure 4.2b, hR is 1. For Figure 4.2c, hR is 12
16

= 0.75. For all three figures, hZ is 1.

Other affinity scores are documented in the literature. The simplest affin-

ity [121] is the null affinity, which always returns an affinity score of zero. Another

affinity score [113] is the ratio between the number of half planes preserved by a

hulling operation and the number of half planes in the two polytopes. This is bi-

ased to preserve complexity in the representation, but shares with the hull volume

affinity the property that it tends to assign high scores to polytopes that do not

add too many points in hulling. In [112] there is an affinity score that is based on

the Hausdorff distance. This affinity tends to merge polytopes that are not too far

apart, but does not consider points gained by the hulling operation.

4.4 Sampling and Counting Points

In this section we describe the techniques we use to implement affinity scores.

Affinity scores are computed with one of two general techniques. They are either

computed by counting integer points within polytopes or by calculating ratios of

volumes of polytopes.

114

4.4.1 Integer-Point-Based Affinity

To implement iZ and hZ we need to be able to compute answers to problems of

the form |A|Z / |B|Z. We accomplish this by computing individually |A|Z and |B|Z

and then dividing. The key to doing this is the use of the Barvinok algorithm [119]

and its corresponding tool [10]. The Barvinok algorithm has complexity LO(d log d)

for L input constraints and dimension d [122]. The Barvinok library (developed from

PolyLib [123]) is an optimized implementation of this algorithm and can efficiently

compute the precise cardinality of integer polytopes. The details of this algorithm

are beyond the scope of this chapter.

4.4.2 Volume-Ratio-Based Affinity

To implement iR and hR we need to be able to compute ratios of volumes

of high-dimension polytopes. Directly computing the volume of high-dimension

polytopes is a computationally complex problem and we need to do the operation

twice for each merge candidate. Therefore, we develop the methodology used here

more carefully.

For our purposes, it is not strictly necessary to compute volumes because the

end result is not a volume, but rather a ratio of volumes. Exploiting this reduces

the amount of computation that we have to do. If we can sample uniformly from the

polytope in the denominator, we can count the number of samples that occur in the

numerator to iteratively approximate the ratio of the volumes of the polytopes. To

sample from a polytope, we borrow from techniques for approximating the volume of

115

polytopes [124,125], which use Markov Chain Monte Carlo (MCMC) [126] sampling

algorithms to produce a Markov chain whose limiting distribution is equal to a given

distribution.

Definition 3 (Sampling intersection volume affinity). Let R(A)n be an n-cardinality

set of random points uniformly distributed in a polytope A. The sampling intersec-

tion volume ratio of polytopes A and B given n samples is

inR(A,B) =
|{ x ∈ R(A ∪B)n | x ∈ A ∩B }|

n

Definition 4 (Sampling added hull volume affinity). Given R(A)n as above, the

sampling hull volume ratio of polytopes A and B given n samples is

hnR(A,B) =
|{ x ∈ R(hull(A,B))n | x ∈ A ∪B }|

n

These definitions give iterative approximations of the affinity functions that

become closer to the actual function as the number of samples increases. In the

limit they compute the precise volume ratios given in Table 4.1.

The complexity of MCMC sampling is polynomial in the dimension of the

polytope. Generating each sample is polynomial, and typically a polynomial num-

ber of samples is sufficient to get decent coverage of the polytope. However, the

complexity of the hull operation is potentially exponential in the dimension of the

polytope. Therefore the dominating factor in the complexity of the sampling hull

volume affinity is the hull operation. The sampling intersection volume affinity is

attractive because it does not incur this exponential cost. However, it does re-

quire uniform sampling from a union of two convex polytopes, which basic MCMC

116

sampling does not support. We get around this with the following modification:

inR(A,B) =

∣∣{ x ∈ R(A)n/2 ∪R(B)n/2
∣∣ x ∈ A ∩B }∣∣

n

This only requires sampling from convex polytopes and is thus polynomial time, but

results in increased sample density in the smaller polytope and in the intersecting

region.

4.4.3 Segment-Sample Volume-Ratio-Based Affinity

To avoid the complexity of the hull operation used in the sampling hull volume

affinity, we also define a segment-sample-based affinity. This affinity is inspired by

the definition of convex hull, where every point on every line segment between points

in the two polytopes is included in the hull.

Definition 5 (Segment-sample volume-ratio-based affinity). Let S(A,B)n = R(A)n ×R(B)n|n

where R(A)n is as given above and ·|n randomly picks n elements of the set. Let

`((x, y), A) be the length of the line segment between x and y contained within the

polytope A. Define |x− y| to be the distance between x and y. The segment-sample

volume-ratio-based affinity is

snR(A,B) =

∑
s̄∈S̄ `(s̄, A) + `(s̄, B)− `(s̄, A ∩B)∑

(x,y)∈S̄ |x− y|
where S̄ = S(A,B)n.

This affinity’s main interesting property is that it approximates the hull with-

out actually computing the hull. As a result it has a polynomial time bound as

opposed to an exponential time bound like other hull-based techniques. Unfortu-

nately, this approximation is poor as the sampling is not uniform. Sampling end

117

x

y

A

C

Figure 4.3: The sampled segments approximate the hull of A and C non-uniformly.

Note that the upper portion is underrepresented.

points uniformly from two polytopes individually does not yield a uniform sampling

of segments between those polytopes. Because the segments on average end in the

middle of each polytope, the portion of the polytopes that are farther away from

each other may be underrepresented in the calculation. We include this heuristic

here because we believe that it is an interesting approach despite its shortcomings.

Example 3 (Segment-sample volume-ratio-based affinity). If we sample 300 seg-

ments, we get a picture like the one shown in Figure 4.3. The segments in this figure

do not cover the topmost part of hull of A and C (shown by dashed lines), but instead

repeatedly cover the center of the hull. However, these segments can be computed

without computing the hull itself, which means that hulling is not necessary to reason

about the volume introduced by hulling.

4.4.4 Inflating Polytopes

With the volume-ratio-based affinities, there is the problem of abutment.

When a conditional branch is interpreted, this splits the abstract state into two

118

separate abstract states that may be re-merged with a disjunction. Identifying

when these branches have come back together is important for reducing the number

of disjuncts. Unfortunately, there are cases where an integer gap may be introduced,

as shown in Figure 4.2c. In this case, if the two abutting polytopes have a low total

volume, the volume of the gap may outweigh the volume of the polytopes in the

computation of the hR affinity, and the two polytopes will be given a low score.

Regardless of an integer gap, two abutting (but not intersecting) polytopes will be

assigned a iR affinity score of zero because their intersection volume is zero.

To avoid these issues, we use an inflation technique, which takes every face

of the polytope and pushes it out by some amount. For example, in Figure 4.2c,

inflating by one will cause the two polytopes to have an intersection of width one.

Now the hR affinity score will be one, which is the same as hZ, and iR will be nonzero.

An inflation of 0.5 is sufficient to bridge the integer gap, but larger inflation values

may be beneficial. For instance, in the case of intersection volume, a larger inflation

can boost the affinity of nearby (but not intersecting) polytopes without boosting

the affinity of far apart polytopes. This naturally biases closer polytopes to be

merged.

4.5 Disjunctive Abstract Domain

A concrete state is a point in d-dimensional space Zd. Convex polytope ab-

stract states q, r ∈ D# are instances of an abstract domain. The concretization

of an abstract state γ(q) is a set of concrete states. An abstract domain is a lat-

119

tice ordered by inclusion v that defines least upper bound t. An abstract domain

defines monotone transfer functions f that map abstract states to other abstract

states. Abstract domains also define a widening operator ∇ that predicts possible

post-fixpoints and guarantees termination of the analysis.

We employ a typical disjunctive abstract domain. Disjunctive abstract states

Q = (q1, . . . , qk), R = (r1, . . . , rk) ∈ D#k
are k-element vectors of underlying convex

numeric abstract states. The concretization is given as function of the underlying

domain’s concretization: γ(Q) =
⋃

i∈[1,k] γ(qi) for qi ∈ Q. Figure 4.4c shows the

basic domain operations including join, a naive widening algorithm (for simplicity,

not [127]), transfer function, and inclusion.

Following [112] and [128], we define disjunctive abstract domain operations

using a selection function σ. The selection function shown in Figure 4.4b determines

which among a set of abstract states is most similar to another abstract state. To do

this it makes three comparisons. The first two check if the parameter q is contained

in any of the ri ∈ R or if any of the ri ∈ R are contained in q. If so, the least

index is chosen. This takes care of initialization because ⊥ is trivially contained in

any q. The last comparison checks if some affinity score a indicates that the two

abstract states have a similarity higher than some threshold Θ. The threshold Θ is

a parameter to the analysis. If all three comparisons fail, the index containing the

most similar abstract state will be selected. The threshold check is important to

ensure that similar, but not contained, abstract states do not fill up all k positions

first and then force dissimilar abstract states to choose the best of several poor

120

Fn K
(
Q : D#m)

: D#k

R← ⊥k ;

for i = 1 to m do

j ← σ(R, qi) ;

rj ← rj t qi ;

return R;

Fn

σ
(
R : D#k

, q : D#
)

: { 1 . . . k }

(imax, vmax)← (0, 0) ;

for i = 1 to k do

v ← a(q, ri) ;

if q v ri ∨ ri v q ∨ v > Θ

then

return i

if v > vmax then

(imax, vmax)← (i, v) ;

return imax

Q tR =K(Q ∪R)

Q∇R =
⋃

i∈[1...k]

qi∇ri

f(Q) =K(
⋃
{ f(q) | q ∈ Q })

Q v R =
∧
q∈Q

∨
r∈R

q v r

a b c

Figure 4.4: (a) Compaction function K and (b) corresponding selection function

σ, where a is the affinity function. These are responsible for reducing the number

of disjuncts in an abstract state down to k. (c) Domain operations join, widening,

transfer function, and inclusion defined using K.

choices.

The σ function is then used by a compaction function K, which is shown

in Figure 4.4a, to reduce an overly large set of disjuncts down to a smaller set.

This is necessary to ensure termination of abstract interpretation by preventing the

number of disjunctions from growing indefinitely. The compaction function works

by iteratively inserting elements from Q into a result disjunction R according to the

selection function σ. All of the abstract domain operations are defined using this

121

compaction function. They are implemented in the obvious way for a disjunctive

abstract domain, and are compacted if too many disjuncts are produced by an

operation. The soundness of this domain follows from definitions in prior work on

disjunctive domains [112].

Example 4 (Compacting a disjunction). Consider the example shown in Figure 4.1b.

There are three disjuncts A, B, and C, but we wish to compact that to k = 2 dis-

juncts with a threshold Θ = 0.8 and an affinity score a = hZ. To begin, A is placed

into r1 because ⊥ v A. Next, B is placed into r2 because ⊥ v B and the affinity

score assigned to A and B is 0.75 < 0.8. Finally, C is merged into r2 because the

affinity score of r2 and C is 1.0 > 0.8. This is significantly higher than the affinity

score of r1 and C, which is approximately 0.77.

4.6 Implementation

We implemented a disjunctive abstract domain in the CRAB C++ abstract

interpretation framework [11], which builds upon Clang and LLVM version 3.8.0. C

and C++ programs are compiled into LLVM IR and then optimized with a set of

optimizations targeted at static analysis, such as pointer to array conversion [129].

The resulting LLVM IR files are then converted into a CRAB-specific intermediate

representation for analysis with a selectable domain. This implementation is wholly

separate from the previously described Java bytecode analyzer.

The disjunctive abstract domain is parameterized by the maximum number of

disjuncts k, the similarity threshold Θ, and the choice of affinity scoring function a.

122

The underlying numeric abstraction is the NewPolka abstraction from the APRON

abstract domain library [130]. NewPolka is convenient because it provides fairly

low-level access to the constraint matrix and separates equality constraints from

inequality constraints. To circumvent problems with infinite volume polytopes, we

impose reasonable machine integer bounds. All variables are restricted to be in the

range −263 to 264 − 1 to cover both signed and unsigned machine integers.

The null affinity scoring function 0 is trivially implemented: new polytopes

are merged with either an existing polytope that wholly subsumes the new one, or if

no such polytope is found the new polytope is added to the end. If there is no more

room, the new polytope is merged with the last element in the disjunct. We also

implemented an affinity measure that counts the number of common hyperplanes, c,

as described in [113]. The iZ and hZ affinity functions are implemented as described

in Section 4.4 using the Barvinok library [10] to implement integer counting within

polytopes. The iR, hR and sR affinity scoring functions are implemented as described

in Section 4.4 using our own implementation of polytope sampling (described in the

next section). The iR, hR and sR scoring functions are additionally parameterized

by the number of samples n. We scale the number of samples taken linearly with

the number of dimensions in the polytope to ensure better coverage.

4.6.1 Random Sampling Within Polytopes

To implement the R(A)n operation we use a Markov Chain Monte Carlo

(MCMC) technique called hit-and-run sampling [131,132], which performs a random

123

walk to generate points within a polytope. We use hit-and-run sampling because

of its relative ease of implementation. Note that hit-and-run sampling only guaran-

tees uniformity in the limit, so our implementation, which uses a limited number of

samples, does not provide completely uniform random sampling.

One challenge with hit-and-run sampling (or any technique that randomly

explores the interior of a polytope) is how to handle zero-volume polytopes, which

occur often in abstract interpretation. Zero-volume polytopes inhibit random walks

because the probability of selecting a valid direction in which to step is zero. To

get around this, we do a dimension reduction that converts a zero-volume polytope

to a non-zero-volume polytope of lower dimension [133, 134]. The lower-dimension

polytope can then be sampled and each point mapped back to a point in the original

polytope. These mapped points can then be used in one of the affinity scoring

algorithms.

We also encounter difficulties with the representation of coefficients in the

constraint matrices. For performance reasons it is desirable to use floating-point

numbers in the constraint matrix. However, because the dynamic range of coef-

ficients is very large, floating-point precision is insufficient and during sampling,

rounding error may cause the invariant of the hit-and-run algorithm (that the cur-

rent point is always inside the polytope) to be violated. To get around this, we

represent coefficients using rational numbers. This gives us the precision we need,

but adds significant overhead and makes it more difficult to do certain operations

required by the hit-and-run algorithm, such as generating random points on a line

segment.

124

We solve the problem of generating random points by introducing a new pa-

rameter m, which fixes the number of points that we can choose during any iteration

of hit-and-run. To generate a random point on a line segment, we first split the seg-

ment into m sub-segments, and then choose an endpoint of a randomly selected

sub-segment. Note that for a fixed number of samples, this limits the granularity

of our samples. To get around some of the performance problems caused by using

rational values we introduce another parameter, b, which is the batch size. The

batch size determines how many points to sample from a segment once a hit-and-

run direction has been chosen. This reduces the total number of directions sampled,

and thus decreases the uniformity in exchange for increased performance.

4.7 Evaluation

In this section we evaluate the various affinity scores detailed in this chapter.

This evaluation attempts to answer the following research questions.

• RQ1: Does merging the most similar polytopes increase analysis precision?

• RQ2: Does sampling provide better performance characteristics than exact

computation?

• RQ3: Is exact computation efficient enough for large-scale analysis?

• RQ4: Is sampling efficient enough for large-scale analysis?

125

Table 4.2: Descriptions of the different affinity scores considered.

Affinity score Description

0 Null affinity
c Common hyperplanes [113]
iZ Integer intersection volume
hZ Integer added hull volume
iR Sampling intersection volume
hR Sampling added hull volume
sR Segment-sample volume ratio

Table 4.3: WCET and SV-COMP benchmark sets used for evaluation. Lines of code
counted with cloc.

Dataset LOC

wcet 907
loops 2866
ssh 60463
ntdrivers 39173
busybox-1.22.0 58997
loop-invgen 441
loop-acceleration 637
loop-industry-pattern 3114
array-industry-pattern 551
array-examples 2941
Total 170090

4.7.1 Experimental Setup

To answer these research questions, we evaluate our implementation of the

affinity scores listed in Table 4.2 on the SV-COMP [135] and WCET [136] benchmark

suites. Specifically, we used the subset of programs from SV-COMP described in

Table 4.3. We chose these benchmarks because they focus on numeric properties

(e.g. loops) and represent interesting and significant programs (e.g. busybox). In

total, we analyzed 170,090 lines of C code.

126

The benchmarks were executed on a 36-core, 72-thread Intel Xeon E5-2699

system with 512GB of RAM. We evaluated 72 benchmarks at a time and ran each

benchmark five times to get an average for performance. Each benchmark was

allowed up to 60 minutes of run time before being declared a time out.

We fixed the parameters in the following way based on a handful of small

examples before evaluating on the full benchmark suite. The number of disjuncts k

was limited to 3. The number of samples per dimension parameter n was set to 10.

The number of segments parameter m was set to 1024. The batch size parameter b

was set to 4. The threshold parameter Θ was set to 0.4. The inflation parameter

was set to 0.5 for hR and sR, 1.0 for iR, and 0 for hZ and iZ. Recall that m and b are

parameters used by our sampling implementation as described in Section 4.6. The

evaluation proceeds with these settings.

To evaluate precision, we compared the invariants inferred for each program

point across all of the different analyses. For each pair of analyses M , N , we queried

the number of program points where M v N and M = N . This comparison gives us

a fine grained measurement of the relative precision of different analyzers. Instead

of asking, for example, how many array bounds checks or other assertions were

proven (as we did in earlier work), we ask how about precision at every point in

the program. An increase in precision would be valuable to any downstream client

that sought to prove some numeric property of the program. We used the Yices

SMT solver [137] to answer these queries. This query time is not counted as part of

analysis time. Some M , N might be incomparable, and those are not represented

in the table. One choice we have made in this experimental measurement is to not

127

Table 4.4: Ratio of program points where M is more precise than N . The upper
diagonal is augmented with the percentage of when M = N .

M

N

0 c iZ hZ iR hR sR
< < = < = < = < = < = < =

0 - .05 .64 .25 .42 .25 .42 .07 .79 .20 .43 .19 .45
c .18 - - .31 .36 .31 .36 .19 .58 .23 .42 .24 .43
iZ .08 .03 - - - 0 1 .07 .45 .05 .33 .04 .42
hZ .08 .03 - 0 - - - .07 .45 .05 .33 .04 .42
iR .02 .05 - .23 - .23 - - - .18 .43 .18 .49
hR .19 .14 - .29 - .29 - .22 - - - .12 .64
sR .18 .13 - .26 - .26 - .19 - .08 - - -

determine if either M or N are sufficient to prove a property about the program,

but to instead compare the relative precision between the two invariants when they

can be related. This choice was made due to the impact of improving precision

early in an analysis and due to the relatively few properties to prove compared to

the number of program points.

4.7.2 Results

The precision results are presented in Table 4.4. The performance results are

presented in Table 4.5 and shown graphically in Figure 4.5. We use this information

to address the research questions.

RQ1

Does merging the most similar polytopes increase analysis precision? Table 4.4

shows that on average, yes. Both of the precise counting affinities produce more

128

Table 4.5: Aggregate performance of different analyzer configurations across all
programs. Each program was analyzed 5 times. We took the mean of 5 runs and
report on that mean when aggregating across all programs. Times reported are in
seconds.

Analyzer Mean Min Max Median

0 5.375 0.242 79.291 0.866
c 7.883 0.254 240.350 0.786
iZ 19.058 0.250 806.325 0.581
hZ 33.202 0.250 1493.689 0.605
iR 29.522 0.241 1204.348 4.013
hR 56.186 0.243 932.781 7.236
sR 86.074 0.254 1928.718 8.367

c iZ hZ iR hR sR

5

10

15

R
el

at
iv

e
T

im
e

Figure 4.5: Run-time performance of analyzer configurations relative to null affinity.

precise results 25% of the time, whereas the null affinity is more precise only 8% of

the time. The sampling-based techniques fare slightly worse against the null affinity,

scoring 7%, 20%, and 19% better, whereas the null affinity performs better 2%,

19%, and 18% of the time. However, the sampling-based techniques perform better

against the c affinity measure in all cases. This suggests that when the volumetric

comparison is precise (i.e. either iZ or hZ), there is a significant benefit over the

basic strategy. This also suggests that either the number of samples or the specific

samples that we chose were insufficient to identify the truly related polytopes.

129

RQ2

Does sampling provide better performance characteristics than exact computa-

tion? No. With the parameters that we have chosen, the performance is roughly

comparable with the precise counting techniques generally being faster. Table 4.5

shows that the sampling techniques on average take twice as long as the precise

counting techniques. However, for the added hull volume affinity scores (hZ and

hR), the maximum run time for the sampling technique is significantly better than

the maximum run time for the precise counting technique. This suggests that the

asymptotic complexity advantage of sampling pays off when the problem gets par-

ticularly difficult for precise counting. Even so, with the implementation we have

developed and the parameters that we have chosen, the sampling techniques are

generally not worth using.

RQ3

Is exact computation efficient enough for large-scale analysis? Yes. Table 4.5

shows that the exact computation techniques have non-trivial overhead over the null

affinity case. However, depending on the situation, iZ may provide a fair trade-off:

a 4x increase in analysis time in exchange for invariants that are stronger 25% of

the time. hZ is less favorable: a 6x increase in analysis time for exactly the same

25% improvement in invariant strength.

130

RQ4

Is sampling efficient enough for large-scale analysis? Yes, though in its current

state it is probably not worth using. Like iZ and hZ, iR and hR are more expensive

than the null affinity. In general a 6x overhead of iR is not necessarily too expensive,

although it depends on the situation. The 10x and 17x overheads of hR and sR are

probably too expensive, especially as they seem to provide no precision benefit over

the precise methods.

4.7.3 Limitations and Discussion

There are a number of limitations to our implementation, experimentation,

and analysis. The most significant is the choice of parameters for the analysis.

Ideally we would have chosen parameters for the sampling-based approaches on a

large set of benchmarks. This limitation shows because, in the limit, the sampling

should be similar to the exact counting methods. Due to the fact that the results

are quite different, this suggests that we are not yet approaching that limit. We

should probably increase the number of samples, increase the number of segments,

or decrease the batch size to improve this result.

The choice of Θ is somewhat arbitrary. While the exact counting techniques

do show a benefit with a Θ of 0.4, it is not clear that this is an optimum value. It

is also not clear whether the sampling approaches should have different thresholds

than the exact computation. It seems like that should be unnecessary, but we have

not explored that space.

131

The results are somewhat unfairly biased against the sampling technique. The

library for exact computation has been under development in some form for around

20 years. As a result it employs careful memory management for all of its compu-

tations to ensure that no extra memory is being allocated or freed. Furthermore

it enjoys an optimized matrix library that has been custom built for this applica-

tion and caching of intermediate results so that it can both avoid re-computation

and re-allocation. In spot checks we have observed that the sampler is spending

nearly 50% of its time doing memory allocation or freeing. If the sampler could

manage memory more efficiently it may be possible to get it into the same realm of

performance as the exact counting method.

We are currently using a fairly naive coordinate direction hit-and-run sampler.

The reason for this was to increase the number of samples we could collect per

second. It might be a fair trade to use a more advanced algorithm that is slower if it

yielded more uniformly distributed samples. In particular, the coordinate direction

hit-and-run sampler can get stuck in corners if a polytope is long and narrow and

there is no coordinate direction that covers a large percentage of the space.

Finally, these results are dependent on the widening strategy. A poor choice

when performing widening could easily cause one disjunct to go to top or close

to top. Future disjuncts would be trivially merged with that particular disjunct

resulting in an overall loss of precision. It is unclear how to account for this when

analyzing results. While a loss of precision during widening is acceptable, it would

be interesting to know how an ideal strategy would compare. Unfortunately, this is

not possible.

132

4.8 Related Work

Disjunctions have been a widely studied topic. In abstract interpretation they

were introduced with powerset domains in [114]. Jeannet [138] explored partitioning

schemes for disjunctive invariants. More generally, the theory of disjunctive invari-

ants is explored in [115]. This, along with [112], develops a relationship between

disjunctive invariants and control flow path refinement. In effect, refining control

flow such that multiple paths are presented for a single syntactic path is equivalent

to a disjunctive analysis. This leads a significant quantity of work on control flow

refinement [139–143], which can be viewed as applications of disjunctive techniques.

In [128] a theorem is given that a best disjunction merge policy can be statically

computed. This theorem assumes that widening is not required and thus is not

generally applicable to abstract interpretation. Furthermore, it is not obvious how

to statically compute a merge policy in the context of a general abstract interpreter.

[121] claims to do this but instead implements the null affinity score.

Model checking procedures [144,145] typically produce disjunctive invariants.

The way they do this is different in its operation than what we present. They first

analyze programs without any disjunctions and then introduce them by learning

where a coarse abstraction has caused a property to not be proven. While this

approach is quite effective, it does not work for unguided analysis such as program

understanding and it may not scale as well as non-refinement-based analyses such

as Astrée [146].

We are most related to work that performs forward disjunctive analyses using

133

numeric domains and no refinement. In [112], the authors use a similar formulation

of the abstraction. The key difference is in the choice of merge heuristic. The

choice in [112] is to merge according to a simplified Hausdorff distance, which is

shown by [113] to be less desirable than other heuristics. In [113], the authors use

a syntactic property of polytopes to decide merging. This technique counts the

number of hyperplanes in common between an input polytope and the result of a

join. Another possible merge heuristic is the similarity of Boolean variables. In [118],

a binary decision diagram is used to determine which numeric domains should be

merged and which should not.

Our merging heuristics are based on volume and counting computations for

polytopes. Barvinok develops the core theory [119] for counting procedures. Ap-

proximate volume computations based on sampling are alternatively used [124,125].

The idea of using the Barvinok algorithm came from [147].

4.9 Conclusion

In this chapter we have shown a number of new affinity scoring algorithms for

determining which disjuncts should be merged in a disjunctive abstraction. The new

affinity scoring algorithms are all based on points within the polytopes. Those points

are either sampled or counted in order to compute proxies for polytope volume. We

demonstrated that these techniques work by analyzing a large selection of benchmark

programs. In the future we would like to further optimize sampling to make it more

performant to determine if the difference in complexity yields tangible differences

134

in performance. We would also like to explore adaptations of the segment sampling

approach to find something that has some degree of uniformity.

135

Chapter 5: Evaluating Fuzz Testing

5.1 Backround and overview

In Chapter 2 and 3, we considered the effect of language on security, and in

Chapter 3, we consider eliminating security bugs by design. In Chapter 3 and 4,

we consider static analyzers to identify security problems. These automated tech-

niques could scale further than manual techniques used by contestants in Chapter

2. However, there are other automated techniques besides static analyzers, and we

should consider them as well.

A fuzz tester (or fuzzer) is a tool that iteratively and randomly generates inputs

with which it tests a target program. Despite appearing “naive” when compared

to more sophisticated tools involving SMT solvers, symbolic execution, and static

analysis, fuzzers are surprisingly effective. For example, the popular fuzzer AFL

has been used to find hundreds of bugs in popular programs [148]. Comparing AFL

head-to-head with the symbolic executor angr, AFL found 76% more bugs (68 vs.

16) in the same corpus over a 24-hour period [149]. The success of fuzzers has made

them a popular topic of research.

Why do we think fuzzers work? While inspiration for new ideas may be drawn

from mathematical analysis, fuzzers are primarily evaluated experimentally. When

136

a researcher develops a new fuzzer algorithm (call it A), they must empirically

demonstrate that it provides an advantage over the status quo. To do this, they

must choose:

• a compelling baseline fuzzer B to compare against;

• a sample of target programs—the benchmark suite;

• a performance metric to measure when A and B are run on the benchmark

suite; ideally, this is the number of (possibly exploitable) bugs identified by

crashing inputs;

• a meaningful set of configuration parameters, e.g., the seed file (or files) to

start fuzzing with, and the timeout (i.e., the duration) of a fuzzing run.

An evaluation should also account for the fundamentally random nature of fuzzing:

Each fuzzing run on a target program may produce different results than the last due

to the use of randomness. As such, an evaluation should measure sufficiently many

trials to sample the overall distribution that represents the fuzzer’s performance,

using a statistical test [150] to determine that A’s measured improvement over B is

real, rather than due to chance.

Failure to perform one of these steps, or failing to follow recommended prac-

tice when carrying it out, could lead to misleading or incorrect conclusions. Such

conclusions waste time for practitioners, who might profit more from using alterna-

tive methods or configurations. They also waste the time of researchers, who make

overly strong assumptions based on an arbitrary tuning of evaluation parameters.

137

We examined 32 recently published papers on fuzz testing (see Table 5.1) lo-

cated by perusing top-conference proceedings and other quality venues, and studied

their experimental evaluations. We found that no fuzz testing evaluation carries out

all of the above steps properly (though some get close). This is bad news in theory,

and after carrying out more than 50000 CPU hours of experiments, we believe it is

bad news in practice, too. Using AFLFast [151] (as A) and AFL (as baseline B), we

carried out a variety of tests of their performance. We chose AFLFast as it was a

recent advance over the state of the art; its code was publicly available; and we were

confident in our ability to rerun the experiments described by the authors in their

own evaluation and expand these experiments by varying parameters that the orig-

inal experimenters did not. This choice was also driven by the importance of AFL

in the literature: 14 out of 32 papers we examined used AFL as a baseline in their

evaluation. We targeted three binutils programs (nm, objdump, and cxxfilt) and

two image processing programs (gif2png and FFmpeg) used in prior fuzzing eval-

uations [152–156]. We found that experiments that deviate from the above recipe

could easily lead one to draw incorrect conclusions, for these reasons:

Fuzzing performance under the same configuration can vary substantially from

run to run. Thus, comparing single runs, as nearly 2
3

of the examined papers seem

to, does not give a full picture. For example, on nm, one AFL run found just over

1200 crashing inputs while one AFLFast run found around 800. Yet, comparing the

median of 30 runs tells a different story: 400 crashes for AFL and closer to 1250

for AFLFast. Comparing averages is still not enough, though: We found that in

some cases, via a statistical test, that an apparent difference in performance was

138

not statistically significant.

Fuzzing performance can vary over the course of a run. This means that short

timeouts (of less than 5 or 6 hours, as used by 11 papers) may paint a misleading

picture. For example, when using the empty seed, AFL found no crashes in gif2png

after 13 hours, while AFLFast had found nearly 40. But after 24 hours AFL had

found 39 and AFLFast had found 52. When using a non-empty seed set, on nm

AFL outperformed AFLFast at 6 hours, with statistical significance, but after 24

hours the trend reversed.

We similarly found substantial performance variations based on the seeds used ;

e.g., with an empty seed AFLFast found more than 1000 crashes in nm but with

a small non-empty seed it found only 24, which was statistically indistinguishable

from the 23 found by AFL. And yet, most papers treated the choice of seed casu-

ally, apparently assuming that any seed would work equally well, without providing

particulars.

Turning to measures of performance, 14 out of 32 papers we examined used code

coverage to assess fuzzing effectiveness. Covering more code intuitively correlates

with finding more bugs [157, 158] and so would seem to be worth doing. But the

correlation may be weak [159], so directly measuring the number of bugs found is

preferred. Yet only about 1
4

of papers used this direct measure. Most papers instead

counted the number of crashing inputs found, and then applied a heuristic procedure

in an attempt to de-duplicate inputs that trigger the same bug (retaining a “unique”

input for that bug). The two most popular heuristics were AFL’s coverage profile

(used by 7 papers) and (fuzzy) stack hashes [160] (used by 7 papers). Unfortunately,

139

there is reason to believe these de-duplication heuristics are ineffective. We explore

this further in Chapter 6.

Overall, fuzzing performance may vary with the target program, so it is impor-

tant to evaluate on a diverse, representative benchmark suite. In our experiments,

we found that AFLFast performed generally better than AFL on binutils programs

(basically matching its originally published result, when using an empty seed), but

did not provide a statistically significant advantage on the image processing pro-

grams. Had these programs been included in its evaluation, readers might have

drawn more nuanced conclusions about its advantages. In general, few papers use

a common, diverse benchmark suite; about 6 used CGC or LAVA-M, and 2 dis-

cussed the methodology in collecting real-world programs, while the rest used a

few handpicked programs, with little overlap in these choices among papers. The

median number of real-world programs used in the evaluation was 7, and the most

commonly used programs (binutils) were shared by only four papers (and no over-

lap when versions are considered). As a result, individual evaluations may present

misleading conclusions internally, and results are hard to compare across papers.

Our study (outlined in Section 5.3) suggests that meaningful scientific progress

on fuzzing requires that claims of algorithmic improvements be supported by more

solid evidence. Every evaluation in the 32 papers we looked at lacks some important

aspect in this regard. In this chapter we propose some clear guidelines to which

future papers’ evaluations should adhere. In particular, researchers should perform

multiple trials and use statistical tests (Section 5.4); they should evaluate different

seeds (Section 5.5), and should consider longer (≥ 24 hour vs. 5 hour) timeouts

140

(Section 5.6). We defer a more in depth discussion of evaluating the performance

of a fuzzer using ground truth, and the deficiencies of metrics and heuristics like

“stack hashes” and “unique crashes” to Chapter 6(6). Finally, we argue for the

establishment and adoption of a good fuzzing benchmark, and sketch what it might

look like. The practice of hand selecting a few particular targets, and varying them

from paper to paper, is problematic (Section 5.8). A well-designed and agreed-

upon benchmark would address this problem. We also identify other problems that

our results suggest are worth studying, including the establishment of better de-

duplication heuristics (a topic of recent interest [161,162]), and the use of algorithmic

ideas from related areas, such as SAT solving.

Attribution and acknowledgments

This chapter is adapted from a paper appearing at ACM CCS 2018 [12]. The

paper authors were George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Mike

Hicks. Mike and Andrew devised the initial experiments, refined by discussions with

George. George conducted the initial experiments. Andrew and Benji analyzed the

crashes identified to discover the root cause of the bugs. Andrew designed and

implemented the experimental methodology to use different versions of the program

to identify root cause patches. Andrew, Mike, and Shiyi analyzed prior experimental

designs from the fuzzing literature.

141

5.2 Background

There are many different dynamic analyses that can be described as “fuzzing.”

A unifying feature of fuzzers is that they operate on, and produce, concrete inputs.

Otherwise, fuzzers might be instantiated with many different design choices and

many different parameter settings. In this section, we outline the basics of how

fuzzers work, and then touch on the advances of 32 recently published papers which

form the core of our study on fuzzing evaluations.

5.2.1 Fuzzing Procedure

Most modern fuzzers follow the procedure outlined in Figure 5.1. The process

begins by choosing a corpus of “seed” inputs with which to test the target program.

The fuzzer then repeatedly mutates these inputs and evaluates the program under

test. If the result produces “interesting” behavior, the fuzzer keeps the mutated

input for future use and records what was observed. Eventually the fuzzer stops,

either due to reaching a particular goal (e.g., finding a certain sort of bug) or reaching

a timeout.

Different fuzzers record different observations when running the program under

test. In a “black box” fuzzer, a single observation is made: whether the program

crashed. In “gray box” fuzzing, observations also consist of intermediate infor-

mation about the execution, for example, the branches taken during execution as

determined by pairs of basic block identifiers executed directly in sequence. “White

142

Core fuzzing algorithm:

corpus ← initSeedCorpus()
queue ← initQueue(corpus)
observations ← ∅
while ¬isDone(observations,queue) do

candidate ← choose(queue, observations)
mutated ← mutate(candidate,observations)
observation ← eval(mutated)
if isInteresting(observation,observations) then

queue ← queue ∪ mutated
observations ← observations ∪ observation

parameterized by functions:

• initSeedCorpus: Initialize a new seed corpus.

• initQueue: Initialize the queue, potentially from a corpus.

• isDone: Determine if the fuzzing should stop or not based on progress toward
a goal, or a timeout.

• choose: Choose at least one candidate seed from the queue for mutation.

• mutate: From at least one seed and any observations made about the program
so far, produce a new candidate seed.

• eval: Evaluate a seed on the program to produce an observation.

• isInteresting: Determine if the observations produced from an evaluation on
a mutated seed indicate that the input should be preserved or not.

Figure 5.1: Fuzzing, in a nutshell

143

box” fuzzers can make observations and modifications by exploiting the semantics

of application source (or binary) code, possibly involving sophisticated reasoning.

Gathering additional observations adds overhead. Different fuzzers make different

choices, hoping to trade higher overhead for better bug-finding effectiveness.

Usually, the ultimate goal of a fuzzer is to generate an input that causes the

program to crash. In some fuzzer configurations, isDone checks the queue to see if

there have been any crashes, and if there have been, it breaks the loop. Other fuzzer

configurations seek to collect as many different crashes as they can, and so will not

stop after the first crash. For example, by default, libfuzzer [163] will stop when it

discovers a crash, while AFL will continue and attempt to discover different crashes.

Other types of observations are also desirable, such as longer running times that

could indicate the presence of algorithmic complexity vulnerabilities [164]. In any of

these cases, the output from the fuzzer is some concrete input(s) and configurations

that can be used from outside of the fuzzer to reproduce the observation. This

allows software developers to confirm, reproduce, and debug issues.

5.2.2 Recent Advances in Fuzzing

The effectiveness of fuzz testing has made it an active area of research. Per-

forming a literature search we found 32 papers published between 2012 and 2018

that propose and study improvements to various parts of the core fuzzing algorithm;

25 out of 32 papers we examined were published since 2016. To find these papers,

we started from 10 high-impact fuzzing papers published in top security venues.

144

Then we chased citations to and from these papers. As a sanity check, we also did

a keyword search of titles and abstracts of the papers published since 2012. Finally,

we judged the relevance based on target domain and proposed advance, filtering

papers that did not fit.

Table 5.1 lists these papers in chronological order. Here we briefly summarize

the topics of these papers, organized by the part of the fuzzing procedure they most

prominently aim to improve. Ultimately, our interest is in how these papers evaluate

their claimed improvements, as discussed more in the next section.

initSeedCorpus. Skyfire [165] and Orthrus [166] propose to improve the

initial seed selection by running an up-front analysis on the program to bootstrap

information both for creating the corpus and assisting the mutators. QuickFuzz [167,

168] allows seed generation through the use of grammars that specify the structure

of valid, or interesting, inputs. DIFUZE performs an up-front static analysis to

identify the structure of inputs to device drivers prior to fuzzing [169].

mutate. SYMFUZZ [154] uses a symbolic executor to determine the number

of bits of a seed to mutate. Several other works change mutate to be aware of taint-

level observations about the program behavior, specifically mutating inputs that

are used by the program [153, 170–172]. Where other fuzzers use pre-defined data

mutation strategies like bit flipping or rand replacement, MutaGen uses fragments

of the program under test that parse or manipulate the input as mutators through

dynamic slicing [173]. SDF uses properties of the seeds themselves to guide mutation

[174]. Sometimes, a grammar is used to guide mutation [175,176]. Chizpurfle’s [177]

mutator exploits knowledge of Java-level language constructs to assist in-process

145

fuzzing of Android system services.

eval. Driller [149] and MAYHEM [170] observe that some conditional guards

in the program are difficult to satisfy via brute force guessing, and so (occasionally)

invoke a symbolic executor during the eval phase to get past them. S2F also makes

use of a symbolic executor during eval [156]. Other work focuses on increasing the

speed of eval by making changes to the operating system [178] or using different

low level primitives to observe the effect of executions [176, 179, 180]. T-Fuzz [181]

will transform the program to remove checks on the input that prevent new code

from being reached. MEDS [182] performs finer grained run time analysis to detect

errors during fuzzing.

isInteresting. While most papers focus on the crashes, some work changes ob-

servation to consider different classes of program behavior as interesting, e.g., longer

running time [164], or differential behavior [183]. Steelix [171] and Angora [172]

instrument the program so that finer grained information about progress towards

satisfying a condition is exposed through observation. Dowser and VUzzer [153,184]

uses a static analysis to assign different rewards to program points based on either a

likely-hood estimation that traveling through that point will result in a vulnerability,

or for reaching a deeper point in the CFG.

choose. Several works select the next input candidate based on whether it

reaches particular areas of the program [151, 153, 185, 186]. Other work explores

different algorithms for selecting candidate seeds [152,155].

146

Table 5.1 (following page): Summary of past fuzzing evaluation. Blank cell means

that the paper’s evaluation did not mention this item; - means it was not relevant;

? means the element was mentioned but with insufficient detail to be clear about

it. Benchmarks: R means real-world programs, C means CGC data-set, L means

LAVA-M benchmark, S means programs with manually injected bugs, G means

Google fuzzer test suite. Baseline: A means AFL, B means BFF [189], L means

libfuzzer [163], R means Radamsa [190], Z means Zzuf [191], O means other baseline

used by no more than 1 paper. Trials: number of trials. Variance: C means

confidence intervals. Crash: S means stack hash used to group related crashes

during triage, O means other tools/methods used for triage, C means coverage profile

used to distinguish crashes, G means crashes triaged according to ground truth, G*

means manual efforts partially obtained ground truth for triaging. Coverage: L

means line/instruction/basic-block coverage, M means method coverage, E means

control-flow edge or branch coverage, O means other coverage information. Seed:

R means randomly sampled seeds, M means manually constructed seeds, G means

automatically generated seed, N means non-empty seed(s) but it was not clear if the

seed corpus was valid, V means the paper assumes the existence of valid seed(s) but

it was not clear how the seed corpus was obtained, E means empty seeds, / means

different seeds were used in different programs, but only one kind of seeds in one

program. Timeout: times reported in minutes (M), hours (H) and/or days (D).

147

paper benchmarks baseline trials variance crash coverage seed timeout

MAYHEM [170] R(29) G ? N -

FuzzSim [152] R(101) B 100 C S R/M 10D

Dowser [184] R(7) O ? O N 8H

COVERSET [155] R(10) O S, G* ? R 12H

SYMFUZZ [154] R(8) A, B, Z S M 1H

MutaGen [173] R(8) R, Z S L V 24H

SDF [174] R(1) Z, O O V 5D

Driller [149] C(126) A G L, E N 24H

QuickFuzz-1 [167] R(?) 10 ? G -

AFLFast [151] R(6) A 8 C, G* E 6H, 24H

SeededFuzz [187] R(5) O M O G, R 2H

[175] R(2) A, O L, E V 2H

AFLGo [186] R(?) A, O 20 S L V/E 8H, 24H

VUzzer [153] C(63), L, R(10) A G, S, O N 6H, 24H

SlowFuzz [164] R(10) O 100 - N

Steelix [171] C(17), L, R(5) A, V, O C, G L, E, M N 5H

Skyfire [165] R(4) O ? L, M R, G LONG

kAFL [179] R(3) O 5 C, G* V 4D, 12D

DIFUZE [169] R(7) O G* G 5H

Orthrus [166] G(4), R(2) A, L, O 80 C S, G* V >7D

Chizpurfle [177] R(1) O G* G -

VDF [180] R(18) C E V 30D

QuickFuzz-2 [168] R(?) O 10 G* G, M

IMF [176] R(1) O G* O G 24H

[188] S(?) O 5 G G 24H

NEZHA [183] R(6) A, L, O O R

[178] G(10) A, L V 5M

S2F [156] L, R(8) A, O G O N 5H, 24H

FairFuzz [185] R(9) A 20 C E V/M 24H

Angora [172] L, R(8) A, V, O 5 G, C L, E N 5H

T-Fuzz [181] C(296), L, R(4) A, O 3 C, G* N 24H

MEDS [182] S(2), R(12) O 10 C N 6H

148

5.3 Overview and Experimental Setup

Our interest in this chapter is assessing the existing research practice of ex-

perimentally evaluating fuzz testing algorithms. As mentioned in the introduction,

evaluating a fuzz testing algorithm A requires several steps: (a) choosing a baseline

algorithm B against which to compare; (b) choosing a representative set of target

programs to test; (c) choosing how to measure A’s vs. B’s performance, ideally as

bugs found; (d) filling in algorithm parameters, such as how seed files are chosen

and how long the algorithm should run; and (e) carrying out multiple runs for both

A and B and statistically comparing their performance.

Research papers on fuzz testing differ substantially in how they carry out these

steps. For each of the 32 papers introduced in Section 5.2.2, Table 5.1 indicates

what benchmark programs were used for evaluation; the baseline fuzzer used for

comparison; the number of trials carried out per configuration; whether variance

in performance was considered; how crashing inputs were mapped to bugs (if at

all); whether code coverage was measured to judge performance; how seed files

were chosen; and what timeout was used per trial (i.e., how long the fuzzer was

allowed to run). Explanations for each cell in the table are given in the caption; a

blank cell means that the paper’s evaluation did not mention this item.

For example, the AFLFast [151] row in Table 5.1 shows that the AFLFast’s

evaluation used 6 real-world programs as benchmarks (column 2); used AFL as the

baseline fuzzer (column 3); ran each experiment 8 times (column 4) without report-

ing any variance (column 5); measured and reported crashes, but also conducted

149

manual triage to obtain ground truth (column 6); did not measure code coverage

(column 7); used an empty file as the lone input seed (column 8); and set 6 hours

and 24 hours as timeouts for different experiments (column 9).

Which of these evaluations are “good” and which are not, in the sense that

they obtain evidence that supports the claimed technical advance? In the follow-

ing sections we assess evaluations both theoretically and empirically, carrying out

experiments that demonstrate how poor choices can lead to misleading or incorrect

conclusions about an algorithm’s fitness. In some cases, we believe it is still an open

question as to the “best” choice for an evaluation, but in other cases it is clear that

a particular approach should be taken (or, at least, certain naive approaches should

not be taken). Overall, we feel that every existing evaluation is lacking in some

important way.

We conclude this section with a description of the setup for our own experi-

ments.

Fuzzers

For our experiments we use AFL (with standard configuration parameters)

2.43b as our baseline B, and AFLFast [151] as our “advanced” algorithm A. We

used the AFLFast version from July 2017 (cloned from Github) that was based

on AFL version 2.43b. Note that these are more recent versions than those used

in Böhme et al’s original paper [151]. Some, but not all, ideas from the original

AFLFast were incorporated into AFL by version 2.43b. This is not an issue for us

150

since our goal is not to reproduce AFLFast’s results, but rather to use it as a repre-

sentative “advanced” fuzzer for purposes of considering (in)validity of approaches to

empirically evaluating fuzzers. (We note, also, that AFL served as the baseline for

14/32 papers we looked at, so using it in our experiments speaks directly to those

evaluations that used it.) We chose it and AFL because they are open source, easy

to build, and easily comparable. We also occasionally consider a configuration we

call AFLNaive, which is AFL with coverage tracking turned off (using option -n),

effectively turning AFL into a black box fuzzer.

Benchmark programs

We used the following benchmark programs in our experiments: nm, objdump,

cxxfilt (all from binutils-2.26), gif2png, and FFmpeg. All of these programs were

obtained from recent evaluations of fuzzing techniques. FFmpeg-n0.5.10 was used

in FuzzSim [152]. binutils-2.26 was the subject of the AFLFast evaluation [151],

and only the three programs listed above had discoverable bugs. gif2png-2.5.8 was

tested by VUzzer [153].1 We do not claim that this is a complete benchmark suite;

in fact, we think that a deriving a good benchmark suite is an open problem. We

simply use these programs to demonstrate how testing on different targets might

lead one to draw different conclusions.

1Different versions of FFmpeg and gif2png were assessed by other papers [154–156], and likewise

for binutils [183,185,186].

151

Performance measure

For our experiments we measured the number of “unique” crashes a fuzzer can

induce over some period of time, where uniqueness is determined by AFL’s notion

of coverage. In particular, two crashing inputs are considered the same if they have

the same (edge) coverage profile. Though this measure is not uncommon, it has its

problems; Chapter 6(6) discusses why, in detail.

Platform and configuration

Our experiments were conducted on three machines. Machines I and II are

equipped with twelve 2.9GHz Intel Xenon CPUs (each with 2 logical cores) and

48GB RAM running Ubuntu 16.04. Machine III has twenty-four 2.4GHz CPUs and

110GB RAM running Red Hat Enterprise Linux Server 7.4. To account for possible

variations between these systems, each benchmark program was always tested on

the same machine, for all fuzzer combinations. Our testing script took advantage

of all the CPUs on the system to run as many trials in parallel as possible. One

testing subprocess was spawned per CPU and confined to it through CPU affinity.

Every trial was allowed to run for 24 hours, and we generally measured at least 30

trials per configuration. We also considered a variety of seed files, including the

empty file, randomly selected files of the right type, and manually-generated (but

well-formed) files.

152

Figure 5.2: nm Crashes found over time (empty seed). Solid line is median; dashed
lines are confidence intervals, and max/min. p < 10−13

5.4 Statistically Sound Comparisons

All modern fuzzing algorithms fundamentally employ randomness when per-

forming testing, most notably when performing mutations, but sometimes in other

ways too. As such, it is not sufficient to simply run fuzzer A and baseline B once

each and compare their performance. Rather, both A and B should be run for many

trials, and differences in performance between them should be judged.

Perhaps surprisingly, Table 5.1 shows that most (18 out of 32) fuzzing papers

we considered make no mention of the number of trials performed. Based on context

clues, our interpretation is that they each did one trial. One possible justification is

that the randomness “evens out;” i.e., if you run long enough, the random choices

will converge and the fuzzer will find the same number of crashing inputs. It is

clear from our experiments that this is not true—fuzzing performance can vary

153

Figure 5.3: objdump Crashes found over time (empty seed). Solid line is median;
dashed lines are confidence intervals, and max/min. p < 0.001

Figure 5.4: cxxfilt Crashes found over time (empty seed). Solid line is median;
dashed lines are confidence intervals, and max/min. p < 10−10

Figure 5.5: FFmpeg Crashes found over time (empty seed). Solid line is median;
dashed lines are confidence intervals, and max/min. p = 0.379

154

Figure 5.6: gif2png Crashes found over time (empty seed). Solid line is median;
dashed lines are confidence intervals, and max/min. p = 0.0676

dramatically from run to run.

Consider the results presented in Figures 5.2, 5.3, 5.4, 5.5, and 5.6, which

graphs the cumulative number of crashes (the Y axis) we found over time (the X

axis) by AFL (blue), and AFLFast (red), each starting with an empty seed. In each

plot, the solid line represents the median result from 30 runs while the dashed lines

represent the maximum and minimum observed results, and the lower and upper

bounds of 95% confidence intervals for a median [192]. (The outermost dashed lines

are max/min, the inner ones are the CIs.)

It should be clear from the highly varying performance on these plots that

considering only a single run could lead to the wrong conclusion. For example,

suppose the single run on FFmpeg for AFL turned out to be its maximum, topping

out at 550 crashes, while the single run on AFLFast turned out to be its minimum,

topping out at only 150 crashes (Figure 5.5). Just comparing these two results, we

might believe that AFLFast provides no advantage over AFL. Or we might have

155

observed AFLFast’s maximum and AFL’s minimum, and concluded the opposite.

Performing multiple trials and reporting averages is better, but not considering

variance is also problematic. In Table 5.1, we can see that 11 out of the 14 papers

that did consider multiple trials did not characterize the performance variance (they

have a blank box in the variance column). Instead, each of them compared the

“average” performance (we assume: arithmetic mean) of A and B when drawing

conclusions, except for Dowser [184] that reported median, and two [167, 188] that

did not mention how the “average” was calculated.

The problem is that with a high enough variance, a difference in averages may

not be statistically significant. A solution is to use a statistical test [150]. Such a

test indicates the likelihood that a difference in performance is real, rather than due

to chance. Arcuri and Briand [193] suggest that for randomized testing algorithms

(like fuzzers), one should use the Mann Whitney U-test to determine the stochastic

ranking of A and B, i.e., whether the outcomes of the trials in A’s data sample are

more likely to be larger than outcomes in B’s. Mann Whitney is non parametric

in that it makes no assumption about the distribution of a randomized algorithm’s

performance; by contrast, the standard t-test assumes a normal distribution.

Returning to our experiments, we can see where simply comparing averages

may yield wrong conclusions. For example, for gif2png, after 24 hours AFLFast finds

a median of 51 crashes while for AFL it is 39 (a difference of 12). But performing the

Mann Whitney test yields a p value of greater than 0.05, suggesting the difference

may not be statistically significant, even on the evidence of thirty 24-hour trials. For

FFmpeg, AFLFast’s median is 369.5 crashes while AFL’s is 382.5, also a difference

156

Figure 5.7: empty seed: Solid line is median result; dashed lines are confidence

intervals. p1 and p2 are the p-values for the statistical tests of AFL vs. AFLFast

and AFL vs. AFLNaive, respectively. p1 = 0.379,p2 < 10−15

of about 12 crashes, this time favoring AFL. Likewise, Mann Whitney deems the

difference insignificant. On the other hand, for nm the advantage of AFLFast over

AFL is extremely unlikely to occur by chance.

The three papers in Table 5.1 with “C” in the variance column come the

closest to the best practice by at least presenting confidence intervals along with

averages. But even here they stop short of statistically comparing the performance

of their approach against the baseline; they leave it to the reader to visually judge

this difference. This is helpful but not as conclusive as a (easy to perform) statistical

test.

157

Figure 5.8: 1-made seed: Solid line is median result; dashed lines are confidence

intervals. p1 and p2 are the p-values for the statistical tests of AFL vs. AFLFast

and AFL vs. AFLNaive, respectively. p1 = 0.048,p2 < 10−11

Figure 5.9: 3-made seeds: Solid line is median result; dashed lines are confidence

intervals. p1 and p2 are the p-values for the statistical tests of AFL vs. AFLFast

and AFL vs. AFLNaive, respectively. p1 > 0.05,p2 < 10−10

158

Figure 5.10: 1-sampled seeds: Solid line is median result; dashed lines are confidence

intervals. p1 and p2 are the p-values for the statistical tests of AFL vs. AFLFast

and AFL vs. AFLNaive, respectively. p1 > 0.05,p2 < 10−5

Figure 5.11: 3-sampled seeds: Solid line is median result; dashed lines are confidence

intervals. p1 and p2 are the p-values for the statistical tests of AFL vs. AFLFast

and AFL vs. AFLNaive, respectively. p1 > 0.05,p2 < 10−5

159

Figure 5.12: 9-sampled seeds: Solid line is median result; dashed lines are confidence

intervals. p1 and p2 are the p-values for the statistical tests of AFL vs. AFLFast

and AFL vs. AFLNaive, respectively. p1 > 0.05,p2 < 10−6

Discussion

While our recommendation to use statistical tests should be uncontroversial,

there can be further debate on the best choice of test. In particular, two viable al-

ternatives are the permutation test [194] and bootstrap-based tests [195]. These tests

work by treating the measured data as a kind of stand-in for the overall population,

systematically comparing permutations and re-samples of measured data to create

rankings with confidence intervals. Whether such methods are more or less appro-

priate than Mann Whitney is unclear to us, so we follow Arcuri and Briand [193].

Determining that the median performance of fuzzer A is greater than fuzzer

B is paramount, but a related question concerns effect size. Just because A is likely

to be better than B doesn’t tell us how much better it is. We have been implicitly

answering this question by looking at the difference of the measured medians. Sta-

160

tistical methods could also be used to determine the likelihood that this difference

represents the true difference. Arcuri and Briand suggest Vargha and Delaney’s Â12

statistics [196] (which employ elements of the Mann Whitney calculation). Boot-

strap methods can also be employed here.

5.5 Seed Selection

Recall from Figure 5.1 that prior to iteratively selecting and testing inputs,

the fuzzer must choose an initial corpus of seed inputs. Most (27 out of 32, per

Section 5.2.2) recent papers focus on improving the main fuzzing loop. As shown

in column seed in Table 5.1, most papers (30/32) used a non-empty seed corpus

(entries with G, R, M, V, or N). A popular view is that a seed should be well-

formed (“valid”) and small—such seeds may drive the program to execute more

of its intended logic quickly, rather than cause it to terminate at its parsing/well-

formedness tests [153,155,165,197]. And yet, many times the details of the particular

seeds used were not given. Entry ’V’ appears 9 times, indicating a valid seed corpus

was used, but providing no details. Entry ’N’ appears 10 times, indicating a non-

empty seed, but again with no details as to its content. Two papers [151,186] opted

to use an empty seed (entry ‘E’). When we asked them about it, they pointed out

that using an empty seed is an easy way to baseline a significant variable in the input

configuration. Other papers used manually or algorithmically constructed seeds, or

randomly sampled ones.

It may be that the details of the initial seed corpus are unimportant; e.g.,

161

that no matter which seeds are used, algorithmic improvements will be reflected.

But it’s also possible that there is a strong and/or surprising interaction between

seed format and algorithm choice which could add nuance to the results [198]. And

indeed, this is what our results suggest.

We tested FFmpeg with different seeds including the empty seed, samples

of existing video files (“sampled” seeds) and randomly-generated videos (“made”

seeds). For the sampled seeds, videos were drawn from the FFmpeg samples web-

site.2 Four samples each were taken from the AVI, MP4, MPEG1, and MPEG2

sub-directories, and then the files were filtered out to only include those less than 1

MiB, AFL’s maximum seed size, leaving 9-sampled seeds total. This set was further

pared down to the smallest of the video files to produce 3-sampled and 1-sampled

seeds. For the made seeds, we generated video and GIF files by creating 48 random

video frames with videogen (a tool included with FFmpeg), 12 seconds of audio

with audiogen (also included), and stitching all of them together with FFmpeg into

3-made MP4, MPG, and AVI files, each at 4 fps. The 1-made seed is the generated

MP4 file. We also tested nm, objdump, and cxxfilt using the empty seed, and a

1-made seed. For nm and objdump, the 1-made seed was generated by compiling a

hello-world C program. The 1-made seed of cxxfilt was generated as a file with 16

random characters, chosen from the set of letters (uppercase and lowercase), digits

0-9, and the underscore, which is the standard alphabet of mangled C++ names.

Results with these different seed choices for FFmpeg are shown in Figures 5.7,

5.8, 5.9, 5.10, 5.11, and fig:ffmpeg-9sampled-seed. One clear trend is that for AFL

2http://samples.ffmpeg.org

162

http://samples.ffmpeg.org

empty 1-made

FFmpeg, AFLNaive 0 (< 10−15) 5000 (< 10−11)

FFmpeg, AFL 382.5 102

FFmpeg, AFLFast 369.5 (= 0.379) 129 (< 0.05)

nm, AFL 448 23

nm, AFLFast 1239 (< 10−13) 24 (= 0.830)

objdump, AFL 6.5 5

objdump, AFLFast 29 (< 10−3) 6 (< 10−2)

cxxfilt, AFL 540.5 572.5

cxxfilt, AFLFast 1400 (< 10−10) 1364 (< 10−10)

Table 5.2: Crashes found with different seeds. Median number of crashes at the
24-hour timeout.

and AFLFast, the empty seed yields far more crashing inputs than any set of valid,

non-empty ones. On the other hand, for AFLNaive the trend is reversed. Among

the experiments with non-empty seeds, performance also varies. For example, Fig-

ure 5.8 and Figure 5.10 show very different performance with a single, valid seed

(constructed two different ways). The former finds around 100 crashes for AFL and

AFLFast after 24 hours, while the latter finds less than 5.

The top part of Table 5.2 zooms in on the data from Figure 5.7 and Figure 5.8

at the 24-hour mark. The first column indicates the target program and fuzzer used;

the second column (“empty”) indicates the median number of crashes found when

using an empty seed; and the last column (“1-made”) indicates the median number

of crashes found when using a valid seed. The parenthetical in the last two columns is

the p-value for the statistical test of whether the difference of AFLFast or AFLNaive

performance from AFL is real, or due to chance. For AFL and AFLFast, an empty

163

seed produces hundreds of crashing inputs, while for AFLNaive, it produces none.

However, if we use 1-made or 3-made seeds, AFLNaive found significantly more

crashes than AFL and AFLFast (5000 vs. 102/129).

The remainder of Table 5.2 reproduces the results of the AFLFast evaluation

[151] in the empty column, but then reconsiders it with a valid seed in the 1-

made column. Similar to the conclusion made by the AFLFast paper, AFLFast is

superior to AFL in crash finding ability when using the empty seed (with statistical

significance). However, when using 1-made seeds, AFLFast is not quite as good:

it no longer outperforms AFL on nm, and both AFL and AFLFast generally find

fewer crashes.

In sum, it is clear that a fuzzer’s performance on the same program can be

very different depending on what seed is used. Even valid, but different seeds can

induce very different behavior. Assuming that an evaluation is meant to show that

fuzzer A is superior to fuzzer B in general, our results suggest that it is prudent to

consider a variety of seeds when evaluating an algorithm. Papers should be specific

about how the seeds were collected, and better still to make available the actual

seeds used. We also feel that the empty seed should be considered, despite its use

contravening conventional wisdom. In a sense, it is the most general choice, since

an empty file can serve as the input of any file-processing program. If a fuzzer does

well with the empty seed across a variety of programs, perhaps it will also do well

with the empty seed on programs not yet tested. And it takes a significant variable

(i.e., which file to use as the seed) out of the vast configuration space.

164

5.6 Timeouts

Another important question is how long to run a fuzzer on a particular target.

The last column of Table 5.1 shows that prior experiments of fuzzers have set very

different timeouts. These generally range from 1 hour to days and weeks.3 Common

choices were 24 hours (10 papers) and 5 or 6 hours (7 papers). We observe that

recent papers that used LAVA as the benchmark suite chose 5 hours as the timeout,

possibly because the same choice was made in the original LAVA paper [199]. Six

papers ran fuzzers for more than one day.

Most papers we considered reported the timeout without justification. The

implication is that beyond a certain threshold, more running time is not needed as

the distinction between algorithms will be clear. However, we found that relative

performance between algorithms can change over time, and that terminating an

experiment too quickly might yield an incomplete result. As an example, AFLFast’s

evaluation shows that AFL found no bugs in objdump after six hours [151], but

running AFL longer seems to tell a different story, as shown in Figure 5.3. After six

hours, both AFL and AFLFast start to find crashes at a reasonable clip. Running

AFL on gif2png shows another interesting result in Figure 5.6. The median number

of crashes found by AFL was 0 even after 13 hours, but with only 7 more hours, it

found 40 crashes. Because bugs often reside in certain parts of the program, fuzzing

detects the bugs only when these parts are eventually explored. Figure 5.13 presents

3 [178] is an outlier that we do not count here: it uses 5-minute timeout because its evaluation

focuses on test generation rate instead of bug finding ability.

165

the results of AFL and AFLFast running with three sampled seeds on nm. After

6 hours none of the AFL runs found any bugs in nm, while the median number

of crashes found by AFLFast was 4; Mann Whitney says that this difference is

significant. But at 24 hours, the trend is reversed: AFL has found 14 crashes and

AFLFast only 8. Again, this difference is significant.

What is a reasonable timeout to consider? Shorter timeouts are convenient

from a practical perspective, since they require fewer overall hardware resources.

Shorter times might be more useful in certain real-world scenarios, e.g., as part

of an overnight run during the normal development process. On the other hand,

longer runs might illuminate more general performance trends, as our experiments

showed. Particular algorithms might also be better with longer running times; e.g.,

they could start slow but then accelerate their bug-finding ability as more tests are

generated. For example, Skyfire took several days before its better performance

(over AFL) became clear [165].

We believe that evaluations should include plots, as we have been (e.g., in

Figure 5.13), that depict performance over time. These runs should consider at

least a 24 hour timeout; performance for shorter times can easily be extracted from

such longer runs.

Discussion

In addition to noting performance at particular times (e.g., crash counts at 5,

8 and 24 hours), one could also report area under curve (AUC) as a less punctuated

166

Figure 5.13: nm with three sampled seeds. At 6 hours: AFLFast is superior to AFL
with p < 10−13. At 24 hours: AFL is superior to AFLFast with p = 0.000105.

performance measure. For example, a fuzzer that found one crash per second for

five seconds would have an AUC of 12.5 crash-seconds whereas a fuzzer that found

five crashes too, but all between seconds 4 and 5, would have an AUC of 2.5 crash-

seconds. These measures intuitively reflect that finding crashes earlier and over

time is preferred to finding a late burst. On the other hand, this measure might

prefer a steady crash finder that peaks at 5 crashes to one that finds 10 at the last

gasp; aren’t more crashes better? As such, AUC measures are not a substitute for

time-based performance plots.

5.7 Performance

Many papers employ some strategy to de-duplicate (or triage) crashes, so as

to map them to unique bugs. There are two popular automated heuristics for doing

this: using AFL’s notion of coverage profile, and using stack hashes. In Table 5.1,

these are marked ‘C’ (7 papers) and ‘S’ (7 papers) in the crash column. There

167

are four papers using other tools/methods for triage, marked ‘O’. For example,

VUzzer additionally used a tool called !Exploitable to assess the exploitability

of a crash caused by a bug [153]. Crashes that have a low likelihood of being

turned into an attack could be discounted by a user, so showing that a fuzzer finds

more dangerous bugs is advantageous. The de-duplication strategy used in our

experiments corresponds to ‘C’.

Several papers do consider some form of ground truth. Six papers use it as

their main performance measure, marked ’G’ in the table. By virtue of their choice

of benchmark programs, they are able to map crashing inputs to their root cause

perfectly. Eight other papers, marked ’G*’ in the table, make some effort to triage

crashes to identify their root cause, but do so imperfectly. Typically, such triage is

done as a ‘case study’ and is often neither well founded nor complete—ground truth

is not used as the overall (numeric) performance measure.

Unfortunately, commonly used de-duplication heuristics are poor at clustering

crashing inputs according to their root cause. We demonstrate this further in the

next chapter.

5.7.1 Code Coverage

Fuzzers are run to find bugs in programs. A fuzzer that runs for a long period

of time and finds no bugs would be seen as unsuccessful by its user. It seems logical

to evaluate a fuzzer based on the number of bugs that fuzzer finds. However, just

because a fuzzer does not find a bug may not tell us the whole story about the

168

fuzzer’s efficacy. Perhaps its algorithm is sound but there are few or no bugs to find,

and the fuzzer has merely gotten unlucky.

One solution is to instead (or also) measure the improvement in code coverage

made by fuzzer A over baseline B. Greybox fuzzers already aim to optimize coverage

as part of the isInteresting function, so surely showing an improved code coverage

would indicate an improvement in fuzzing. This makes sense. To find a crash at a

particular point in the program, that point in the program would need to execute.

Prior studies of test suite effectiveness also suggest that higher coverage correlates

with bug finding effectiveness [157, 158]. Nearly half of the papers we considered

measured code coverage; FairFuzz only evaluated performance using code (branch)

coverage [185].

However, there is no fundamental reason that maximizing code coverage is

directly connected to finding bugs. While the general efficacy of coverage-guided

fuzzers over black box ones implies that there’s a strong correlation, particular

algorithms may eschew higher coverage to focus on other signs that a bug may be

present. For example, AFLGo [186] does not aim to increase coverage globally, but

rather aims to focus on particular, possibly error-prone points in the program. Even

if we assume that coverage and bug finding are correlated, that correlation may be

weak [159]. As such, a substantial improvement in coverage may yield merely a

negligible improvement in bug finding effectiveness.

In short, we believe that code coverage makes sense as a secondary measure,

but that ground truth, according to bugs discovered, should always be primary.

169

5.8 Target Programs

We would like to establish that one fuzzing algorithm is generally better than

another, i.e., in its ability to find bugs in any target program drawn from a (large)

population. Claims of generality are usually made by testing the fuzzer on a bench-

mark suite that purports to represent the population. The idea is that good perfor-

mance on the suite should translate to good performance on the population. How

should we choose such a benchmark suite?

Recent published works have considered a wide variety of benchmark pro-

grams. Broadly, these fall into two categories, as shown in the second column

in Table 5.1: real programs and artificial programs (or bugs). Examples of the

former include the Google fuzzer test suite (“G”) [200] and ad hoc selections of

real programs (“R”). The latter comprises CGC (“C”) [201], LAVA-M (“L”) [199],

and hand-selected programs with synthetically injected bugs (“S”). Some papers’

benchmarks drew from both categories (e.g., VUzzer [153] and Steelix [171]). As we

discuss below, no existing benchmark choice is entirely satisfying, thus leaving open

the important question of developing a good fuzzing benchmark.

5.8.1 Real programs

According to Table 5.1, nearly all papers used some real-world programs in

their evaluations. Two of these papers [166, 178] used the Google Fuzzer Test

suite [200], a set of real-world programs and libraries coupled with harnesses to

focus fuzzing on a set of known bugs. The others evaluated on a hand selected set

170

of real-world programs.

We see two problems with the way that real programs have been used as fuzzing

targets. First, most papers consider only a small number of target programs without

clear justification of their representativeness. The median number of programs, per

Table 5.1, is seven. Sometimes a small count is justified; e.g., IMF was designed

specifically to fuzz OS kernels, so its evaluation on a single “program,” the MacOS

kernel, is still interesting. On the other hand, most fuzzers aim to apply to a larger

population (e.g., all file processing programs), so 7 would seem to be a small number.

A positive outlier was FuzzSim, which used a large set of programs (more than 100)

and explained the methodology for collecting them.

As evidence of the threat posed by a small number of insufficiently general

targets, consider the experimental results reported in Figures 5.2, 5.3, 5.4, 5.5, and

5.6, which match the results of Böhme et al [151]. The first row of the figure

shows results for nm, objdump and cxxfilt, which were the three programs in which

Böhme et al found crashes.4 Focusing our attention on these programs suggests

that AFLFast is uniformly superior to AFL in crash finding ability. However, if we

look at the second row of the figure, the story is not as clear. For both FFmpeg

and gif2png, two programs used in other fuzzing evaluations, the Mann Whitney

4Figure 6 of their paper presents a similar series of plots. The differences in their plots and

ours are the following: they plot the results on log scale for the Y axis; they consider six-hour

trials rather than 24-hour trials; and they do not plot median and confidence intervals computed

over 30+ runs, but rather plot the mean of 8 runs. They also use different versions of AFL and

AFLFast.

171

U test shows no statistical difference between AFL and AFLFast. Including these

programs in our assessment weakens any claim that AFLFast is an improvement

over AFL.

The second problem we see with the use of real programs to date is that few

papers use the same targets, at the same versions. As such, it is hard to make

even informal comparisons across different papers. One overlapping set of targets

were binutils programs, used in several evaluations [151, 172, 185, 186]. Multiple

papers also considered FFmpeg and gif2png [152–156]. However, none used the

same versions. For example, the versions of binutils were different in these papers:

AFLFast [151] and AFLGo [186] used 2.26; FairFuzz [185] used 2.28; Angora [172]

used 2.29.

The use of Google Fuzzer Suite would seem to address both issues: it comprises

25 programs with known bugs, and is defined independently of any given fuzzer.

On the other hand, it was designed as a kind of regression suite, not necessarily

representative of fuzzing “in the wild;” the provided harnesses and seeds mostly

intend that fuzzers should find the targeted bugs within a few seconds to a few

minutes.

5.8.2 Suites of artificial programs (or bugs)

Real programs are fickle in that the likelihood that bugs are present depends

on many factors. For example, programs under active development may well have

more bugs than those that are relatively stable (just responding to bug reports).

172

In a sense, we do not care about any particular set of programs, but rather a

representative set of programming (anti)patterns in which bugs are likely to crop

up. Such patterns could be injected artificially. There are two popular suites that

do this: CGC, and LAVA-M.

The CGC suite comprises 296 buggy programs produced as part of DARPA’s

Cyber Grand Challenge [201]. This suite was specifically designed to evaluate bug

finding tools like fuzz testers—the suite’s programs perform realistic functions and

are seeded with exploitable bugs. LAVA (which stands for Large-scale Automated

Vulnerability Addition) is a tool for injecting bugs into known programs [199]. The

tool is designed to add crashing, input-determinate bugs along feasible paths. The

LAVA authors used the tool to create the LAVA-M suite, which comprises four

bug-injected coreutils programs: base64, md5sum, uniq, and who. Unlike the CGC

programs, which have very few injected bugs, the LAVA-M programs have many:

on the order of a few dozen each for the first three, and more than 2000 for who.

For both suites, if a fuzzer triggers a bug, there is a telltale sign indicating which

one it is, which is very useful for understanding how many bugs are found from the

total possible.

CGC and LAVA-M have gained popularity as the benchmark choices for eval-

uating fuzzers since their introduction. Within the past two years, CGC and

LAVA-M have been used for evaluating 4 and 5 fuzzers, respectively. VUzzer [153],

Steelix [171], and T-Fuzz [181] used both benchmarks in their evaluation. How-

ever, sometimes the CGC benchmark was subset: Driller [149], VUzzer [153], and

Steelix [171] were evaluated on 126, 63, and 17 out of the 296 programs, respectively.

173

While CGC programs are hand-designed to simulate reality, this simulation

may be imperfect: Performing well on the CGC programs may fail to generalize to

actual programs. For example, the average size of the CGC cqe-challenge programs

was (only) 1774 lines of code, and many programs use telnet-style, text-based pro-

tocols. Likewise, LAVA-M injected bugs may not sufficiently resemble those found

“in the wild.” The incentives and circumstances behind real-world software develop-

ment may fail to translate to synthetic benchmarks which were specifically designed

to be insecure. The LAVA authors write that, “A significant chunk of future work

for LAVA involves making the generated corpora look more like the bugs that are

found in real programs.” Indeed, in recent experiments [202], they also have shown

that relatively simple techniques can effectively find all of the LAVA-M bugs, which

follow a simple pattern. We are aware of no study that independently assesses the

extent to which these suites can be considered “real” or “general.”

5.8.3 Toward a Fuzzing Benchmark Suite

Our assessment leads us to believe that there is a real need for a solid, inde-

pendently defined benchmark suite, e.g., a DaCapo [203] or SPEC5 for fuzz testing.

This is a big enough task that we do not presume to take it on in this chapter. It

should be a community effort. That said, we do have some ideas about what the

result of that effort might look like.

First, we believe the suite should have a selection of programs with clear

indicators of when particular bugs are found, either because bugs are synthetically

5https://www.spec.org/benchmarks.html

174

https://www.spec.org/benchmarks.html

introduced (as in LAVA-M and CGC) or because they were previously discovered in

older versions (as in our ground truth assessment in Section 6.2). Clear knowledge

of ground truth avoids overcounting inputs that correspond to the same bug, and

allows for assessing a tool’s false positives and false negatives. We lean toward using

real programs with known bugs simply because their ecological validity is more

assured.

Second, the suite should be large enough (both in number of programs, and

those programs’ sizes) to represent the overall target population. How many pro-

grams is the right number? This is an open question. CGC comprises ∼ 300 small

programs; Google Fuzzer Suite has 25; most papers used around 7. Our feeling is

that 7 is too small, but it might depend on which 7 are chosen. Perhaps 25 is closer

to the right number.

Finally, the testing methodology should build in some defense against over-

fitting. If a static benchmark suite comes into common use, tools may start to

employ heuristics and strategies that are not of fundamental advantage, but apply

disproportionately to the benchmark programs. One way to deal with this problem

is to have a fixed standard suite and an “evolvable” part that changes relatively

frequently. One way to support the latter is to set up a fuzzing competition, similar

to long-running series of SAT solving competitions.6 One effort in this direction is

Rode0day, a recurring bug finding competition.7 Since the target programs would

not be known to fuzzing researchers in advance, they should be incentivized to de-

6http://www.satcompetition.org/

7https://rode0day.mit.edu/

175

http://www.satcompetition.org/
https://rode0day.mit.edu/

velop general, reusable techniques. Each competition’s suite could be rolled into

the static benchmark, at least in part, to make the suite even more robust. One

challenge is to regularly develop new targets that are ecologically valid. For exam-

ple, Rode0day uses automated bug insertion techniques to which a tool could overfit

(the issue discussed above for LAVA).

5.9 Conclusions and Future Work

Fuzz testing is a promising technology that has been used to uncover many

important bugs and security vulnerabilities. This promise has prompted a growing

number of researchers to develop new fuzz testing algorithms. The evidence that

such algorithms work is primarily experimental, so it is important that it comes

from a well-founded experimental methodology. In particular, a researcher should

run their algorithm A on a general set of target programs, using a meaningful set of

configuration parameters, including the set of input seeds and duration (timeout),

and compare against the performance of a baseline algorithm B run under the same

conditions, where performance is defined as the number of (distinct) bugs found.

A and B must be run enough times that the inherent randomness of fuzzing is

accounted for and performance can be judged via a statistical test.

In this chapter, we surveyed 32 recent papers and analyzed their experimental

methodologies. We found that no paper completely follows the methodology we have

outlined above. Moreover, results of experiments we carried out using AFLFast [151]

(as A) and AFL [148] (as B) illustrate why not following this methodology can lead

176

to misleading or weakened conclusions. We found that

• Most papers failed to perform multiple runs, and those that did failed to ac-

count for varying performance by using a statistical test. This is a problem

because our experiments showed that run-to-run performance can vary sub-

stantially.

• Many papers measured fuzzer performance not by counting distinct bugs, but

instead by counting “unique crashes” using heuristics such as AFL’s coverage

measure and stack hashes. This is a problem because experiments we carried

out showed that the heuristics can dramatically over-count the number of

bugs, and indeed may suppress bugs by wrongly grouping crashing inputs.

This means that apparent improvements may be modest or illusory. Many

papers made some consideration of root causes, but often as a “case study”

rather than a performance assessment.

• Many papers used short timeouts, without justification. Our experiments

showed that longer timeouts may be needed to paint a complete picture of an

algorithm’s performance.

• Many papers did not carefully consider the impact of seed choices on algo-

rithmic improvements. Our experiments showed that performance can vary

substantially depending on what seeds are used. In particular, two different

non-empty inputs need not produce similar performance, and the empty seed

can work better than one might expect.

177

• Papers varied widely on their choice of target programs. A growing number

are using synthetic suites CGC and/or LAVA-M, which have the advantage

that they are defined independently of a given algorithm, and bugs found

by fuzzing them can be reliably counted (no crash de-duplication strategy is

needed). Other papers often picked small, disjoint sets of programs, making it

difficult to compare results across papers. Our experiments showed AFLFast

performs well on the targets it was originally assessed against, but performed

no better than AFL on two targets used by other papers.

Ultimately, our experiments roughly matched the positive results of the original

AFLFast paper [151], but by expanding the scope of the evaluation to different seeds,

longer timeouts, and different target programs, evidence of AFLFast’s superiority, at

least for the versions we tested, was weakened. We believe the same could be said of

many prior papers—all suffer from problems in their evaluation to some degree. As

such, a key conclusion of this chapter is that the fuzzing community needs to start

carrying out more rigorous experiments in order to draw more reliable conclusions.

Specifically, we recommend that fuzz testing evaluations should have the fol-

lowing elements:

• multiple trials with statistical tests to distinguish distributions;

• a range of benchmark target programs with known bugs (e.g., LAVA-M, CGC,

or old programs with bug fixes);

• measurement of performance in terms of known bugs, rather than heuristics

based on AFL coverage profiles or stack hashes; block or edge coverage can be

178

used as a secondary measure;

• a consideration of various (well documented) seed choices including empty

seed;

• timeouts of at least 24 hours, or else justification for less, with performance

plotted over time.

We see (at least) three important lines of future work. First, we believe there

is a pressing need for well-designed, well-assessed benchmark suite, as described at

the end of the last section. Second, and related, it would be worthwhile to carry out

a larger study of the value of crash de-duplication methods on the results of realistic

fuzzing runs, and potentially develop new methods that work better, for assisting

with triage and assessing fuzzing when ground truth is not known. Recent work

shows promise [161, 162]. Finally, it would be interesting to explore enhancements

to the fuzzing algorithm inspired by the observation that no single fuzzing run

found all true bugs in cxxfilt ; ideas from other search algorithms, like SAT solving

“reboots” [204], might be brought to bear.

179

Chapter 6: De-duplication, clustering, and root cause analysis

As our experiments in Chapter 5 show, fuzzing has real power: it finds real

bugs, and those bugs are demonstrated via concrete test cases that show the program

failing. These concrete test cases can be used directly to triage and debug the failing

program and discover the root cause of the failure. However, we also show that

fuzzing produces a great number of these test cases, in Chapter 5 we amassed over

50,000 concrete inputs that cause nm to crash, and another 50,000+ for cxxfilt.

This is problematic because these inputs can be redundant, large, and unstructured.

The large number of crashing inputs presents problems for both the practi-

tioner and researcher. A large number of inputs poses a triaging problem for the

practitioner: Which inputs to consider first when chasing down the root cause of a

bug [205]? The nature of memory corruption-based crashes means that the source

of the failure might be far away from where the crash occurred, creating debug-

ging challenges, particularly when inputs are large. If multiple inputs trigger the

same root cause, it would be ideal to focus on just one: the smallest and simplest.

Researchers have a similar triaging problem: since researchers are unlikely to un-

derstand how the target programs work, they have even less insight into whether

each element within a set of concrete test cases represents a failure with the same

180

root cause, or different root causes, or how many different root causes there might

be. We want to fuzzers that find many bugs, not many inputs that are evidence of

the same bug.1

In this chapter, we consider how to measure the success of a fuzzing campaign.

Our approach is to consider the problem as either a root cause analysis problem,

or a feature extraction and clustering problem. To begin, we describe a process by

which we recovered ground truth for the crashes in cxxfilt discovered during Chapter

5. With this ground truth data, we can measure how imprecise existing measures

of fuzzing success are. After performing this analysis, we look in more detail at

the root causes of each bug. Then, we consider methods for root cause analysis as

well as feature extraction and clustering: AFL coverage profiles, stack hashing, and

clustering with coverage maps, evaluating each against ground truth. We close with

discussion of potential for future work.

6.1 Ground Truth: Bugs Found

The ultimate measure of a fuzzer is the number of unique bugs that it finds.

If fuzzer A generally finds more bugs than baseline B then we can view it as more

effective. A key question is: What is a (unique) bug? This is a subjective question

with no easy answer.

We imagine that a developer will ultimately use a crashing input to debug and

1Sometimes this is beneficial, for example if a patch is incomplete and buggy behavior can be

reached via a different path with different pre-conditions, but in general, a single, minimal test

case will do.

181

fix the target program so that the crash no longer occurs. That fix will probably not

be specific to the input, but will generalize. For example, a bugfix might consist of

a length check to stop a buffer overrun from occurring—this will work for all inputs

that are too long. As a result, if target p crashes when given input I, but no longer

crashes when the bugfix is applied, then we can associate I with the bug addressed

by the fix [206]. Moreover, if inputs I1 and I2 both induce a crash on p, but both

no longer do so once the bugfix is applied, we know that both identify the same bug

(assuming the fix is suitably “minimal” [207]).

When running on target programs with known bugs, we have direct access to

ground truth. Such programs might be older versions with bugs that have since

been fixed, or they might be synthetic programs or programs with synthetically

introduced bugs. Considering the former category, we are aware of no prior work on

fuzzing that uses old programs and their corresponding fixes to completely triage

crashes according to ground truth. In the latter category, nine papers we looked

at in Chapter 5 use synthetic suites in order to determine ground truth. The most

popular suites are CGC (Cyber Grand Challenge) [201] and LAVA-M [199]; we

discuss these more in the next section. For both, bugs have been injected into

the original programs in a way that triggering a particular bug produces a telltale

sign (like a particular error message) before the program crashes. As such, it is

immediately apparent which bug is triggered by the fuzzer’s generated input. If

that bug was triggered before, the input can be discarded. Two other papers used

hand-selected programs with manually injected vulnerabilities.

182

6.1.1 Methodology

We examined the crashing inputs our fuzzing runs generated for cxxfilt using

AFL and AFLFast. Years of development activity have occurred on this code since

the version we fuzzed was released, so (most of) the bugs that our fuzzing found

have been patched. We used git to identify commits that change source files used

to compile cxxfilt. Then, we built every version of cxxfilt for each of those commits.

This produced 812 different versions of cxxfilt. Then, we ran every crashing input

(57,142 of them) on each different version of cxxfilt, recording whether or not that

version crashed. If not, we consider the input to have been a manifestation of a bug

fixed by that program version.

Each of the 812 different versions needed to be evaluated on each of the

57,142 input files, or, 46,399,304 test cases. This problem was outside the scope of

small computers, so a distributed system was built using Amazon EC2 and Apache

Mesos [208]. This distributed system used 412 CPUs across multiple different vir-

tual machines, coordinated via Mesos. Each core would be assigned a “batch” of

test cases to run at once. Batching was performed because each test requires the

setup and teardown of a Docker virtual machine. In this case, cxxfilt doesn’t make

any transient modifications to the system, so it poses little risk to start a Docker in-

stance, and then run each test case in a batch serially within the instance, recording

the results.

It is natural to think that running the full cross product of 46,399,304 test

cases is unnecessary and that the system could instead do a bisection based search

183

over the commit times to identify the transition point when an input goes from

crashing to not crashing. However, this does not work in general, because in the

progression from one commit to another, it is possible for an input to cycle from

crashing to not crashing and then back to crashing. This non-monotonic behavior

has some explanations. For one, due to branching in Git, there is no true “linear”

representation of commits: one could test commits on a feature branch and master

and the “final” transition occurs when the feature branch is merged. Additionally,

since the commits in question include “in progress” work that might represent fea-

ture regression, incomplete, or incorrect work, it is possible that one commit causes

every (or almost every) input to stop crashing.

Mesos works by responding to “resource offers” from available cluster re-

sources. As a resource becomes available, it asks the controller for a single item

of work to perform. When that work is assigned and then completed, the results are

reported back to the controller. In our setting, those results report for each pair of

commit hash and input path assigned as part of the batch, if that run crashed or did

not crash, and if it did crash, it reports the results of the ASAN log for the crash.

That log is then parsed into a call stack, which is efficiently encoded as a series of

relationships between rows in a table for stack frames in a SQLite database, where

the result of the run is also recorded.

The controller pre-computes the total “task set” when the process starts and

records the entire run into the SQLite database, setting the “status” column for

each initially to a sentinel value indicating that test has not run yet. In response

to resource availability announcements, the controller queries the database for any

184

tasks which have not yet run, limited by the batch size. It then assigns that task

set to run on a free CPU.

This setup has a few advantages. If a particular worker node falls offline 2 the

controller is notified and can re-schedule the tasks originally assigned to that node.

If the controller itself is taken offline, when it comes back online it has access to the

list of work done and work left to do in the database.

To help ensure that our triaging results are trustworthy, we took two ad-

ditional steps. First, we ensured that non-crashing behavior was not incidental.

Memory errors and other bug categories uncovered by fuzzing may not always cause

a crash when triggered. For example, an out-of-bounds array read will only crash

the program if unmapped memory is accessed. Thus it is possible that a commit

could change some aspect of the program that eliminates a crash without actually

fixing the bug. To address this issue, we compiled each cxxfilt version with Ad-

dress Sanitizer and Undefined Behavior Sanitizer (ASAN and UBSAN) [209], which

adds dynamic checks for various errors including memory errors. We considered the

presence of an ASAN/UBSAN error report as a “crash.”

Second, we ensured that each bug-fixing commit corresponds to a single bugfix,

rather than several. To do so, we manually inspected every commit that converted a

crashing input to a non-crashing one, judging whether we believed multiple unique

bugs were being fixed (based on principles we developed previously [207]). If so, we

manually split the commit into smaller ones, one per fix. In our experiments, we

only had to do this once, to a commit that imported a batch of changes from the

2AWS EC2 nodes are less available than you might think.

185

5

5 6

6

6
7

6 7

7

6

6

7
6

6
7

7

6

6

8

5

5

5

65

6

5 8
6

6

6

0

500

1000

1500

C
o

u
n

t
o

f
c
ra

s
h

e
s

AFL

8

7

6

7

6

7

5

7

5

8

6
6

6

76

6

8

7

7

6

6

8

6

7

6

6

76 6

6

AFLfast

Figure 6.1: Crashes with unique bugs found per run for cxxfilt. Each bar represents
an independent run of either AFL or AFLfast. The height of the bar is the count of
crashing inputs discovered during that run. Each bar is divided by color, clustering
inputs with other inputs that share the same root cause. Number of unique bugs is
indicated above each bar.

libiberty fork of cxxfilt into the main trunk.3 We looked at the individual libiberty

commits that made up this batch to help us determine how to split it up. Ultimately

we broke it into five distinct bug-fixing commits.

6.1.2 Discussion of bugs

In previous sections one might wonder, what is it about some bugs that either

leads them to be triggered by many different inputs, or, leads them to be poorly

clustered by either stack hashing or coverage profiles? In this section, we take a

closer, qualitative look at each patch discovered in the previous section. Each bug

is identified by the date and time the “fixing patch” was committed.

3https://github.com/gcc-mirror/gcc/tree/master/libiberty

186

https://github.com/gcc-mirror/gcc/tree/master/libiberty

Patch 2016-01-18 10:58:47

This patch made two distinct changes, changing the parameter type of a func-

tion from int to long, and adding a check against NULL.

int to long:

Figure A.1 shows the primary change for this patch, which changes the param-

eter type. At first, this change seems perplexing: why would such a small change

cause such a large number of crashing inputs to be fixed? The answer is that in the

d_identifier function, the len parameter is used to advance the cursor (struct

d_info can be thought of as a cursor in this context) by len, and the caller’s value

for this parameter is truncated from a long to an int. This means the len param-

eter value can become a large, negative value, pushing the cursor in any direction,

including off either the beginning or end of the input buffer.

Further investigation reveals why both clustering inputs using both program

coverage and stack hashes performs poorly. The value in len is computed via (es-

sentially) atoi on an integer string contained in the input. This is done if there is a

specific byte sequence in the input, but that byte sequence can occur at (almost) any

position in the input. cxxfilt can perform any amount of processing before reading

that byte sequence, or that byte sequence could be the first in the input. This results

in a large number of different paths that all have a common suffix. However, the

AFL representation of a path does not include any notion of time or which program

points were reached before or after another, so from AFL’s view, the inputs that all

187

“end the same” are different because they took different paths to reach that ending.

There is a similar problem for stack hashing. There is a separation in time

from when the cursor value is corrupted to when it is used. When the corrupt cursor

is used, it can be used in multiple different contexts that appear unique when N = 3

or N = 5.

NULL check:

Figure A.2 shows the other change associated with this input, a test of a

variable against a NULL pointer before using that variable in an argument to strcmp.

Here, the root cause is a failure to check return values. Functions will correctly

identify edge or error cases and return NULL. However, the callers previously did not

check for this value before use. After this patch, they do.

These two logically different changes are included in the same patch. When

we separated them, we found that the NULL check did not have any effect on the

crashing inputs discovered.

Patch 2016-11-18 05:06:18

Figure A.3 shows a patch where a variable (which is the value resulting from

calling d_expression_1) is tested against NULL, and if the test is true, processing

exits early.

Meanwhile, Figure A.4 shows a patch where the mangled pointer is interrogated

to determine if it contains a ‘0’ value. Previously, the logic in the patched function

188

would advance beyond NUL terminated pointers, and then potentially beyond the

extent of a buffer. Inputs that are fixed by this patch later exhibit crashes on trying

to access the mangled variable.

Patch 2017-03-13 13:49:32

This patch (Figure A.5) begins to address an issue with unbounded recur-

sion in the printing of mangled names. The patch has to de-const many different

pointer parameters to functions that are transitively reachable from d_print_comp.

That is because the patch to d_print_comp uses an existing field in the struct

demangle_component, d_printing, as a “latch” to guard against re-entrance. If the

latch is 0, then it is incremented and processing proceeds. If the latch is non-zero,

processing ends with an error.

Patch 2016-10-17 05:26:56

This patch also addresses unbounded recursion, but in a different part of the

parsing code. Here, the fix (Figures A.6,A.7,A.8) is to remember previously per-

formed work and skip work already done.

Patch 2017-06-25 05:39:05

This patch re-visits the patch to d_print_comp. It also addresses unbounded

recursion, in the same function. The previous change, using d_printing as a “latch”,

is left in place. A new field, d_recursion is added to the demangle_component struc-

189

ture, and that field is incremented on every entry to the function. If the d_recursion

field is greater than a MAX_RECURSION_COUNT constant, or, d_printing is set, process-

ing stops. This “layering” of conditions seems to be to account for multiple kinds

of recurrence when processing a struct demangle_component.

These three patches (“2017-03-13 13:49:32”, “2016-10-17 05:26:56”, and “2017-

06-25 05:39:05”) all localize poorly because the way that they manifest is with a

stack overflow. The faulting location would be the location in the program where

the stack is exhausted. Exactly where this occurs is dependent on the structure of

the input and how that structure relates to the amount of stack consumed. So, the

failure will be spread across the different locations in the (recursive) call tree where

the most stack allocations occur, i.e. different function entry points.

Patch 2016-08-02 07:56:28

Figure A.10 shows a patch that fixes both use-after-free and NULL pointer

dereference bugs. The issue is that squangle_mop_up deallocates members of struct

work_stuff but leaves fields that indicate the size of allocated objects at their

original sizes. The size values are used throughout input processing to determine

the validity of a struct work_stuff and the amount of data to process. If their sizes

are zero, they will be ignored.

This causes similar problems for coverage clustering and stack hashing as

“Patch 2016-01-18 10:58:47” because there are multiple different failing contexts

“downstream” of a buggy deallocation, as well as multiple different paths that all

190

lead to the crash, however they are all resolved by the same root cause fix.

Patch 2016-08-02 08:06:28

Figure A.11 shows the simplest patch. This patch adds error checking to the

variable n, which is assigned to by a call to consume_count. That function attempts

to convert an ASCII encoded number at the cursor position into an integer by

scanning left to right. If either the encoding fails because the number is too large

or no number is found, consume_count returns -1. However, it does not un-do the

advancement on the cursor position, so without error checking, subsequent uses of

the cursor will crash.

This explains why this root cause is more effectively triaged via stack hashing:

the failure and the check that prevent the failure occur in the same function and

there is only one context for reaching this function with either N = or N = 5.

Patch 2016-08-02 08:16:28

Figure A.12 shows a series of checks that have been strengthened by this patch.

These strengthened checks follow a pattern of ensuring that both the length value

recovered by processing is not an error, and also, do not exceed the length of the

overall input object.

It could be the case that these checks are semantically “separable” in that

each check is one different “bug”, however they were all committed together as one

patch. We did not attempt to separate this patch for this reason. Perhaps a more

191

int main(int argc , char* argv []) {

if (argc >= 2) {

char b = argv [1][0];

if (b == ’a’) crash ();

else crash ();

}

return 0;

}

Figure 6.2: How coverage-based deduplication can overcount

advanced technique could do so.

6.2 Approximating ground truth: AFL coverage profiles

When ground truth is not available, researchers commonly employ heuristic

methods to de-duplicate crashing inputs. The approach taken by AFL, and used

by 7 papers in Table 5.1 (marked ’C’), is to consider inputs that have the same

code coverage profile as equivalent. AFL will consider a crash “unique” if the edge

coverage for that crash either contains an edge not seen in any previous crash, or,

is missing an edge that is otherwise in all previously observed crashes.4

Classifying duplicate inputs based on coverage profile makes sense: it seems

plausible that two different bugs would have different coverage representations. On

4AFL also provides a utility, afl-cmin, which can be run offline to “prune” a corpus of inputs

into a minimal corpus. Specifically, the afl-cmin algorithm keeps inputs that contain edges not

contained by any other inputs trace. This is different than the AFL on-line algorithm, which also

retains inputs missing edges that other inputs’ traces have. Only one prior paper that we know

of, Angora [172], ran afl-cmin on the final set of inputs produced by AFL; the rest relied only on

the on-line algorithm, as we do.

192

the other hand, it is easy to imagine a single bug that can be triggered by runs with

different coverage profiles. For example, suppose the function crash in the program

in Figure 6.2 will segfault unconditionally. Though there is but a single bug in the

program, two classes of input will be treated as distinct: those starting with an ’a’

and those that do not.

Assessing against ground truth

In practice, how often does coverage profiling become mistaken or misled about

the root causes of bugs?

Our final methodology produced 9 distinct bug-fixing commits, leaving a small

number of inputs that still crash the current version of cxxfilt. Figure 6.1 organizes

these results. Each bar in the graph represents a 24-hour fuzzing trial carried out

by either AFL or AFLFast.5 For each of these, the magnitude of the bar on the y

axis is the total number of “unique” (according to coverage profile) crash-inducing

inputs, while the bar is segmented by which of these inputs is grouped with a bug

fix discovered by our ground truth analysis. Above each bar is the total number of

bugs discovered by that run (which is the number of compartments in each bar).

5We show each trial’s data individually, rather than collecting it all together, because AFL’s

coverage-based metric was applied to each trial run, not all runs together.

193

0

2

4

6

8

0 10 20 30

Co
unt

 of
bug

s

AFL

0

2

4

6

8

0 10 20 30

Co
unt

 of
bug

s

AFLFast

Figure 6.3: The count of unique bugs found by run.

Discussion

The runs are ordered by the number of unique bugs found in the run. We

can see that there is at best a weak correlation between the number of bugs found

during a run and the number of crashing inputs found in a run. Such a correlation

would imply a stronger upward trend of crash counts when moving left to right.

We can also see that AFLFast generally found many more “unique” crashing inputs

than AFL but the number of bugs found per run is only slightly higher. A Mann

Whitney U-test finds that the difference in crashes is statistically significant, with

a p-value of 10−10, but the difference in bugs is not (but is close)—the p-value is

0.066. This is represented graphically in Figure 6.3.

194

6.3 Approximating ground truth: Stack hashes

Another common, heuristic de-duplication technique is stack hashing [160].

Seven papers we considered use this technique (marked ’S’ in Table 5.1). The idea

is the following. Suppose that our buffer overrun bug is in a function deep inside

a larger program, e.g., in a library routine. Assuming that the overrun induces a

segfault immediately, the crash will always occur at the same place in the program.

More generally, the crash might depend on some additional program context; e.g.,

the overrun buffer might only be undersized when it is created in a particular calling

function. In that case, we might look at the call stack, and not just the program

counter, to map a crash to a particular bug. To ignore spurious variation, we focus

on return addresses normalized to their source code location. Since the part of the

stack closest to the top is perhaps the most relevant, we might only associate the

most recent N stack frames with the triggering of a particular bug. (N is often

chosen to be between 3 and 5.) These frames could be hashed for quick comparison

to prior bugs—a stack hash.

Stack hashing will work as long as relevant context is unique, and still on-stack

at the time of crash. But it is easy to see situations where this does not hold—stack

hashing can end up both undercounting or overcounting true bugs. Consider the

code in Figure 6.4, which has a bug in the format function that corrupts a string

s, which ultimately causes the output function to crash (when s is passed to it,

innocently, by the prepare function). The format function is called separately by

functions f and g. Prior work has concluded that the stack backtrace alone does

195

void f() { ... format(s1); ... }

void g() { ... format(s2); ... }

void format(char *s) {

//bug: corrupt s

prepare(s);

}

void prepare(char *s) {

output(s);

}

void output(char *s) {

// failure manifests

}

Figure 6.4: How stack hashing can over- and undercount bugs

not contain sufficient information for root cause analysis [210].

Suppose we fuzz this program and generate inputs that induce two crashes,

one starting with the call from f and the other starting with the call from g. Setting

N to the top 3 frames, the stack hash will correctly recognize that these two inputs

correspond to the same bug, since only format, prepare and output will be on the

stack. Setting N to 5, however, would treat the inputs as distinct crashes, since

now one stack contains f and the other contains g. On the other hand, suppose

this program had another buggy function that also corrupts s prior to passing it to

prepare. Setting N to 2 would improperly conflate crashes due to that bug and

ones due the buggy format, since only the last two functions on the stack would be

considered.

196

Assessing against ground truth

We measured the effectiveness of stack hashing by comparing its determina-

tions against the labels for bugs that we identified in the prior experiment. Our

implementation of stack hashing uses Address Sanitizer to produce a stack trace for

each crashing input to cxxfilt, and compute stack hashes of varying depths, from

N = 1 to N = 5.

Our analysis discovered that stack hashing is far more effective at de-duplicating

inputs than coverage profiles, but would still over-count the number of bugs discov-

ered. Table 6.1 shows the results of the comparison of stack hashing to the labels we

identified. As an example, consider label B, which represents 31,103 inputs (column

5). Of those inputs, for N = 3, 362 distinct stack hashes were produced (# column).

If the stack hash metric was the only knowledge we had about the distribution of

Table 6.1 (following page): Stack hashing results for cxxfilt. The first column speci-

fies the label we assign based testing progressive versions of cxxfilt. Then, there are

three column groups for each set of stack hashes at depth N = 1, N = 2 and so

on. The # column specifies the number of distinct stack hashes among the inputs

assigned to the ground truth label. The TP column counts how many of the stack

hashes from the second column appear only with those inputs grouped by the label

in the first column, while the FP column counts how many stack hashes appear in

other labels.

197

N = 1 N = 2 N = 3 N = 4 N = 5
Bug Inputs # TP FP # TP FP # TP FP # TP FP # TP FP

A (2015-11-17 06:37:14) 228 7 1 6 8 2 6 9 2 7 10 3 7 10 3 7
B (2016-01-18 10:58:47) 31,103 49 36 13 173 155 18 362 343 19 644 623 21 1053 1028 25
C (2017-03-13 13:49:32) 106 11 9 2 12 10 2 24 21 3 24 21 3 39 36 3
D (2016-08-02 08:16:28) 12,672 38 15 23 100 65 35 159 119 40 244 192 52 327 270 57
E (2016-08-02 07:56:28) 12,118 2 0 2 7 0 7 15 4 11 31 12 19 51 29 22
F (2016-11-18 05:06:18) 232 8 0 8 13 1 12 15 1 14 19 2 17 24 7 17
G (2017-06-25 05:39:05) 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
H (2016-08-02 08:06:28) 568 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
I (2016-10-17 05:26:56) 10 4 2 2 4 3 1 4 4 0 4 4 0 5 5 0
unfixed 98 19 7 12 25 11 14 28 12 16 28 12 16 28 12 16
unknown 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4

198

bugs in cxxfilt, we would claim to have discovered two orders of magnitude more bugs

than we actually did. On the other hand, stack hashing seems to do very well for

label H: one hash matched all 568 inputs for all values of N . In sum, across all runs,

for N = 3, 595 hashes corresponded to 9 bugs, an inflation of 66×, as compared to

57,044 coverage profile-unique inputs for 9 bugs, an inflation of 6339×.6 4 crashing

inputs were each associated with their own “fixing” commit, but when we inspected

the respective code changes we could not see why the changes should fix a crash. As

such, we have listed these inputs in Table 6.1 as “unknown.” ASAN/UBSAN does

not detect all possible undefined behaviors, so it may be that a code or data layout

change between compilations or some other form of non-determinism is suppressing

the crashing behavior.

While stack hashing does not overcount bugs nearly as much as AFL coverage

profiles, it has the serious problem that hashes are not unique. For example, in

the N = 3 case, only 343 of those for label B matched only inputs associated with

B (TP column). The remaining 19 also matched some other crashing input (FP

column). As such, these other inputs would be wrongly discarded if stack hashing

had been used for de-duplication. Indeed, for label G, there is no unique hash (there

is a 0 in the TP column)—it only falsely matches. Overall, for N = 3, about 16% of

hashes were non-unique.7 As such, stack hashing-based deduplication would have

6The table tabulates crashing inputs across all trials put together: if instead you consider the

stack hashes taken on a per-run basis (as in Figure 6.1), the results will be somewhat different,

but the overall trends should remain the same.
7This value was computed by summing the total distinct number of hashes that show up in

more than one row (a lower bound of the total in column 4) and dividing by the total of distinct

199

discarded these bugs.

Discussion

Table 6.1 shows another interesting trend also evident, but less precisely, in

Figure 6.1. Some bugs are triggered by a very small number of inputs, while others

by a very large number. Bugs G and I each correspond to only 2 or 10 inputs, while

bugs B, D, and E correspond to more than 10K inputs. Prior fuzzing studies have

found similar bug distributions [206]. While Table 6.1 combines all inputs from all

trials, considering each trial individually (as per Figure 6.1) we find that no single

run found all 9 bugs; all runs found bugs B, D, E, but no run found more than 5

additional bugs.

From our analysis of cxxfilt, we draw two tentative conclusions. First, the

trends reinforce the problem with bug heuristics: in the presence of “rare” inputs, the

difference between finding 100 crashing inputs and 101 (an apparently insignificant

difference) could represent finding 1 or 2 unique bugs (a significant one). Second,

fuzzers might benefit from an algorithmic trick employed by SAT solvers: randomly

“reboot” the search process [204] by discarding some of the current state and starting

again with the initial seed, thus simulating the effect of running separate trials. The

challenge would be to figure out what fuzzer state to retain across reboots so as to

retain important knowledge but avoid getting stuck in a local minimum.

hashes overall (a lower bound of the total in column 2).

200

Related work

Recent work by [161] also experimentally assesses the efficacy of stack hashing

and coverage profiles against ground truth. Like us, they defined ground truth

as single conceptual bugs corrected by a particular code patch. They compared

how well coverage profiles and stack hashes approximate this ground truth. Like

us, they found that both tended to overcount the number of true bugs. As they

consider different patches and target programs, their study is complementary to

ours. However, their set of crashing inputs was generated via mutations to an initial

known crashing input, rather than via a normal fuzzing process. As such, their

numbers do not characterize the impact of poor deduplication strategies in typical

fuzzing use-cases, as ours do.

[162] also studied how stack hashes, for N = 1 and N = ∞, can over-

and under-count bugs identified through symbolic execution. Their interest was a

comparison against their own de-duplication technique, and so their study did not

comprehensively consider ground truth.

6.4 Approximating ground truth: Clustering

Another approach to input clustering and root cause analysis is to use coverage

information generated by AFL as feature vectors used by more standard clustering

algorithms. Both stack hashing and faulting instruction methods can be viewed as

clustering on either a faulting-context-sensitive or single variable feature, respec-

tively. This leads us to a hypothesis: would a more precise representation of the

201

programs behavior while processing a crashing input result in a feature vector that

could be used effectively to discriminate between different bugs? Specifically, could

we represent the programs behavior as a per-statement count of the number of times

that statement had been executed?

AFL uses reinforcement learning to guide fuzzing and the generation of new

inputs. Specifically, AFL mutates an existing input, then runs the fuzzed program

with that mutation as input and measures how frequently each statement in the

fuzzed program is executed. This measurement is scaled using a bucketing strategy:

counts are only reported at the granularity of 1, 2, 3, [4, 7], [8, 15], [16, 31], [32, 127],

and [128, inf]. This is done for performance reasons, but the choice of buckets is

driven by an intuition about what is interesting program behavior: a statement

changing from being visited 0 to 1 times is interesting, but probably a change from

17 to 21 is not interesting.

This analysis and instrumentation is done on-line while AFL is fuzzing, how-

ever AFL makes available a utility to view a single measurement for a single input.

This utility, afl-showmap, outputs a map from program points to the bucketed

counts of how often that program point was visited during the run with the single

input. We can represent this map as a feature vector. Even though this feature

vector is collapsing some features due to bucketing, that collapsing seems to work

when doing fuzzing, so perhaps it will still work when doing clustering.

We created a software infrastructure to perform feature extraction, clustering

and evaluation as a single step. This pipeline is a composition of several tools,

implemented in C, C++, Python (using scikit-learn [211]), and Bash. The ex-

202

perimental process is as follows:

1. First, we process meta data about the crashing inputs and ground truth data

into a JSON file that lists the full path to each crashing input file along with

the cluster (as a numeric value) that crashing input file is associated with.

This step produces both the ground truth for the final comparison as well as

identifies all of the crashing input files to use for feature vector extraction.

2. Next, we iterate over each crashing input file in the ground truth, producing

a feature extraction command for each file using afl-showmap. We execute

these commands using the GNU parallel [212] tool. Feature extraction com-

mands output a JSON file representing a map from program points (given as

hexadecimal encoded addresses) 8 to a coverage count, as an integer between

1 and 28.

3. Next, we reconcile every individual coverage map with each other so that they

have the same key space. The coverage maps gathered during the previous

steps map edge locations to counts, however if an edge location is not visited

when producing that specific coverage map, it does not appear in the key set

for that map. To reconcile this, we compute the union of the key space for

every input map and then “pad out” every map to include the total key space,

but with default values of 0 when that coverage location does not appear in a

8We made sure to disable Address Space Layout Randomization (ASLR) during this phase

as it would have changed the location of program points between the execution of each feature

extraction step.

203

specific map.

4. Next, we vectorize the maps. Each key becomes a column in a matrix with n

columns for n observed features and m rows for m crashing input files we are

testing.

5. This matrix is then given to a clustering algorithm. As output, this step

produces a clustering assignment, which is recorded as a JSON map from

crashing input files to assigned cluster. This step is iterated for each clustering

algorithm and configuration we want to perform as part of the experiment.

6. Finally, each clustering assignment is evaluated against ground truth. This is

done by converting both the ground truth and the clustering assignment into

one dimensional vectors, and then using a comparison metric from scikit-

learn. This step outputs tuples saved into a CSV file noting the metric score

assigned to a given clustering produced by a cluster configuration.

6.4.1 Clustering Methods

We used several different clustering methods: k-means [213], spectral cluster-

ing [214], mean shift [215], agglomerative, and DBSCAN [216]. We chose k-means

as a baseline for clustering. One weakness of k-means, spectral, and agglomerative

clustering is that they must be parameterized by the number of clusters. In a re-

alistic setting, this is not known a priori. We did know the number of clusters for

our data, though, because we have ground truth. One hope would be that the non-

parametric algorithms, mean shift and DBSCAN, perform with reasonable precision

204

and also discover a reasonable number of clusters.

• Mean shift clustering iteratively identifies regions of higher density in a set

of samples. These regions of higher density become clusters. Mean shift has

few parameters (specifically, the number of clusters is not an input parameter)

and is supposed to make no assumptions about the “shape” of underlying data

and use an arbitrary number of features.

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clus-

tering also finds regions of higher density. Unlike Mean shift, DBSCAN per-

forms best when there are clusters of similar density. It also does not require

the number of clusters as a parameter.

• Agglomerative clustering is a form of hierarchical clustering that will recur-

sively merge clusters to minimize the distance between those clusters. This

does require the number of clusters as a parameter.

• Spectral clustering performs dimensionality reduction using a “similarity ma-

trix” (the distance between points). We compute the similarity matrix by

computing the cosine similarity between all input vectors (the normalized dot

product). Spectral clustering does require the number of clusters as a pa-

rameter, but should perform well if the underlying clusters are non-convex.

However, there are apparently limits to this, as we will see when we measure

the performance of spectral clustering on our crash data.

In addition, we performed clustering using input minimization via afl-tmin.

205

This program performs “fuzzing in reverse”, removing portions of the input that

preserve either the crashing behavior of the input, or the coverage behavior of the

input. In our setting, all inputs result in a crash, so the algorithm would perform

mutations that delete or minimize elements of the input and test if that mutation

still crashes. This clustering approach has risks. Specifically, it could be that this

process “walks” in one step from a crash caused by one bug to a crash caused by a

separate bug.

Clustering by input minimization makes an assumption that a particular root

cause bug has a “canonical” input that triggers it. In the small, this makes some

intuitive sense: in a piece of code that indexes into a buffer, there is a minimal value

for the index that will demonstrate unsafe behavior. Though this pattern can exist

for lots of other safety properties, it is difficult to argue that it must exist for every

safety property. However, perhaps minimization could cut out a lot of “trivially

equal” crashes in that if two inputs do reduce down to the same value where the

faulting location is the same, then those do represent “the same bug” (with the

caveat of the risk mentioned in the previous paragraph).

There are several different minimization tools. We also evaluated a tool re-

leased by Google Project Zero, halfempty [217]. This tool performs “pessimistic

speculative execution” along with input reduction via bisection. At each bisection,

it tests whether or not the resulting transformation still crashes. If a bisection fails

to crash, subsequent bisections of that input are discarded. The exploration makes

use of parallelism. We evaluated this tool head-to-head against afl-tmin. In our

experiments, we found that using halfempty reduced our inputs to 23,144 unique

206

inputs. This is worse than using afl-tmin, which reduced the inputs to 12,931 unique

inputs. Additionally, halfempty uses about 4 times on average the clock time that

afl-tmin does, and much more CPU time, since halfempty uses as many cores as are

available on the entire system while afl-tmin only uses one core at a time.

Assessing against ground truth

As output from the clustering, we produce a mapping from each crashing input

file to a cluster. Our ground truth data (as previously described in Table 6.1) has

the same mapping. To compare a proposed clustering with the ground truth, we

convert both into a 1-dimensional vector where the value at the ith position in the

vector gives the cluster for the ith value. These two vectors are then compared using

the Adjusted Rand Index (ARI) [218] and the Fowlkes Mallows Index (FMI) [219].

Both ARI and FMI compute a value between 0 and 1 assessing the similarity

of two clusterings. This similarity is not sensitive to permutations of labels. We

compare each clustering produced to ground truth. Both ARI and FMI take as

parameters four counts relating the clusterings they compare. For each pair of

points and input clusters XT (which could be thought of as ground truth) and XP

(which could be thought of as the , let:

• TP be the count of pairs where they are in the same cluster in both XT and

XP

• FP be the count of pairs that are in the same cluster in XT but not in the

same cluster in XP

207

• FN be the count of pairs that are not in the same cluster in XT but are in

the same cluster as XP

• TN be the count of pairs that are not in the same cluster in both XT and XP

We can then define FMI as:

TP√
(TP + FP)(TP + FN)

The Rand index (un-adjusted) [220] is defined as:

TP + TN

TP + FP + FN + TN

A weakness of the Rand index is that if you compare two absolutely unre-

lated clusters, the RI will still approach 1. To fix this, the Adjusted Rand Index

(ARI) [218] was proposed. ARI “controls for chance” by correcting the RI according

to a random assignment of elements between the union of cluster labels in the two

compared clusters. To do this, it computes a “contingency table” with height and

width equal to the number of clusters in the first and second parameters to ARI,

respectively. Then, the value nij is the number of times an element occurs in the i-th

cluster of the first clustering and the j-th cluster of the second cluster. Finally, there

are also “row sums” and “column sums” denoted ai and bj, respectively. These are

the sums of the co-occurrences across the rows and the columns of the contingency

table

The Adjusted Rand index is then defined as:

208

Clustering Method Cluster parameter PCA Clusters found ARI FMI

afl-tmin - - 12931 0.04 0.18
Stack hashing (N = 1) - - 99 0.7 0.82
Stack hashing (N = 2) - - 289 0.41 0.61
Stack hashing (N = 3) - - 556 0.24 0.45
Stack hashing (N = 4) - - 932 0.2 0.42
Stack hashing (N = 5) - - 1461 0.11 0.3
K-Means 9 - - 0.19 0.42

9 0.95 - 0.19 0.42
Spectral 9 - - 0.03 0.36

9 0.95 - 0.03 0.27
Mean shift - 0.95 488 0.18 0.61
Agglomerative 9 - - 0.15 0.39
DBSCAN - - 2 0 0.62

Table 6.2: Results for cxxfilt clustering. When a clustering algorithm was given a

number of clusters as an explicit parameter, that is listed under ”Cluster parameter”,

while if a clustering algorithm discovered the number of clusters for itself, that is

reported under ”Clusters found”.

∑
ij

(
nij

2

)
− [
∑

i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2
[
∑

i(
(
ai
2

)
) +

∑
j(
(
bj
2

)
)]− [

∑
i(
(
ai
2

)
)
∑

j(
(
bj
2

)
)]/
(
n
2

)
We also perform a dimension reduction, in some cases, using Principal Compo-

nent Analysis (PCA) [221]. PCA identifies columns with dependence and replaces

them with a single column. We used PCA for dimensionality reduction because the

feature vectors represent program coverage, and due to dominance in the control

flow graph, some edges would be absolutely correlated with other edges.

209

6.4.2 Results and discussion

The overall results are given in Table 6.2. In addition to the clustering methods

that take features from AFL as input, we also report on the number of clusters found,

ARI, and FMI for stack hashing at different levels of context sensitivity as well as

using afl-tmin to reduce inputs and cluster together inputs that reduce to the same

input value as determined using SHA1.

It’s difficult to interpret an ARI or FMI score against ground truth directly.

This is why we include scores (and clusters found) for stack hashing at different

levels of sensitivity. In the previous chapter, we saw that stack hashing with K = 3

did not provide good clustering when we considered false and true positives against

ground truth. By computing the ARI and FMI for that approach, we can have

a functional comparison through the lens of ARI and FMI of the clustering based

approaches.

Unfortunately, the results are not favorable for any of the non-parametric clus-

tering approaches. Mean shift identifies slightly fewer clusters than N = 3 stack

hashing, but with a lower accuracy as measured by ARI (but a higher accuracy as

measured by FMI, most likely because FMI does not consider true negatives). These

clusters do not exhibit the same “shape” as the clusters in the ground truth, i.e.

they are all of roughly equal size. This most likely explains the difference between

ARI and FMI as they weight different types of correct or incorrect classification

differently. Spectral and agglomerative clustering also performs quite poorly. DB-

SCAN essentially fails entirely, it identifies 2 clusters with only a few elements and

210

discards the rest of the input vectors as “noise.” Likewise, performing input reduc-

tion via afl-tmin performs poorly, identifying two orders of magnitude more clusters

than even N = 3 stack hashing.

It is possible that there is just not enough signal in the coverage count tuples

generated by AFL to perform accurate clustering. Other work on using traces to

cluster inputs to find bugs [222] uses predicates from the program that describe

relationships between values at different program points in addition to coverage of

program points by test cases. Perhaps this information should be incorporate as

well for more accurate clustering to occur.

6.5 Using symbolic path conditions for root cause analysis

A stack backtrace contains only information about the faulting context, and

a “fuzzy stack hash” contains even less information, with the context sensitivity

arbitrarily chopped off. In exchange for dropping this information, it is efficient

to both produce and store these abstractions of program state at the site of the

crash. We asked: what is the most information that we might gather? Our answer

there is a symbolic path condition produced by a symbolic or concolic execution

of the program with the crashing input as a concrete input. This symbolic path

condition would describe the choices made by the program in response to the input

and the whole “path” of the program from start to crash. Some prior work uses this

information to “bucket” failing test cases into test cases that likely have the same

root cause [223].

211

We used the KLEE [224] virtual machine to extract the path condition created

by running cxxfilt with a concrete input that crashes the program. We needed to

make some small changes to KLEE to support this. Specifically, KLEE supports

a concept of “replay mode” – given an initial concrete input (“seed”), KLEE will

symbolically execute but discard any symbolic states where the initial seed is not

concretely realizable. We changed this mode to make it stronger: when a symbolic

input value is concretized, we temporarily constrain all inputs to be exactly equal to

the concrete seed under replay, and we relax those constraints after concretization.

This allows us to gather path constraints for many inputs, though KLEE is

slow and sometimes times out even when in “replay mode”. We use these path

conditions to help explain, in some cases, what “must be true” about a particular

input when doing root cause analysis. In cases where this “replay mode” gave

us a path condition, we were able to use Z3 [225] to solve for a model for the

path condition, producing a new input. This input was approximately half the

size of the starting input. However, delta debugging techniques like afl-tmin can

achieve a much higher reduction, as much as 90%, through brute force. Due to

the computational cost of using KLEE to gather path conditions, this information

was not directly exploited when performing our root cause analysis. We explore the

power of afl-tmin to perform clustering via reduction in Section 6.4.1.

212

6.6 Conclusion

In Chapter 5, we focused on measuring fuzzer success using “unique” crashes

found, which is to say, inputs that induce a “unique” crash. As crashes are symptoms

of potentially serious bugs, measuring a fuzzer according to the number of crashing

inputs it produces seems natural. However, as we explore in Chapter 6, bugs and

crashing inputs are not the same thing: many different inputs could trigger the

same bug. For example, a buffer overrun will likely cause a crash no matter what

the input data consists of so long as that data’s size exceeds the buffer’s length.

Simply counting crashing inputs as a measure of performance could be misleading:

fuzzer A could find more crashes than fuzzer B but find the same or fewer actual

bugs.

Much prior work (some outlined in Chapter 5) employs some strategy to de-

duplicate (or triage) crashes, so as to map them to unique bugs. There are two

popular automated heuristics for doing this: using AFL’s notion of coverage profile,

and using stack hashes. Unfortunately, as we show experimentally in this section,

these de-duplication heuristics are actually poor at clustering crashing inputs ac-

cording to their root cause.

Despite the steps we took to ensure our triage matches ground truth, we may

still have inflated or reduced actual bug counts. As an example of the former, we

note that ASAN/UBSAN is not guaranteed to catch all memory safety violations,

so we may have attributed an incidental change to a bugfix. We found a few cases

(4 of 5̃7,000) where we couldn’t explain why a commit fixed a crash, and so did

213

not associate the commit with a bug. On the other hand, we might have counted

multiple (on the order of 3 or 4) fixes as a single fix. In any case, the magnitude

of the difference between our counts and “unique crashes” means that the top-level

result—that “unique crashes” massively overcount the number of true bugs—would

hold even if the counts changed a little.

Had ground truth been available in all of our experiments in Chapter 5, it

might have changed the character of the results in Sections 5.4–5.6. For example, the

performance variations within a configuration due to randomness (e.g., Figures 5.2,

5.3, 5.4, 5.5, and 5.6) may not be as stark when counting bugs rather than “unique”

crashing inputs. In this case, our advice of carrying out multiple trials is even more

important, as small performance differences between fuzzers A and B may require

many trials to discern. It may be that performance differences due to varying a seed

(Figures 5.7, 5.8, 5.9, 5.10, 5.11, and 5.12) may also not be as stark—this would be

true if one seed found hundreds of crashes and another found far fewer, but in the

end all crashes corresponded to the same bug. There may also be less performance

variation over time when bugs, rather than crashes, are counted (Figure 5.13). On

the other hand, it is also possible that we would find more variation over time, and/or

with different seeds, rather than less. In either case, our results in Sections 5.4–5.6

raise sufficient concern that our advice to test with longer timeouts and a variety of

seeds (including the empty seed) should be followed unless and until experimental

results with ground truth data shed more light on the situation.

214

6.6.1 Future work

Existing methods for measuring the success of a fuzzing campaign are flawed,

but it is difficult to come up with better automated techniques. With developer

involvement, we can associate crashes with patches that fix the crash, however that

both requires either history or developer experience, and also developers might not

fully fix a problem, as we saw with the different attempts to fix recursion errors in

cxxfilt. “What is a bug” remains an open and thorny question.

When considering history, one problem is the relationship between individual

changes to a program that happen in a single patch. Perhaps one option would be

to develop a source-aware tool that tries to automatically separate or break down

larger patches into smaller ones and evaluates their effect on “fixing” crashing inputs

individually.

Our investigation of using coverage as features for clustering did not pan out,

however this is supported by prior work which used both coverage and predicates as

features for clustering. Perhaps this is the reason they did not use coverage alone to

cluster. In future work, we could use further predicates such as relationships between

parameters and relationships between returned scalar values and 0 as features for

clustering.

It is also possible that with more work on scaling concolic execution, full path

conditions could be extracted and used for clustering. Exactly what features to use

is open. There is also additional work that could be done to use symbolic execution

for input minimization. Additionally, the symbolic executor could be used to keep

215

the minimization done by afl-tmin “on track” and hedge the risk of “walking” from

one bug to another during minimization.

216

Chapter 7: Conclusion

Software security remains difficult. Each of the approaches and techniques

considered in this body of work have their own share of weaknesses and areas for

future improvement. It is both fortunate and unfortunate that these problems will

remain with us, as it will give us many things to do at the expense of problems with

our technological systems.

Build It, Break It, Fix It

Chapter 2 presents Build It Break It Fix it, a contest for secure software

development. We ran three contests involving a total of 116 teams and two differ-

ent programming problems. Quantitative analysis from these contests found that

the best performing build-it submissions used C/C++, but submissions coded in a

statically-typed language were less likely to have a security flaw; Build-it teams with

diverse programming-language knowledge also produced more secure code. Shorter

programs correlated with better scores. Break-it teams that were also successful

Build-it teams were significantly better at finding security bugs.

217

Checked C

Chapter 3 sketches out Checked C, an attempt to make C safer. Checked

C’s design is focused on interoperability with legacy C, usability, and efficiency.

Checked C’s novel notion of checked regions ensures that “checked code cannot be

blamed” for a safety violation. Our implementation of Checked C as a Clang/LLVM

extension enjoys good performance. To assist in incrementally strengthening legacy

code, we have developed a porting tool for automatically rewriting code to use

checked pointers. We evaluate that program against open source code.

Managing disjuncts

In Chapter 4, we establish a number of new affinity scoring algorithms for

determining which disjuncts should be merged in a disjunctive abstraction. The

new affinity scoring algorithms are all based on points within the polytopes, either

exactly or approximately. Those points are either sampled or counted in order to

compute proxies for polytope volume. We demonstrated that these techniques work

by implementing a new abstract domain in an existing static analyzer and analyzing

a large selection of benchmark programs.

Evaluating fuzz testing

In Chapter 5, we consider the evaluation of fuzz testing. After a study of prior

papers, we find methodological flaws in their evaluation that cast doubt on their

reported effectiveness. We conduct our own experiments to show the effect that

218

these flaws could have, and create a list of guidelines for evaluating fuzz testing.

Root cause analysis

Chapter 6 shows the perils in determining ground truth for the number of bugs

discovered in a fuzzing campaign. One successful strategy is employed to get to the

bottom of our experiments from Chapter 5, but it relies on having historical data

and fuzzing old versions of a program. Chapter 6 explores methods to use clustering

to arrive at similar ground truth data and fails. Chapter 6 also shows the problems

with using AFL coverage maps and stack hashing to approximate ground truth.

219

Appendix A: Patches applied to cxxfilt

static struct demangle_component *

-d_identifier (struct d_info *di, int len)

+d_identifier (struct d_info *di, long len)

Figure A.1: int/long patch

220

@@ -3174,6 +3204 ,8 @@ d_expression_1 (struct d_info *di)

struct demangle_component *type = NULL;

if (peek == ’t’)

type = cplus_demangle_type (di);

+ if (!d_peek_next_char (di))

+ return NULL;

d_advance (di, 2);

return d_make_comp (di ,

DEMANGLE_COMPONENT_INITIALIZER_LIST ,

type , d_exprlist (di , ’E’));

@@ -3248,6 +3280 ,8 @@ d_expression_1 (struct d_info *di)

struct demangle_component *left;

struct demangle_component *right;

+ if (code == NULL)

+ return NULL;

if (op_is_new_cast (op))

left = cplus_demangle_type (di);

else

@@ -3275,7 +3309 ,9 @@ d_expression_1 (struct d_info *di)

struct demangle_component *second;

struct demangle_component *third;

- if (!strcmp (code, "qu"))

+ if (code == NULL)

+ return NULL;

+ else if (!strcmp (code, "qu"))

@@ -4439,10 +4481 ,16 @@ d_print_comp_inner (struct

d_print_info *dpi , int options ,

local_name = d_right (typed_name);

if (local_name ->type ==

DEMANGLE_COMPONENT_DEFAULT_ARG)

local_name = local_name ->u.s_unary_num.sub;

+ if (local_name == NULL)

+ {

+ d_print_error (dpi);

+ return;

+ }

Figure A.2: NULL check patch

221

@@ -3345,6 +3415 ,8 @@ d_expression_1 (struct d_info *di)

first = d_expression_1 (di);

second = d_expression_1 (di);

third = d_expression_1 (di);

+ if (third == NULL)

+ return NULL;

}

else if (code [0] == ’f’)

{

@@ -3352,6 +3424 ,8 @@ d_expression_1 (struct d_info *di)

first = d_operator_name (di);

second = d_expression_1 (di);

third = d_expression_1 (di);

+ if (third == NULL)

+ return NULL;

}

Figure A.3: Patch adding NULL checks

222

@@ -1654,12 +1697 ,13 @@ demangle_signature (struct work_stuff

*work ,

0);

if (!(work ->constructor & 1))

expect_return_type = 1;

- (*mangled)++;

+ if (!**mangled)

+ success = 0;

+ else

+ (*mangled)++;

break;

}

@@ -2135,6 +2179 ,8 @@ demangle_template (struct work_stuff *

work , const char **mangled ,

{

int idx;

(* mangled)++;

+ if (**mangled == ’

0’)

+ return (0);

(* mangled)++;

Figure A.4: Patch checking for exit conditions

223

static void

d_print_comp (struct d_print_info *dpi , int options ,

- const struct demangle_component *dc)

+ struct demangle_component *dc)

{

struct d_component_stack self;

+ if (dc == NULL || dc->d_printing > 1)

+ {

+ d_print_error (dpi);

+ return;

+ }

+ else

+ dc->d_printing++;

self.dc = dc;

self.parent = dpi ->component_stack;

d_print_comp_inner (dpi , options , dc);

dpi ->component_stack = self.parent;

+ dc->d_printing--;

}

Figure A.5: Patch attempting to control unbounded recursion

@@ -144,6 +144 ,9 @@ struct work_stuff

string* previous_argument; /* The last function argument

demangled. */

int nrepeats; /* The number of times to repeat the

previous argument. */

+ int *proctypevec;

+ int proctypevec_size;

+ int nproctypes;

};

Figure A.6: Addition of new fields

224

@@ -4526,10 +4591 ,13 @@ demangle_args (struct work_stuff *

work , const char **mangled ,

{

string_append (declp , ", ");

}

+ push_processed_type (work, t);

if (! do_arg (work , &tem , &arg))

{

+ pop_processed_type (work);

return (0);

}

+ pop_processed_type (work);

if (PRINT_ARG_TYPES)

{

string_appends (declp , &arg);

Figure A.7: Using new functions

@@ -3627,8 +3647 ,15 @@ do_type (struct work_stuff *work ,

const char **mangled , string *result)

success = 0;

}

else

- {

- remembered_type = work -> typevec[n];

+ for (i = 0; i < work->nproctypes; i++)

+ if (work -> proctypevec [i] == n)

+ success = 0;

+

+ if (success)

+ {

+ is_proctypevec = 1;

+ push_processed_type (work, n);

+ remembered_type = work->typevec[n];

mangled = &remembered_type;

}

break;

Figure A.8: Checks in do_type

225

@@ -5691,13 +5694 ,14 @@ d_print_comp (struct d_print_info *

dpi , int options ,

struct demangle_component *dc)

{

struct d_component_stack self;

- if (dc == NULL || dc->d_printing > 1)

+ if (dc == NULL || dc->d_printing > 1 || dpi->recursion >

MAX_RECURSION_COUNT)

{

d_print_error (dpi);

return;

}

- else

- dc->d_printing++;

+

+ dc->d_printing++;

+ dpi->recursion++;

Figure A.9: Additional recursion patch

@@ -1244,11 +1244 ,13 @@ squangle_mop_up (struct work_stuff *

work)

{

free ((char *) work -> btypevec);

work ->btypevec = NULL;

+ work->bsize = 0;

}

if (work -> ktypevec != NULL)

{

free ((char *) work -> ktypevec);

work ->ktypevec = NULL;

+ work->ksize = 0;

}

}

Figure A.10: Set field to 0 to avoid use after free

226

success = 1;

break;

}

+ else if (n == -1)

+ {

+ success = 0;

+ break;

+ }

Figure A.11: Check of return value for failure

227

@@ -2051,7 +2051 ,8 @@ demangle_template_value_parm (struct

work_stuff *work , const char **mangled ,

else

{

int symbol_len = consume_count (mangled);

- if (symbol_len == -1)

+ if (symbol_len == -1

+ || symbol_len > (long) strlen (*mangled))

return -1;

if (symbol_len == 0)

string_appendn (s, "0", 1);

@@ -3611,7 +3612 ,7 @@ do_type (struct work_stuff *work , const

char **mangled , string *result)

/* A back reference to a previously seen type */

case ’T’:

(* mangled)++;

- if (!get_count (mangled, &n) || n >= work -> ntypes)

+ if (!get_count (mangled, &n) || n < 0 || n >= work -> ntypes)

{

success = 0;

}

@@ -3789,7 +3790 ,7 @@ do_type (struct work_stuff *work , const

char **mangled , string *result)

/* A back reference to a previously seen squangled type

*/

case ’B’:

(* mangled)++;

- if (!get_count (mangled, &n) || n >= work -> numb)

+ if (!get_count (mangled, &n) || n < 0 || n >= work -> numb)

success = 0;

else

string_append (result , work ->btypevec[n]);

@@ -4130,7 +4131 ,8 @@ do_hpacc_template_literal (struct

work_stuff *work , const char **mangled ,

literal_len = consume_count (mangled);

- if (literal_len <= 0)

+ if (literal_len <= 0

+ || literal_len > (long) strlen (*mangled))

return 0;

Figure A.12: Additional boundary tests

228

Bibliography

[1] Equifax 2017 security incident important information. https://www.

equifaxsecurity2017.com/frequently-asked-questions/. Accessed:
2018-10-10.

[2] CVE-2017-5638. Available from MITRE, CVE-ID CVE-2017-5638., 2017.

[3] CVE-2014-0150. Available from MITRE, CVE-ID CVE-2014-1060., 2014.

[4] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Michelle L. Mazurek,
and Piotr Mardziel. Build it, break it, fix it: Contesting secure development.
In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), October 2016.

[5] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi.
Checked c: Making c safe by extension. In Proceedings of the IEEE Conference
on Secure Development (SecDev), September 2018.

[6] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio
Terauchi, and Shiyi Wei. Decomposition instead of self-composition for prov-
ing the absence of timing channels. In Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI), June 2017.

[7] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout. Modular
static analysis of string manipulations in c programs. In International Static
Analysis Symposium, pages 243–262. Springer, 2018.

[8] Shiyi Wei, Piotr Mardziel, Andrew Ruef, Jeffrey S. Foster, and Michael Hicks.
Evaluating design tradeoffs in numeric static analysis for java. In Proceedings
of the European Symposium on Programming (ESOP), April 2018.

[9] Andrew Ruef, Kesha Hietala, and Arlen Cox. Volume-based merge heuris-
tics for disjunctive numeric domains. In Static Analysis - 25th International
Symposium, SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings,
pages 383–401, 2018.

229

https://www.equifaxsecurity2017.com/frequently-asked-questions/
https://www.equifaxsecurity2017.com/frequently-asked-questions/

[10] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Mau-
rice Bruynooghe. Counting integer points in parametric polytopes using barvi-
nok’s rational functions. Algorithmica, 48(1), 2007.

[11] Jorge A. Navas. CRAB: A language-agnostic library for static analysis, 2018.

[12] George T. Klees, Andrew Ruef, Benjamin Cooper, Shiyi Wei, and Michael
Hicks. Evaluating fuzz testing. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), October 2018.

[13] Maryland cyber challenge & competition. http://www.fbcinc.com/e/

cybermdconference/competitorinfo.aspx.

[14] National Collegiate Cyber Defense Competition. http://www.nationalccdc.
org.

[15] DEF CON Communications, Inc. Capture the flag archive. https://www.

defcon.org/html/links/dc-ctf.html.

[16] Polytechnic Institute of New York University. Csaw - cybersecurity competi-
tion 2012. http://www.poly.edu/csaw2012/csaw-CTF.

[17] dragostech.com inc. Cansecwest applied security conference. http://

cansecwest.com.

[18] Top coder competitions. http://apps.topcoder.com/wiki/display/tc/

Algorithm+Overview.

[19] The ACM-ICPC International Collegiate Programming Contest. http://

icpc.baylor.edu.

[20] ICFP programming contest. http://icfpcontest.org.

[21] Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[22] Queena Kim. Want to learn cybersecurity? Head to
Def Con. http://www.marketplace.org/2014/08/25/tech/

want-learn-cybersecurity-head-def-con, 2014.

[23] Git – distributed version control management system. http://git-scm.com.

[24] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC), 13(1):4:1–4:40, 2009.

[25] Úlfar Erlingsson. personal communication stating that CFI was not deployed
at Microsoft due to its overhead exceeding 10%, 2012.

230

http://www.fbcinc.com/e/cybermdconference/competitorinfo.aspx
http://www.fbcinc.com/e/cybermdconference/competitorinfo.aspx
http://www.nationalccdc.org
http://www.nationalccdc.org
https://www.defcon.org/html/links/dc-ctf.html
https://www.defcon.org/html/links/dc-ctf.html
http://www.poly.edu/csaw2012/csaw-CTF
http://cansecwest.com
http://cansecwest.com
http://apps.topcoder.com/wiki/display/tc/Algorithm+Overview
http://apps.topcoder.com/wiki/display/tc/Algorithm+Overview
http://icpc.baylor.edu
http://icpc.baylor.edu
http://icfpcontest.org
http://www.marketplace.org/2014/08/25/tech/want-learn-cybersecurity-head-def-con
http://www.marketplace.org/2014/08/25/tech/want-learn-cybersecurity-head-def-con
http://git-scm.com

[26] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Atif Memon, Jande-
lyn Plane, and Piotr Mardziel. Build it break it: Measuring and comparing
development security. In Workshop on Cyber Security Experimentation and
Test (CSET), 2015.

[27] Yesod web framework for Haskell. http://www.yesodweb.com.

[28] PostgreSQL. http://www.postgresql.org.

[29] James Parker. LMonad: Information flow control for Haskell web applications.
Master’s thesis, Dept of Computer Science, the University of Maryland, 2014.

[30] Deian Stefan, Alejandro Russo, John Mitchell, and David Mazieres. Flexi-
ble dynamic information flow control in Haskell. In ACM SIGPLAN Haskell
Symposium, 2011.

[31] Kenneth P Burnham, David R Anderson, and Kathryn P Huyvaert. AIC
model selection and multimodel inference in behavioral ecology: some back-
ground, observations, and comparisons. Behavioral Ecology and Sociobiology,
65(1):23–35, 2011.

[32] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence
Erlbaum Associates, 1988.

[33] Daniel J Bernstein, Tanja Lange, and Peter Schwabe. The security impact of
a new cryptographic library. In International Conference on Cryptology and
Information Security in Latin America, 2012.

[34] DEF CON Communications Inc. Def con hacking conference. http://www.

defcon.org.

[35] Nicholas Childers, Bryce Boe, Lorenzo Cavallaro, Ludovico Cavedon, Marco
Cova, Manuel Egele, and Giovanni Vigna. Organizing large scale hacking
competitions. In DIMVA, 2010.

[36] Adam Doupé, Manuel Egele, Benjamin Caillat, Gianluca Stringhini, Gorkem
Yakin, Ali Zand, Ludovico Cavedon, and Giovanni Vigna. Hit ’em where it
hurts: A live security exercise on cyber situational awareness. 2011.

[37] Peter Chapman, Jonathan Burket, and David Brumley. PicoCTF: A game-
based computer security competition for high school students. In USENIX
Summit on Gaming, Games, and Gamification in Security Education (3GSE),
2014.

[38] Gregory Conti, Thomas Babbitt, and John Nelson. Hacking competitions and
their untapped potential for security education. Security & Privacy, 9(3):56–
59, 2011.

231

http://www.yesodweb.com
http://www.postgresql.org
http://www.defcon.org
http://www.defcon.org

[39] Chris Eagle. Computer security competitions: Expanding educational out-
comes. IEEE Security & Privacy, 11(4):69–71, 2013.

[40] Lance J. Hoffman, Tim Rosenberg, and Ronald Dodge. Exploring a national
cybersecurity exercise for universities. IEEE Security & Privacy, 3(5):27–33,
2005.

[41] Art Conklin. Cyber defense competitions and information security education:
An active learning solution for a capstone course. 2006.

[42] Art Conklin. The use of a collegiate cyber defense competition in information
security education. In Information Security Curriculum Development Confer-
ence (InfoSecCD), 2005.

[43] Google code jam. http://code.google.com/codejam.

[44] Matthew Finifter and David Wagner. Exploring the relationship between web
application development tools and security. In USENIX Conference on Web
Application Development (WebApps), 2011.

[45] L. Prechelt. Plat forms: A web development platform comparison by an ex-
ploratory experiment searching for emergent platform properties. IEEE Trans-
actions on Software Engineering, 37(1):95–108, 2011.

[46] Anne Edmundson, Brian Holtkamp, Emanuel Rivera, Matthew Finifter,
Adrian Mettler, and David Wagner. An empirical study on the effectiveness
of security code review. In International Symposium on Engineering Secure
Software and Systems (ESSoS), 2013.

[47] Riccardo Scandariato, James Walden, and Wouter Joosen. Static analysis
versus penetration testing: A controlled experiment. In IEEE International
Symposium on Reliability Engineering (ISSRE), 2013.

[48] James Walden, Jeff Stuckman, and Riccardo Scandariato. Predicting vulner-
able components: Software metrics vs text mining. In IEEE International
Symposium on Software Reliability Engineering, 2014.

[49] Joonseok Yang, Duksan Ryu, and Jongmoon Baik. Improving vulnerability
prediction accuracy with secure coding standard violation measures. In Inter-
national Conference on Big Data and Smart Computing (BigComp), 2016.

[50] Keith Harrison and Gregory White. An empirical study on the effectiveness
of common security measures. In Hawaii International Conference on System
Sciences (HICSS), 2010.

[51] NIST vulnerability database. https://nvd.nist.gov. Accessed May 17,
2017.

232

http://code.google.com/codejam
https://nvd.nist.gov

[52] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war
in memory. In Proceedings of the 2013 IEEE Symposium on Security and
Privacy, SP ’13, pages 48–62, Washington, DC, USA, 2013. IEEE Computer
Society.

[53] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In USENIX Annual Technical
Conference, pages 275–288, Monterey, CA, 2002. USENIX.

[54] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals,
Matthew Harren, George Necula, and Eric Brewer. SafeDrive: Safe and re-
coverable extensions using language-based techniques. In 7th Symposium on
Operating System Design and Implementation (OSDI’06), Seattle, Washing-
ton, 2006. USENIX Association.

[55] Rust-lang.org. Rust documentation. https://www.rust-lang.org/

documentation.html, 2016. Accessed May 13, 2016.

[56] golang.org. The go programming language. https://golang.org/, 2016.
Accessed May 13, 2016.

[57] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few
billion lines of code later: Using static analysis to find bugs in the real world.
Commun. ACM, 53(2):66–75, February 2010.

[58] Mathworks. Polyspace code prover: prove the absence of run-time errors in
software. http://www.mathworks.com/products/polyspace-code-prover/
index.html, 2016. Accessed May 12, 2016.

[59] AbsOmt. Astrée: Fast and sound runtime error analysis. http://www.

absint.com/astree/index.htm, 2016. Accessed May 12, 2016.

[60] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. On the effectiveness of address-space randomization. In CCS,
2004. W⊕X protection is discussed in Section 1.1.

[61] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In Proceedings of the 12th ACM Conference on Computer and Com-
munications Security, CCS ’05, pages 340–353, New York, NY, USA, 2005.
ACM.

[62] George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and West-
ley Weimer. Ccured: type-safe retrofitting of legacy software. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 27(3):477–526,
2005.

233

https://www.rust-lang.org/documentation.html
https://www.rust-lang.org/documentation.html
https://golang.org/
http://www.mathworks.com/products/polyspace-code-prover/index.html
http://www.mathworks.com/products/polyspace-code-prover/index.html
http://www.absint.com/astree/index.htm
http://www.absint.com/astree/index.htm

[63] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. Softbound: Highly compatible and complete spatial memory safety
for C. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09, pages 245–258, New York,
NY, USA, 2009. ACM.

[64] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. AddressSanitizer: A fast address sanity checker. In Proceedings of the
2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12,
pages 28–28, Berkeley, CA, USA, 2012. USENIX Association.

[65] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages.
2006.

[66] Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-
language programs. In POPL, 2007.

[67] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be
blamed. In ESOP, 2009.

[68] Anne Rogers, Martin C. Carlisle, John H. Reppy, and Laurie J. Hendren.
Supporting dynamic data structures on distributed-memory machines. ACM
Trans. Program. Lang. Syst., 17(2):233–263, March 1995.

[69] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection
of all pointer and array access errors. SIGPLAN Not., 29(6):290–301, June
1994.

[70] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and
George C. Necula. Dependent types for low-level programming. In Proceedings
of European Symposium on Programming (ESOP ’07), volume 4421 of Lecture
Notes in Computer Science, pages 520–535, Heidelberg, 2007. Springer-Verlag.

[71] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang,
and James Cheney. Region-based memory management in Cyclone. In Pro-
ceedings of the ACM Conference on Programming Language Design and Im-
plementation (PLDI), pages 282–293. ACM, 2002.

[72] Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor
Jim. Safe manual memory management in Cyclone. Science of Computer
Programming (SCP), 62(2):122–144, 2006. Special issue on memory manage-
ment. Expands ISMM conference paper of the same name.

[73] dlang.org. D. http://dlang.org/, 2016. Accessed May 13, 2016.

[74] Microsoft Corporation. C# programming guide. https://msdn.microsoft.

com/en-us/library/67ef8sbd.aspx, 2016. Accessed May 13, 2016.

234

http://dlang.org/
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx

[75] Samuel C. Kendall. Bcc: runtime checking for C programs. In USENIX
Toronto 1983 Summer Conference, Berkeley, CA, USA, 1983. USENIX Asso-
ciation.

[76] Joseph L. Steffen. Adding run-time checking to the Portable C Compiler.
Softw. Pract. Exper., 22(4):305–316, April 1992.

[77] Yutaka Oiwa. Implementation of the memory-safe full ANSI-C compiler. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’09, pages 259–269, New York, NY,
USA, 2009. ACM.

[78] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and
access errors. In Proceedings of the Winter 1992 USENIX Conference, pages
125–138, Berkeley, CA, USA, 1992. USENIX Association.

[79] Inc. Unicom Systems. Purifyplus. http://unicomsi.com/products/

purifyplus/, 2016. Accessed May 6, 2016.

[80] MicroFocus. Devpartner. http://www.borland.com/en-GB/Products/

Software-Testing/Automated-Testing/Devpartner-Studio, 2016. Ac-
cessed May 6, 2016.

[81] Derek Bruening and Qin Zhao. Practical memory checking with Dr. Memory.
In Proceedings of the 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’11, pages 213–223, Washington,
DC, USA, 2011. IEEE Computer Society.

[82] Dr. Memory. Dr. Memory: Memory debugger for Windows, Linux, and Mac.
http://www.drmemory.org/, 2016. Accessed May 6, 2016.

[83] Intel Corporation. Intel inspector. https://software.intel.com/en-us/

intel-inspector-xe, 2016. Accessed May 6, 2016.

[84] Oracle Corporation. Oracle solaris studio. http://www.oracle.com/

technetwork/server-storage/solarisstudio/overview/index.html,
2016. Accessed May 6, 2016.

[85] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’07, pages 89–100, New York, NY, USA, 2007. ACM.

[86] Valgrind. Valgrind. http://valgrind.org/, 2016. Accessed May 6, 2016.

[87] Parasoft. Memory error detection. https://www.parasoft.com/

capability/memory-error-detection/, 2016. Accessed May 6, 2016.

235

http://unicomsi.com/products/purifyplus/
http://unicomsi.com/products/purifyplus/
http://www.borland.com/en-GB/Products/Software-Testing/Automated-Testing/Devpartner-Studio
http://www.borland.com/en-GB/Products/Software-Testing/Automated-Testing/Devpartner-Studio
http://www.drmemory.org/
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://valgrind.org/
https://www.parasoft.com/capability/memory-error-detection/
https://www.parasoft.com/capability/memory-error-detection/

[88] Niranjan Hasabnis, Ashish Misra, and R. Sekar. Light-weight bounds checking.
In Proceedings of the Tenth International Symposium on Code Generation and
Optimization, CGO ’12, pages 135–144, New York, NY, USA, 2012. ACM.

[89] Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In Miriam Kamkar and D. By-
ers, editors, Third International Workshop on Automated Debugging, Linkop-
ing Electronic Conference Proceedings. Linkoping University Electronic Press,
May 1997. "http://www.ep.liu.se/ea/cis/1997/009/".

[90] Harish Patil and Charles Fischer. Low-cost, concurrent checking of pointer and
array accesses in C programs. Software: Practice & Experience, 27(1):87–110,
January 1997.

[91] Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer
overflow detector. In Proceedings of the 11th Annual Network and
Distributed System Security Symposium, pages 159–169, Reston, VA,
USA, 2004. Internet Society. http://www.internetsociety.org/doc/

practical-dynamic-buffer-overflow-detector.

[92] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel
Castro. Preventing memory error exploits with WIT. In Proceedings of the
2008 IEEE Symposium on Security and Privacy, SP ’08, pages 263–277, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[93] Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R. Sekar, Frank
Piessens, and Wouter Joosen. Paricheck: An efficient pointer arithmetic
checker for c programs. In Proceedings of the 5th ACM Symposium on Informa-
tion, Computer and Communications Security, ASIACCS ’10, pages 145–156,
New York, NY, USA, 2010. ACM.

[94] Gregory J. Duck and Roland H. C. Yap. Heap bounds protection with low
fat pointers. In Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, pages 132–142, New York, NY, USA, 2016. ACM.

[95] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncoopera-
tive environment. Softw. Pract. Exper., 18(9):807–820, September 1988.

[96] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer
for finding dynamic programming errors. Softw. Pract. Exper., 30(7):775–802,
June 2000.

[97] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static
analysis tools. Electron. Notes Theor. Comput. Sci., 217:5–21, July 2008.

[98] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static an-
alyzer for large safety-critical software. SIGPLAN Not., 38(5):196–207, May
2003.

236

"http://www.ep.liu.se/ea/cis/1997/009/"
http://www.internetsociety.org/doc/practical-dynamic-buffer-overflow-detector
http://www.internetsociety.org/doc/practical-dynamic-buffer-overflow-detector

[99] David Delmas and Jean Souyris. Astrée: From research to industry. In
Proceedings of the 14th International Conference on Static Analysis, SAS’07,
pages 437–451, Berlin, Heidelberg, 2007. Springer-Verlag.

[100] Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. Modular checking
for buffer overflows in the large. In ICSE, 2006.

[101] Robert Wahbe, Steven Lucco, Thoma E. Anderson, and Susan L. Graham.
Efficient software-based fault isolation. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, SOSP ’93, pages 203–216, New
York, NY, USA, 1993. ACM.

[102] PaX Team. http://pax.grsecurity.net/docs/aslr.txt, 2001.

[103] Wikipedia. Address space layout randomization. https://en.wikipedia.

org/wiki/Address_space_layout_randomization, 2016. Accessed April 25,
2016.

[104] Crispin Cowan, Calton Pu, Dave Maiere, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stack-
guard: Automatic adaptive detection and prevention of buffer-overflow at-
tacks. In Proceedings of the 7th Conference on USENIX Security Symposium
- Volume 7, SSYM’98, pages 5–5, Berkeley, CA, USA, 1998. USENIX Associ-
ation.

[105] Arash Baratloo, Navjot Singh, and Timothy Tsai. Transparent run-time de-
fense against stack smashing attacks. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’00, pages 21–21, Berkeley,
CA, USA, 2000. USENIX Association.

[106] Tzi-cker Chiueh and Fu-Hau Hsu. RAD: A compile-time solution to buffer
overflow attacks. In Proceedings of the The 21st International Conference on
Distributed Computing Systems, ICDCS ’01, Washington, DC, USA, 2001.
IEEE Computer Society.

[107] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K.
Iyer. Non-control-data attacks are realistic threats. In Proceedings of the 14th
Conference on USENIX Security Symposium - Volume 14, SSYM’05, pages
12–12, Berkeley, CA, USA, 2005. USENIX Association.

[108] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z Guyer, et al. The dacapo benchmarks: Java benchmark-
ing development and analysis. In ACM Sigplan Notices, volume 41, pages
169–190. ACM, 2006.

[109] Patrick Cousot and Radhia Cousot. Static determination of dynamic proper-
ties of programs. In ISOP, 1976.

237

http://pax.grsecurity.net/docs/aslr.txt
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization

[110] Antoine Miné. The octagon abstract domain. Higher-order and symbolic
computation, 19(1), 2006.

[111] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In POPL, 1978.

[112] Sriram Sankaranarayanan, Franjo Ivančić, Ilya Shlyakhter, and Aarti Gupta.
Static analysis in disjunctive numerical domains. In SAS, 2006.

[113] Corneliu Popeea and Wei-Ngan Chin. Inferring disjunctive postconditions. In
ASIAN, 2006.

[114] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In POPL, 1979.

[115] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain.
(TOPLAS), 29(5):26, 2007.

[116] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Exact join detec-
tion for convex polyhedra and other numerical abstractions. Comput. Geom.,
43(5):453–473, 2010.

[117] Arie Gurfinkel and Sagar Chaki. Boxes: A symbolic abstract domain of boxes.
In SAS, 2010.

[118] Pascal Sotin, Bertrand Jeannet, Franck Védrine, and Eric Goubault. Policy
iteration within logico-numerical abstract domains. In ATVA, 2011.

[119] Alexander I Barvinok. A polynomial time algorithm for counting integral
points in polyhedra when the dimension is fixed. Mathematics of Operations
Research, 19(4), 1994.

[120] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In POPL, 1977.

[121] Julien Henry, David Monniaux, and Matthieu Moy. Succinct representations
for abstract interpretation. In SAS, 2012.

[122] Igor Pak and Greta Panova. On the complexity of computing kronecker coef-
ficients. computational complexity, 26(1), 2017.

[123] Vincent Loechner. Polylib: A library for manipulating parameterized polyhe-
dra. Technical report, Université Louis Pasteur de Strasbourg, 1999.

[124] Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time
algorithm for approximating the volume of convex bodies. J. ACM, 38(1):1–
17, January 1991.

238

[125] Ravi Kannan, László Lovász, and Miklós Simonovits. Random walks and an
o*(n5) volume algorithm for convex bodies. Random Structures & Algorithms,
11(1):1–50, 1997.

[126] Dirk P. Kroese, Thomas Taimre, and Zdravko I. Botev. Markov Chain Monte
Carlo, chapter 6, pages 225–280. John Wiley & Sons, Inc., 2011.

[127] Roberto Bagnara, Patricia M Hill, Elisa Ricci, and Enea Zaffanella. Precise
widening operators for convex polyhedra. In SAS, 2003.

[128] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In
PLDI, 2010.

[129] Chris Lattner. Macroscopic Data Structure Analysis and Optimization. PhD
thesis, UIUC, 2005.

[130] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract
domains for static analysis. In CAV, 2009.

[131] R. L. Smith. Monte carlo procedures for generating random feasible solutions
to mathematical programs. In ORSA/TIMS Conference, May 1980.

[132] A. Boneh and A. Golan. Constraints’ redundancy and feasible region bound-
edness by random feasible point generator (rfpg). In Third European congress
on operations research, EURO III, 1979.

[133] Martin Bromberger and Christoph Weidenbach. Computing a complete basis
for equalities implied by a system of LRA constraints. In SMT, volume 1617,
pages 15–30, 2016.

[134] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Proceedings of the 18th International Conference on Computer
Aided Verification, CAV, pages 81–94, 2006.

[135] Dirk Beyer. Reliable and reproducible competition results with benchexec
and witnesses (report on sv-comp 2016). In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 887–904.
Springer, 2016.

[136] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The
mälardalen wcet benchmarks: Past, present and future. In OASIcs-
OpenAccess Series in Informatics, volume 15. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2010.

[137] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, 2(2):1–2, 2006.

[138] Bertrand Jeannet. Dynamic partitioning in linear relation analysis: Applica-
tion to the verification of reactive systems. Formal Methods in System Design,
23(1), 2003.

239

[139] Maria Handjieva and Stanislav Tzolovski. Refining static analyses by trace-
based partitioning using control flow. In SAS, 1998.

[140] Gogul Balakrishnan, Sriram Sankaranarayanan, Franjo Ivančić, and Aarti
Gupta. Refining the control structure of loops using static analysis. In EM-
SOFT, 2009.

[141] Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. Simplifying loop
invariant generation using splitter predicates. In CAV, 2011.

[142] Dirk Beyer, Thomas A Henzinger, Rupak Majumdar, and Andrey Ry-
balchenko. Path invariants. In PLDI, 2007.

[143] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement and
progress invariants for bound analysis. In PLDI, 2009.

[144] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Lazy abstraction. POPL, 2002.

[145] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K Rajamani.
Automatic predicate abstraction of c programs. In PLDI, 2001.

[146] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. Design and
implementation of a special-purpose static program analyzer for safety-critical
real-time embedded software. In The Essence of Computation. 2002.

[147] Ian Sweet, José Manuel Calderón Trilla, Chad Scherrer, Michael Hicks, and
Stephen Magill. What’s the over/under? probabilistic bounds on information
leakage. In POST, 2018.

[148] American fuzzing lop (afl). http://lcamtuf.coredump.cx/afl/, 2018.

[149] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Gio-
vanni Vigna. Driller: Augmenting fuzzing through selective symbolic execu-
tion. In Network and Distributed System Security Symposium (NDSS), 2016.

[150] R. Lyman Ott and Micheal T. Longnecker. Introduction to Statistical Methods
and Data Analysis (with CD-ROM). 2006.

[151] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based
greybox fuzzing as markov chain. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016.

[152] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley.
Scheduling black-box mutational fuzzing. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2013.

240

http://lcamtuf.coredump.cx/afl/

[153] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuf-
frida, and Herbert Bos. Vuzzer: Application-aware evolutionary fuzzing. In
NDSS, 2017.

[154] Sang Kil Cha, Maverick Woo, and David Brumley. Program-adaptive muta-
tional fuzzing. In IEEE Symposium on Security and Privacy (S&P), 2015.

[155] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. Optimizing seed selection for
fuzzing. In USENIX Security Symposium, 2014.

[156] Bin Zhang, Jiaxi Ye, Chao Feng, and Chaojing Tang. S2F: discover hard-to-
reach vulnerabilities by semi-symbolic fuzz testing. In International Confer-
ence on Computational Intelligence and Security, 2017.

[157] P. S. Kochhar, F. Thung, and D. Lo. Code coverage and test suite effective-
ness: Empirical study with real bugs in large systems. In IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER),
March 2015.

[158] Rahul Gopinath, Carlos Jensen, and Alex Groce. Code coverage for suite
evaluation by developers. In International Conference on Software Engineering
(ICSE), 2014.

[159] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with
test suite effectiveness. In International Conference on Software Engineering
(ICSE), 2014.

[160] David Molnar, Xue Cong Li, and David A. Wagner. Dynamic test genera-
tion to find integer bugs in x86 binary linux programs. In USENIX Security
Symposium, 2009.

[161] Rijnard van Tonder, John Kotheimer, and Claire Le Goues. Semantic crash
bucketing. In IEEE International Conference on Automated Software Engi-
neering (ASE), 2018.

[162] Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, and Abhik Roychoudhury.
Bucketing failing tests via symbolic analysis. In International Conference on
Fundeamental Approaches to Software Engineering (FASE), 2017.

[163] libfuzzer. https://llvm.org/docs/LibFuzzer.html, 2018.

[164] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. Slow-
fuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. In ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), 2017.

241

https://llvm.org/docs/LibFuzzer.html

[165] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire: Data-driven seed
generation for fuzzing. In IEEE Symposium on Security and Privacy (S&P),
2017.

[166] Bhargava Shastry, Markus Leutner, Tobias Fiebig, Kashyap Thimmaraju,
Fabian Yamaguchi, Konrad Rieck, Stefan Schmid, Jean-Pierre Seifert, and
Anja Feldmann. Static program analysis as a fuzzing aid. In Research in
Attacks, Intrusions, and Defenses (RAID), 2017.

[167] Gustavo Grieco, Mart́ın Ceresa, and Pablo Buiras. Quickfuzz: an auto-
matic random fuzzer for common file formats. In International Symposium
on Haskell, 2016.

[168] Gustavo Grieco, Martn Ceresa, Agustn Mista, and Pablo Buiras. Quickfuzz
testing for fun and profit. J. Syst. Softw., 2017.

[169] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang
Hao, Christopher Kruegel, and Giovanni Vigna. DIFUZE: interface aware
fuzzing for kernel drivers. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017.

[170] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley.
Unleashing mayhem on binary code. In IEEE Symposium on Security and
Privacy (S&P), 2012.

[171] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang
Liu, and Alwen Tiu. Steelix: program-state based binary fuzzing. In Founda-
tions of Software Engineering (FSE), 2017.

[172] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled search. In
IEEE Symposium on Security and Privacy (S&P), 2018.

[173] Ulf Kargén and Nahid Shahmehri. Turning programs against each other:
High coverage fuzz-testing using binary-code mutation and dynamic slicing.
In Foundations of Software Engineering (FSE), 2015.

[174] Ying-Dar Lin, Feng-Ze Liao, Shih-Kun Huang, and Yuan-Cheng Lai. Browser
fuzzing by scheduled mutation and generation of document object models. In
International Carnahan Conference on Security Technology, 2015.

[175] Hyunguk Yoo and Taeshik Shon. Grammar-based adaptive fuzzing: Eval-
uation on SCADA modbus protocol. In IEEE International Conference on
Smart Grid Communications, 2016.

[176] HyungSeok Han and Sang Kil Cha. IMF: inferred model-based fuzzer. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2017.

242

[177] Antonio Ken Iannillo, Roberto Natella, Domenico Cotroneo, and Cristina
Nita-Rotaru. Chizpurfle: A gray-box android fuzzer for vendor service cus-
tomizations. In IEEE International Symposium on Software Reliability Engi-
neering (ISSRE), 2017.

[178] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Designing
new operating primitives to improve fuzzing performance. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2017.

[179] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel,
and Thorsten Holz. kafl: Hardware-assisted feedback fuzzing for OS kernels.
In USENIX Security Symposium, 2017.

[180] Andrew Henderson, Heng Yin, Guang Jin, Hao Han, and Hongmei Deng.
VDF: targeted evolutionary fuzz testing of virtual devices. In Research in
Attacks, Intrusions, and Defenses (RAID), 2017.

[181] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by program
transformation. In IEEE Symposium on Security and Privacy (S&P), 2018.

[182] Wookhyun Han, Byunggill Joe, Byoungyoung Lee, Chengyu Song, and Insik
Shin. Enhancing memory error detection for large-scale applications and fuzz
testing. In Network and Distributed System Security Symposium (NDSS),
2018.

[183] Theofilos Petsios, Adrian Tang, Salvatore J. Stolfo, Angelos D. Keromytis,
and Suman Jana. NEZHA: efficient domain-independent differential testing.
In IEEE Symposium on Security and Privacy (S&P), 2017.

[184] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos.
Dowsing for overflows: A guided fuzzer to find buffer boundary violations. In
USENIX Security Symposium, 2013.

[185] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. 2018.

[186] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. Directed greybox fuzzing. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2017.

[187] Weiguang Wang, Hao Sun, and Qingkai Zeng. Seededfuzz: Selecting and gen-
erating seeds for directed fuzzing. In International Symposium on Theoretical
Aspects of Software Engineering (TASE), 2016.

[188] L. Zhang and V. L. L. Thing. A hybrid symbolic execution assisted fuzzing
method. In IEEE Region 10 Conference (TENCON), 2017.

[189] Cert basic fuzzing framework (bff). https://github.com/CERTCC/certfuzz,
2018.

243

https://github.com/CERTCC/certfuzz

[190] Radamsa. https://github.com/aoh/radamsa, 2018.

[191] Zzuf. http://caca.zoy.org/wiki/zzuf, 2018.

[192] Confidence intervals for a median. http://www.ucl.ac.uk/ich/

short-courses-events/about-stats-courses/stats-rm/Chapter_8_

Content/confidence_interval_single_median, 2018.

[193] Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests
to assess randomized algorithms in software engineering. In International
Conference on Software Engineering (ICSE), 2011.

[194] Gordon B. Drummond and Sarah L. Vowler. Different tests for a difference:
how do we research? British Journal of Pharmacology, 165(5), 2012.

[195] Guillaume Calmettes, Gordon B. Drummond, and Sarah L. Vowler. Making
due with what we have: use your bootstraps. Journal of Physiology, 590(15),
2012.

[196] András Vargha and Harold D. Delaney. A critique and improvement of the
cl common language effect size statistics of mcgraw and wong. Journal of
Educational and Behavioral Statistics, 25(2), 2000.

[197] lcamtuf. AFL quick start guide. http://lcamtuf.coredump.cx/afl/

QuickStartGuide.txt, April 2018.

[198] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney.
Producing wrong data without doing anything obviously wrong! In Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2009.

[199] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mam-
bretti, William K. Robertson, Frederick Ulrich, and Ryan Whelan. LAVA:
large-scale automated vulnerability addition. In IEEE Symposium on Secu-
rity and Privacy (S&P), 2016.

[200] Fuzzer test suite. https://github.com/google/fuzzer-test-suite, 2018.

[201] Darpa cyber grand challenge (cgc) binaries. https://github.com/

CyberGrandChallenge/, 2018.

[202] Brendan Dolan-Gavitt. Of bugs and baselines. http://moyix.blogspot.

com/2018/03/of-bugs-and-baselines.html, 2018.

[203] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump,
Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas

244

https://github.com/aoh/radamsa
http://caca.zoy.org/wiki/zzuf
http://www.ucl.ac.uk/ich/short-courses-events/about-stats-courses/stats-rm/Chapter_8_Content/confidence_interval_single_median
http://www.ucl.ac.uk/ich/short-courses-events/about-stats-courses/stats-rm/Chapter_8_Content/confidence_interval_single_median
http://www.ucl.ac.uk/ich/short-courses-events/about-stats-courses/stats-rm/Chapter_8_Content/confidence_interval_single_median
http://lcamtuf.coredump.cx/afl/QuickStartGuide.txt
http://lcamtuf.coredump.cx/afl/QuickStartGuide.txt
https://github.com/google/fuzzer-test-suite
https://github.com/CyberGrandChallenge/
https://github.com/CyberGrandChallenge/
http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html
http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html

VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The dacapo bench-
marks: Java benchmarking development and analysis. In ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), 2006.

[204] Vadim Ryvchin and Ofer Strichman. Local restarts. In International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT), 2008.

[205] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern,
Eric Eide, and John Regehr. Taming compiler fuzzers. In ACM SIGPLAN
Notices, volume 48, pages 197–208. ACM, 2013.

[206] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern,
Eric Eide, and John Regehr. Taming compiler fuzzers. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
2013.

[207] Michael Hicks. What is a bug? http://www.pl-enthusiast.net/2015/09/

08/what-is-a-bug/, 2015.

[208] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for
fine-grained resource sharing in the data center. In NSDI, volume 11, pages
22–22, 2011.

[209] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. Addresssanitizer: A fast address sanity checker. In USENIX Annual
Technical Conference, 2012.

[210] Ben Liblit and Alex Aiken. Building a better backtrace: Techniques for post-
mortem program analysis. Technical Report CSD-02-1203, University of Cal-
ifornia, Berkeley, October 2002.

[211] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[212] O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX
Magazine, 36(1):42–47, Feb 2011.

[213] S. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theor.,
28(2):129–137, September 2006.

[214] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
IEEE Transactions on pattern analysis and machine intelligence, 22(8):888–
905, 2000.

245

http://www.pl-enthusiast.net/2015/09/08/what-is-a-bug/
http://www.pl-enthusiast.net/2015/09/08/what-is-a-bug/

[215] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Transactions on pattern analysis and machine
intelligence, 24(5):603–619, 2002.

[216] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996.

[217] Tavis Ormandy. halfempty. https://github.com/googleprojectzero/

halfempty, 2018.

[218] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of clas-
sification, 2(1):193–218, 1985.

[219] Edward B Fowlkes and Colin L Mallows. A method for comparing two
hierarchical clusterings. Journal of the American statistical association,
78(383):553–569, 1983.

[220] William M Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association, 66(336):846–850, 1971.

[221] I. T. Jolliffe. Principal Component Analysis and Factor Analysis, pages 115–
128. Springer New York, New York, NY, 1986.

[222] Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, and Michael I.
Jordan. Scalable statistical bug isolation. In Proceedings of the ACM SIG-
PLAN 2005 Conference on Programming Language Design and Implementa-
tion, Chicago, IL, USA, June 12-15, 2005, pages 15–26, 2005.

[223] Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, and Abhik Roychoudhury.
Bucketing failing tests via symbolic analysis. In Proceedings of the 20th In-
ternational Conference on Fundamental Approaches to Software Engineering -
Volume 10202, pages 43–59, New York, NY, USA, 2017. Springer-Verlag New
York, Inc.

[224] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, volume 8, pages 209–224, 2008.

[225] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

246

https://github.com/googleprojectzero/halfempty
https://github.com/googleprojectzero/halfempty

	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Build It, Break It, Fix It
	Build-it, Break-it, Fix-it
	Competition phases
	Competition scoring
	Discussion
	Implementation

	Contest Problems
	Secure log (Spring 2015)
	Securing ATM interactions (Fall 2015)

	Quantitative Analysis
	Data collection
	Analysis approach
	Contestants
	Ship scores
	Code quality measures
	Breaking success

	Qualitative Analysis
	Success Stories
	Failure Stories

	Related work
	Conclusions

	Checked C
	Checked C
	Basics
	Simple pointers
	Arrays
	NUL-terminated Arrays
	Checked and Unchecked Regions
	Restrictions and Limitations

	Implementation
	Overview
	Checking Bounds
	Run-time Checks

	Automatic Porting
	Conversion tool design and overview
	Constraint logic and solving
	Example

	Empirical Evaluation
	Compiler evaluation
	Porting Tool Evaluation

	Related work
	Summary

	Volume Estimation for Numeric Invariant Generation
	Introduction
	Overview and Example
	Semantic Comparison of Polytopes
	Sampling and Counting Points
	Integer-Point-Based Affinity
	Volume-Ratio-Based Affinity
	Segment-Sample Volume-Ratio-Based Affinity
	Inflating Polytopes

	Disjunctive Abstract Domain
	Implementation
	Random Sampling Within Polytopes

	Evaluation
	Experimental Setup
	Results
	Limitations and Discussion

	Related Work
	Conclusion

	Evaluating Fuzz Testing
	Backround and overview
	Background
	Fuzzing Procedure
	Recent Advances in Fuzzing

	Overview and Experimental Setup
	Statistically Sound Comparisons
	Seed Selection
	Timeouts
	Performance
	Code Coverage

	Target Programs
	Real programs
	Suites of artificial programs (or bugs)
	Toward a Fuzzing Benchmark Suite

	Conclusions and Future Work

	De-duplication, clustering, and root cause analysis
	Ground Truth: Bugs Found
	Methodology
	Discussion of bugs

	Approximating ground truth: AFL coverage profiles
	Approximating ground truth: Stack hashes
	Approximating ground truth: Clustering
	Clustering Methods
	Results and discussion

	Using symbolic path conditions for root cause analysis
	Conclusion
	Future work

	Conclusion
	Patches applied to cxxfilt
	Bibliography

