
Lisp Users and Vendors Conference

August ��� ����

Tutorial on
Good Lisp Programming

Style

Peter Norvig

Sun Microsystems Labs Inc�

Kent Pitman

Harlequin� Inc�

Portions copyright c� ����� ���� Peter Norvig�

Portions copyright c� ����� ���� Kent M� Pitman�

All Rights Reserved�

�

Outline

�� What is Good Style�

�� Tips on Built�In Functionality

�� Tips on Near�Standard Tools

�� Kinds of Abstraction

�� Programming in the Large

�� Miscellaneous

�

�� What is Good Style�

Good Lisp Programming Style

	Elegance is not optional�
 � Richard A� O�Keefe

Good style �in any language leads to programs that
are�

� Understandable

� Reusable

� Extensible

� E�cient

� Easy to develop�debug

It also helps correctness� robustness� compatibility
Our maxims of good style are�

� Be explicit

� Be speci�c

� Be concise

� Be consistent

� Be helpful �anticipate the reader�s needs

� Be conventional �don�t be obscure

� Build abstractions at a usable level

� Allow tools to interact �referential transparency

Good style is the 	underware
 that supports a program

�

���� Where does good style come from�

What To Believe

Don�t believe everything we tell you� �Just most�

Worry less about what to believe and more about why�
Know where your 	Style Rules
 come from�

� Religion� Good vs� Evil 	This way is better�

� Philosophy 	This is consistent with other things�

� Robustness� Liability� Safety� Ethics 	I�ll put in
redundant checks to avoid something horrible�

� Legality 	Our lawyers say do it this way�

� Personality� Opinion 	I like it this way�

� Compatibility 	Another tool expects this way�

� Portability 	Other compilers prefer this way�

� Cooperation� Convention 	It has to be done
some uniform way� so we agreed on this one�

� Habit� Tradition 	We�ve always done it this way�

� Ability 	My programmers aren�t sophisticated enough�

� Memory 	Knowing how I would do it means I
don�t have to remember how I did do it�

� Superstition 	I�m scared to do it di�erently�

� Practicality 	This makes other things easier�

�

���� Where does good style come from�

It�s All About Communication

Expression � Understanding � Communication

Programs communicate with�

� Human readers

� Compilers

� Text editors �arglist� doc string� indent

� Tools �trace� step� apropos� xref� manual

� Users of the program �indirect communication

�

���� Where does good style come from�

Know the Context

When reading code�

� Know who wrote it and when�

When writing code�

� Annotate it with comments�

� Sign and date your comments�
�Should be an editor command to do this

Some things to notice�

� People�s style changes over time�

� The same person at di�erent times can seem like
a di�erent person�

� Sometimes that person is you�

�

���� How do I know if it�s good�

Value Systems Are Not Absolute

Style rules cannot be viewed in isolation�
They often overlap in con�icting ways�

The fact that style rules con�ict with one another re�
�ects the natural fact that real�world goals con�ict�
A good programmer makes trade�o�s in programming
style that re�ect underlying priority choices among var�
ious major goals�

� Understandable

� Reusable

� Extensible

� E�cient �coding� space� speed� ���

� Easy to develop�debug

	

���� How do I know if it�s good�

Why Good Style is Good

Good style helps build the current program� and the
next one�

� Organizes a program� relieving human memory needs

� Encourages modular� reusable parts

Style is not just added at the end� It plays a part in�

� Organization of the program into �les

� Top�level design� structure and layout of each �le

� Decomposition into modules and components

� Data�structure choice

� Individual function design�implementation

� Naming� formatting� and documenting standards

���� How do I know if it�s good�

Why Style is Practical� Memory

	When I was young� I could imagine a castle with
twenty rooms with each room having ten di�erent ob�
jects in it� I would have no problem� I can�t do that
anymore� Now I think more in terms of earlier experi�
ences� I see a network of inchoate clouds� instead of
the picture�postcard clearness� But I do write better
programs�
 � Charles Simonyi

	Some people are good programmers because they can
handle many more details than most people� But there
are a lot of disadvantages in selecting programmers for
that reason�it can result in programs no on else can
maintain�
 � Butler Lampson

	Pick out any three lines in my program� and I can tell
you where they�re from and what they do�
 � David
McDonald

Good style replaces the need for great memory�

� Make sure any � ��� ��� lines are self�explanatory
Also called 	referential transparency

Package complexity into objects and abstractions�
not global variables�dependencies

� Make it 	fractally
 self�organizing all the way up�down

� Say what you mean

� Mean what you say

�

���� How do I know if it�s good�

Why Style is Practical� Reuse

Structured Programming encourages modules that meet
speci�cations and can be reused within the bounds of
that speci�cation�

Strati�ed Design encourages modules with commonly�
needed functionality� which can be reused even when
the speci�cation changes� or in another program�

Object�Oriented Design is strati�ed design that con�
centrates on classes of objects and on information hid�
ing�

You should aim to reuse�

� Data types �classes

� Functions �methods

� Control abstractions

� Interface abstractions �packages� modules

� Syntactic abstractions �macros and whole languages

��

���� How do I know if it�s good�

Say What You Mean

	Say what you mean� simply and directly�
 � Kernighan
� Plauger

Say what you mean in data �be speci�c� concise�

� Use data abstractions

� De�ne languages for data� if needed

� Choose names wisely

Say what you mean in code �be concise� conventional�

� De�ne interfaces clearly

� Use Macros and languages appropriately

� Use built�in functions

� Create your own abstractions

� Don�t do it twice if you can do it once

In annotations �be explicit� helpful�

� Use appropriate detail for comments

� Documentation strings are better than comments

� Say what it is for� not just what it does

� Declarations and assertions

� Systems �and test �les� etc�

��

���� How do I know if it�s good�

Be Explicit

Optional and Keyword arguments�

If you have to look up the default value� you need to
supply it� You should only take the default if you truly
believe you don�t care or if you�re sure the default is
well�understood and well�accepted by all�

For example� when opening a �le� you should almost
never consider omitting the �direction keyword argu�
ment� even though you know it will default to �input�

Declarations�

If you know type information� declare it� Don�t do what
some people do and only declare things you know the
compiler will use� Compilers change� and you want your
program to naturally take advantage of those changes
without the need for ongoing intervention�

Also� declarations are for communication with human
readers� too�not just compilers�

Comments�

If you�re thinking of something useful that others might
want to know when they read your code and that might
not be instantly apparent to them� make it a comment�

��

���� How do I know if it�s good�

Be Speci�c

Be as speci�c as your data abstractions warrant�
but no more�

Choose�

�� more specific �� more abstract
�mapc ��process�word �map nil ��process�word

�first sentences�� �elt sentences ���

Most speci�c conditional�

� if for two�branch expression

� when� unless for one�branch statement

� and� or for boolean value only

� cond for multi�branch statement or expression

�� Violates Expectation� �� Follows Expectation�
�and �numberp x� �cos x�� �and �numberp x� �	 x
��
�if �numberp x� �cos x�� �if �numberp x� �cos x� nil�
�if �numberp x� �print x�� �when �numberp x� �print x��

��

���� How do I know if it�s good�

Be Concise

Test for the simplest case� If you make the same test
�or return the same result in two places� there must
be an easier way�

Bad� verbose� convoluted

�defun count�all�numbers �alist�
�cond

��null alist� ��
�t �� �if �listp �first alist��

�count�all�numbers �first alist��
�if �numberp �first alist�� � ���

�count�all�numbers �rest alist�� �� ��

� Returns � twice

� Nonstandard indentation

� alist suggests association list

Good�

�defun count�all�numbers �exp�
�typecase exp
�cons �� �count�all�numbers �first exp��

�count�all�numbers �rest exp����
�number ��
�t ����

cond instead of typecase is equally good �less speci�c�
more conventional� consistent�

��

���� How do I know if it�s good�

Be Concise

Maximize LOCNW� lines of code not written�
	Shorter is better and shortest is best�

� Jim Meehan

Bad� too verbose� ine�cient

�defun vector�add �x y�
�let ��z nil� n�
�setq n �min �list�length x� �list�length y���
�dotimes �j n �reverse z��
�setq z �cons �� �nth j x� �nth j y�� z�����

�defun matrix�add �A B�
�let ��C nil� m�
�setq m �min �list�length A� �list�length B���
�dotimes �i m �reverse C��
�setq C �cons �vector�add �nth i A�

�nth i B�� C�����

� Use of nth makes this O�n�

� Why list�length� Why not length or mapcar�

� Why not nreverse�

� Why not use arrays to implement arrays�

� The return value is hidden

��

���� How do I know if it�s good�

Be Concise

Better� more concise

�defun vector�add �x y�
Element�wise add of two vectors
�mapcar ��� x y��

�defun matrix�add �A B�
Element�wise add of two matrices �lists of lists�
�mapcar ��vector�add A B��

Or use generic functions�

�defun add ��rest args�
Generic addition
�if �null args�

�
�reduce ��binary�add args���

�defmethod binary�add ��x number� �y number��
�� x y��

�defmethod binary�add ��x sequence� �y sequence��
�map �type�of x� ��binary�add x y��

��

���� How do I know if it�s good�

Be Helpful

Documentation should be organized around tasks the
user needs to do� not around what your program hap�
pens to provide� Adding documentation strings to each
function usually doesn�t tell the reader how to use your
program� but hints in the right place can be very ef�
fective�

Good� �from Gnu Emacs online help�

next�line� Move cursor vertically down ARG lines�
� � � If you are thinking of using this in a Lisp program�
consider using �forward�line� instead� It is usually eas�
ier to use and more reliable �no dependence on goal
column� etc��

defun� de�nes NAME as a function� The de�nition
is �lambda ARGLIST �DOCSTRING� BODY����� See also the
function interactive�

These anticipate user�s use and problems�

�	

���� How do I know if it�s good�

Be Conventional

Build your own functionality to parallel existing features
Obey naming conventions�
with�something� dosomething macros

Use built�in functionality when possible

� Conventional� reader will know what you mean

� Concise� reader doesn�t have to parse the code

� E�cient� has been worked on heavily

Bad� non�conventional

�defun add�to�list �elt list�
�cond ��member elt lst� lst�

�t �cons elt lst����

Good� use a built�in function

�left as an exercise�

	Use library functions
 � Kernighan � Plauger

�

���� How do I know if it�s good�

Be Consistent

Some pairs of operators have overlapping capabilities�
Be consistent about which you use in neutral cases
�where either can be used� so that it is apparent when
you�re doing something unusual�

Here are examples involving let and let�� The �rst
exploits parallel binding and the second sequential� The
third is neutral�

�let ��a b� �b a�� ����

�let� ��a b� �b �� � a�� �c �� b ���� ����

�let ��a �� x �� � y��� �b �� y �� � x���� ����

Here are analogous examples using flet and labels�
The �rst exploits closure over the local function� the
second exploits non�closure� The third is neutral�

�labels ��process �x� ��� �process �cdr x�� ����� ����

�flet ��foo �x� �� �foo x� ���� ����

�flet ��add
 �x� �� x
��� ����

In both cases� you could choose things the other way
around� always using let� or labels in the neutral case�
and let or flet in the unusual case� Consistency mat�
ters more than the actual choice� Most people� how�
ever� think of let and flet as the normal choices�

��

���� How do I know if it�s good�

Choose the Right Language

Choose the appropriate language� and use appropriate
features in the language you choose� Lisp is not the
right language for every problem�

	You got to dance with the one that brung you�

� Bear Bryant

Lisp is good for�

� Exploratory programming

� Rapid prototyping

� Minimizing time�to�market

� Single�programmer �or single�digit team projects

� Source�to�source or data�to�data transformation
Compilers and other translators
Problem�speci�c languages

� Dynamic dispatch and creation
�compiler available at run�time

� Tight integration of modules in one image
�as opposed to Unix�s character pipe model

� High degree of interaction �read�eval�print� CLIM

� User�extensible applications �gnu emacs

	I believe good software is written by small teams of
two� three� or four people interacting with each other
at a very high� dense level�
 � John Warnock

��

���� How do I know if it�s good�

Choose the Right Language

	Once you are an experienced Lisp programmer� it�s
hard to return to any other language�
 � Robert R�
Kessler

Current Lisp implementations are not so good for�

� Persistent storage �data base

� Maximizing resource use on small machines

� Projects with hundreds of programmers

� Close communication with foreign code

� Delivering small�image applications

� Real�time control �but Gensym did it

� Projects with inexperienced Lisp programmers

� Some kinds of numerical or character computation
�Works �ne with careful declarations� but the Lisp
e�ciency model is hard to learn�

��

�� Tips on Built�in Functionality

Built�in Functionality

	No doubt about it� Common Lisp is a big language

� Guy Steele

� ��� built�in functions �in one pre�ANSI CL

� �� macros

� �� special forms

� �� variables

� �� constants

But what counts as the language itself�

� C�� has �� reserved words

� ANSI CL is down to �� special forms

� The rest can be thought of as a required library

Either way� the Lisp programmer needs some help�
Which built�in functionality to make use of
How to use it

��

�� Tips on Built�in Functionality

DEFVAR and DEFPARAMETER

Use defvar for things you don�t want to re�initialize
upon re�load�

�defvar �options� ����
�defun add�option �x� �pushnew x �options���

Here you might have done �add�option ���� many
times before you re�load the �le�perhaps some even
from another �le� You usually don�t want to throw
away all that data just because you re�load this de�ni�
tion�

On the other hand� some kinds of options do want to
get re�initialized upon re�load���

�defparameter �use�experimental�mode� nil
Set this to T when experimental code works��

Later you might edit this �le and set the variable to T�
and then re�load it� wanting to see the e�ect of your
edits�

Recommendation� Ignore the part in CLtL that says
defvar is for variables and defparameter is for parame�
ters� The only useful di�erence between these is that
defvar does its assignment only if the variable is un�
bound� while defparameter does its assignment uncon�
ditionally�

��

�� Tips on Built�in Functionality

EVAL�WHEN

�eval�when ��execute� ����

�

�eval�when ��compile�toplevel� ����
�

�eval�when ��load�toplevel� ����

Also� take care about explicitly nesting eval�when forms�
The e�ect is not generally intuitive for most people�

��

�� Tips on Built�in Functionality

FLET to Avoid Code Duplication

Consider the following example�s duplicated use of
�f �g �h����

�do ��x �f �g �h���
�f �g �h�����

�nil� ����

Every time you edit one of the �f �g �h����s� you prob�
aby want to edit the other� too� Here is a better mod�
ularity�

�flet ��fgh �� �f �g �h�����
�do ��x �fgh� �fgh��� �nil� �����

�This might be used as an argument against do�

Similarly� you might use local functions to avoid dupli�
cation in code branches that di�er only in their dynamic
state� For example�

�defmacro handler�case�if �test form �rest cases�
�let ��do�it �gensym DO�IT���
��flet ���do�it �� �form��

�if test
�handler�case ��do�it� ��cases�
��do�it�����

��

�� Tips on Built�in Functionality

DEFPACKAGE

Programming in the large is supported by a design style
that separates code into modules with clearly de�ned
interfaces�

The Common Lisp package system serves to avoid
name clashes between modules� and to de�ne the in�
terface to each module�

� There is no top level �be thread�safe

� There are other programs �use packages

� Make it easy for your consumers
Export only what the consumer needs

� Make it easy for maintainers
License to change non�exported part

�defpackage PARSER
��use LISP ��Lucid LCL ��Allegro EXCL�
��export PARSE PARSE�FILE START�PARSER�WINDOW

DEFINE�GRAMMAR DEFINE�TOKENIZER��

Some put exported symbols at the top of the �le where
they are de�ned�

We feel it is better to put them in the defpackage� and
use the editor to �nd the corresponding de�nitions�

��

�� Tips on Built�in Functionality

Understanding Conditions vs Errors

Lisp assures that most errors in code will not corrupt
data by providing an active condition system�

Learn the di�erence between errors and conditions�
All errors are conditions� not all conditions are errors�

Distinguish three concepts�

� Signaling a condition�
Detecting that something unusual has happened�

� Providing a restart�
Establishing one of possibly several options for
continuing�

� Handling a condition�
Selecting how to proceed from available options�

�	

�� Tips on Built�in Functionality

Error Detection

Pick a level of error detection and handling that matches
your intent� Usually you don�t want to let bad data go
by� but in many cases you also don�t want to be in the
debugger for inconsequential reasons�

Strike a balance between tolerance and pickiness that
is appropriate to your application�

Bad� what if its not an integer	

�defun parse�date �string�
Read a date from a string� ���
�multiple�value�bind �day�of�month string�position�

�parse�integer string �junk�allowed t�
�����

Questionable� what if memory runs out	

�ignore�errors �parse�date string��

Better� catches expected errors only

�handler�case �parse�date string�
�parse�error nil��

�

�� Tips on Built�in Functionality

Writing Good Error Messages

� Use full sentences in error messages �uppercase
initial� trailing period�

� No Error� or �� pre�x� The system will sup�
ply such a pre�x if needed�

� Do not begin an error message with a request for
a fresh line� The system will do this automatically
if necessary�

� As with other format strings� don�t use embedded
tab characters�

� Don�t mention the consequences in the error mes�
sage� Just describe the situation itself�

� Don�t presuppose the debugger�s user interface in
describing how to continue� This may cause porta�
bility problems since di�erent implementations use
di�erent interfaces� Just describe the abstract ef�
fect of a given action�

� Specify enough detail in the message to distinguish
it from other errors� and if you can� enough to help
you debug the problem later if it happens�

��

�� Tips on Built�in Functionality

Writing Good Error Messages �cont�d�

Bad�

�error ��		 Error� Foo� Type �C to continue��

Better�

�cerror Specify a replacement sentence interactively�
An ill�formed sentence was encountered��� �A
sentence�

��

�� Tips on Built�in Functionality

Using the Condition System

Start with these�

� error� cerror

� warn

� handler�case

� with�simple�restart

� unwind�protect

Good� standard use of warn

�defvar �word� ��� The word we are currently working on��

�defun lex�warn �format�str �rest args�
Lexical warning� like warn� but first tells what word
caused the warning�
�warn For word �a� �� �word� format�str args��

��

�� Tips on Built�in Functionality

HANDLER�CASE� WITH�SIMPLE�RESTART

Good� handle speci�c errors

�defun eval�exp �exp�
If possible evaluate this exp� otherwise return it�
�� Guard against errors in evaluating exp
�handler�case
�if �and �fboundp �op exp��

�every ��is�constant �args exp���
�eval exp�
exp�

�arithmetic�error �� exp���

Good� provide restarts

�defun top�level ��key �prompt �	 � �read ��read�
�eval ��eval� �print ��print��

A read�eval�print loop�
�with�simple�restart

�abort Exit out of the top level��
�loop
�with�simple�restart

�abort Return to top level loop��
�format t ���a prompt�
�funcall print �funcall eval �funcall read�������

��

�� Tips on Built�in Functionality

UNWIND�PROTECT

unwind�protect implements important functionality that
everyone should know how to use� It is not just for sys�
tem programmers�

Watch out for multi�tasking� though� For example� im�
plementing some kinds of state�binding with unwind�protect
might work well in a single�threaded environment� but
in an environment with multi�tasking� you often have
to be a little more careful�

�unwind�protect �progn form� form� ��� formn�
cleanup� cleanup� ��� cleanupn�

� Never assume form� will get run at all�

� Never assume formn won�t run to completion�

��

�� Tips on Built�in Functionality

UNWIND�PROTECT �cont�d�

Often you need to save state before entering the unwind�protect
and test before you restore state�

Possibly Bad� �with multi�tasking�

�catch �robot�op
�unwind�protect
�progn �turn�on�motor�

�manipulate� �
�turn�off�motor���

Good� �safer�

�catch �robot�op
�let ��status �motor�status motor���
�unwind�protect

�progn �turn�on�motor motor�
�manipulate motor��

�when �motor�on� motor�
�turn�off�motor motor��

�setf �motor�status motor� status����

��

�� Tips on Built�in Functionality

I�O Issues� Using FORMAT

� Don�t use Tab characters in format strings �or any
strings intended for output� Depending on what
column your output starts in� the tab stops may
not line up the same on output as they did in the
code�

� Don�t use ���S �A	 to print unreadable objects�
Use print�unreadable�object instead�

� Consider putting format directives in uppercase to
make them stand out from lowercase text sur�
rounding�
For example� Foo� �A instead of Foo� �a�

� Learn useful idioms� For example� ���A��� �� and
��p�

� Be conscious of when to use �� versus ���
Also� ��� and ��� are also handy�

Most code which outputs a single line should start
with �� and end with ���

�format t ��This is a test����
This is a test�

� Be aware of implementation extensions� They may
not be portable� but for non�portable code might
be very useful� For example� Genera�s � and �

for handling indentation�

��

�� Tips on Built�in Functionality

Using Streams Correctly

� �standard�output� and �standard�input� vs �terminal�io�

Do not assume �standard�input� and �standard�output�
will be bound to �terminal�io� �or� in fact� to any
interactive stream� You can bind them to such a
stream� however�

Try not to use �terminal�io� directly for input or
output� It is primarily available as a stream to
which other streams may be bound� or may indi�
rect �e�g�� by synonym streams�

� �error�output� vs �debug�io�

Use �error�output� for warnings and error mes�
sages that are not accompanied by any user inter�
action�

Use �debug�io� for interactive warnings� error mes�
sages� and other interactions not related to the
normal function of a program�

In particular� do not �rst print a message on �error�output�
and then do a debugging session on �debug�io�� ex�
pecting those to be the same stream� Instead� do
each interaction consistently on one stream�

��

�� Tips on Built�in Functionality

Using Streams Correctly �cont�d�

� �trace�output�

This can be used for more than just receiving the
output of trace� If you write debugging routines
that conditionally print helpful information with�
out stopping your running program� consider do�
ing output to this stream so that if �trace�output�
is redirected� your debugging output will too�

A useful test� If someone re�bound only one of several
I�O streams you are using� would it make your output
look stupid�

�	

�� Tips on Near�Standard Tools

Using Near�Standard Tools

Some functionality is not built in to the language� but
is used by most programmers� This divides into exten�
sions to the language and tools that help you develop
programs�

Extensions

� defsystem to de�ne a program

� CLIM� CLX� etc� graphics libraries

Tools

� emacs from FSF� Lucid
indentation� font�color support
de�nition�arglist�doc�regexp �nding
communication with lisp

� xref� manual� etc� from CMU

� Browsers� debuggers� pro�lers from vendors

�

�� Tips on Near�Standard Tools

DEFSYSTEM

Pick a public domain version of defsystem �unfortu�
nately� dpANS CL has no standard�

� Put absolute pathnames in one place only

� Load everything through the defsystem

� Distinguish compiling from loading

� Optionally do version control

�defpackage PARSER ����

�defsystem parser
��source �lab�indexing�parser���
��parts utilities macros grammar tokenizer

optimizer debugger toplevel
��CLIM clim�graphics ��CLX clx�graphics��

� Make sure your system loads with no compiler
warnings
��rst time and subsequent times
�learn to use �declare �ignore �����

� Make sure the system can be compiled from scratch
�eliminate lingering bootstrapping problems

��

�� Tips on Near�Standard Tools

Editor Commands

Your editor should be able to do the following�

� Move about by s�expressions and show matching
parens

� Indent code properly

� Find unbalanced parens

� Adorn code with fonts and colors

� Find the de�nition of any symbol

� Find arguments or documentation for any symbol

� Macroexpand any expression

� Send the current expression� region or �le to Lisp
to be evaluated or compiled

� Keep a history of commands sent to Lisp and allow
you to edit and resend them

� Work with keyboard� mouse� and menus

Emacs can do all these things� If your editor can�t�
complain until it is �xed� or get a new one�

��

�� Tips on Near�Standard Tools

Emacs� Indentation and Comments

Don�t try to indent yourself�
Instead� let the editor do it�
A near�standard form has evolved�

� ���column maximum width

� Obey comment conventions
� for inline comment
�� for in�function comment
��� for between�function comment
���� for section header �for outline mode

� cl�indent library can be told how to indent
�put �defvar �common�lisp�indent�function ��� � ���

� lemacs can provide fonts� color

�hilit��modes�list�update Lisp
������� nil hilit�� �����

��

�� Abstraction

Abstraction

All programming languages allow the programmer to
de�ne abstractions� All modern languages provide sup�
port for�

� Data Abstraction �abstract data types

� Functional Abstraction �functions� procedures

Lisp and other languages with closures �e�g�� ML� Sather
support�

� Control Abstraction �de�ning iterators and other
new �ow of control constructs

Lisp is unique in the degree to which it supports�

� Syntactic Abstraction �macros� whole new lan�
guages

��

�� Abstraction

Design� Where Style Begins

	The most important part of writing a program is de�
signing the data structures� The second most impor�
tant part is breaking the various code pieces down�

� Bill Gates

	Expert engineers stratify complex designs� � � �The
parts constructed at each level are used as primitives
at the next level� Each level of a strati�ed design can
be thought of as a specialized language with a variety
of primitives and means of combination appropriate to
that level of detail�
 � Harold Abelson and Gerald
Sussman

	Decompose decisions as much as possible� Untangle
aspects which are only seemingly independent� Defer
those decisions which concern details of representation
as long as possible�
 � Niklaus Wirth

Lisp supports all these approaches�

� Data Abstraction� classes� structures� deftype

� Functional Abstraction� functions� methods

� Interface Abstraction� packages� closures

� Object�Oriented� CLOS� closures

� Strati�ed Design� closures� all of above

� Delayed Decisions� run�time dispatch

��

�� Abstraction

Design� Decomposition

	A Lisp procedure is like a paragraph�

� Deborah Tatar

	You should be able to explain any module in one sen�
tence�
 � Wayne Ratli

� Strive for simple designs

� Break the problem into parts
Design useful subparts �strati�ed
Be opportunistic� use existing tools

� Determine dependencies
Re�modularize to reduce dependencies
Design most dependent parts �rst

We will cover the following kinds of abstraction�

� Data abstraction

� Functional abstraction

� Control abstraction

� Syntactic abstraction

��

���� Data Abstraction

Data Abstraction

Write code in terms of the problem�s data types� not
the types that happen to be in the implementation�

� Use defstruct or defclass for record types

� Use inline functions as aliases �not macros

� Use deftype

� Use declarations and �type slots
for e�ciency and�or documentation

� Variable names give informal type information

Pretty Good� speci�es some type info

�defclass event ��
��starting�time �type integer�
�location �type location�
�duration �type integer �initform ����

Better� problem�speci�c type info

�deftype time �� Time in seconds �integer�

�defconstant �the�dawn�of�time� �
Midnight� January �� � ��

�defclass event ��
��starting�time �type time �initform �the�dawn�of�time��
�location �type location�
�duration �type time �initform ����

��

���� Data Abstraction

Use Abstract Data Types

Introduce abstract data types with accessors�

Bad� obscure accessor� eval

�if �eval �cadar rules�� ����

Better� introduce names for accessors

�declaim �inline rule�antecedent��
�defun rule�antecedent �rule� �second rule��

�if �holds� �rule�antecedent �first rules��� ����

Usually Best� introduce �rst�class data type

�defstruct rule
name antecedent consequent�

or

�defstruct �rule ��type list��
name antecedent consequent�

or

�defclass rule ��
�name antecedent consequent��

��

���� Data Abstraction

Implement Abstract Data Types

Know how to map from common abstract data types
to Lisp implementations�

� Set� list� bit�vector� integer� any table type

� Sequence� list� vector� delayed�evaluation stream

� Stack� list� vector �with �ll�pointer

� Queue� tconc� vector �with �ll�pointer

� Table� hash table� alist� plist� vector

� Tree� Graph� cons� structures� vector� adjacency
matrix

Use implementations that are already supported �e�g�
union� intersection� length for sets as lists� logior�
logand� logcount for sets as integers�

Don�t be afraid to build a new implementation if pro�
�ling reveals a bottleneck� �If Common Lisp�s hash
tables are too ine�cient for your application� consider
building a specialized hash table in Lisp before you build
a specialized hash table in C�

�	

���� Data Abstraction

Inherit from Data Types

Reuse by inheritance as well as direct use

� structures support single inheritance

� classes support multiple inheritance

� both allow some over�riding

� classes support mixins

Consider a class or structure for the whole program

� Eliminates clutter of global variables

� Thread�safe

� Can be inherited and modi�ed

�

���� Functional Abstraction

Functional Abstraction

Every function should have�

� A single speci�c purpose

� If possible� a generally useful purpose

� A meaningful name
�names like recurse�aux indicate problems

� A structure that is simple to understand

� An interface that is simple yet general enough

� As few dependencies as possible

� A documentation string

��

���� Functional Abstraction

Decomposition

Decompose an algorithm into functions that are simple�
meaningful and useful�

Example from comp�lang�lisp discussion of loop vs� map�

�defun least�common�superclass �instances�
�let ��candidates

�reduce ��intersection
�mapcar ���lambda �instance�

�clos�class�precedence�list
�class�of instance���

instances���
�best�candidate �find�class t���

�mapl
���lambda �candidates�

�let ��current�candidate �first candidates��
�remaining�candidates �rest candidates���

�when �and �subtypep current�candidate
best�candidate�

�every
���lambda �remaining�candidate�

�subtypep current�candidate
remaining�candidate��

remaining�candidates��
�setf best�candidate current�candidate����

candidates�
best�candidate��

��

���� Functional Abstraction

Decomposition

Very Good� Chris Riesbeck

�defun least�common�superclass �instances�
�reduce ��more�specific�class

�common�superclasses instances�
�initial�value �find�class �t���

�defun common�superclasses �instances�
�reduce ��intersection

�superclass�lists instances���

�defun superclass�lists �instances�
�loop for instance in instances

collect �clos�class�precedence�list
�class�of instance����

�defun more�specific�class �class� class��
�if �subtypep class� class�� class� class���

� Each function is very understandable

� Control structure is clear�
Two reduces� an intersection and a loop�collect

� But reusablity is fairly low

��

���� Functional Abstraction

Decomposition

Equally Good� and more reusable

�defun least�common�superclass �instances�
Find a least class that all instances belong to�
�least�upper�bound �mapcar ��class�of instances�

��clos�class�precedence�list
��subtypep��

�defun least�upper�bound �elements supers sub��
Element of lattice that is a super of all elements�
�reduce ���lambda �x y�

�binary�least�upper�bound x y supers sub���
elements��

�defun binary�least�upper�bound �x y supers sub��
Least upper bound of two elements�
�reduce�if sub� �intersection �funcall supers x�

�funcall supers y����

�defun reduce�if �pred sequence�
E�g� �reduce�if ��	 numbers� computes maximum
�reduce ���lambda �x y� �if �funcall pred x y� x y��

sequence��

� Individual functions remain understandable

� Still � reduces� an intersection and a mapcar

� Strati�ed design yields more useful functions

��

���� Functional Abstraction

Rule of English Translation

To insure that you say what you mean�

�� Start with an English description of algorithm
�� Write the code from the description
�� Translate the code back into English
�� Compare � to �

Example�

�� 	Given a list of monsters� determine the number
that are swarms�

�� �defun count�swarm �monster�list�
�apply ��

�mapcar
���lambda �monster�

�if �equal �object�type
�get�object monster��
�swarm�

�
���

monster�list���

�� 	Take the list of monsters and produce a � for
a monster whose type is swarm� and a � for the
others� Then add up the list of numbers�

��

���� Functional Abstraction

Rule of English Translation

Better�

�� 	Given a list of monsters� determine the number
that are swarms�

�� �defun count�swarms �monster�names�
Count the swarms in a list of monster names�
�count�if ��swarm�p monster�names �key ��get�object��

or

�count �swarm monster�names �key ��get�object�type�

or

�loop for name in monster�names
count �swarm�p �get�object monster���

�� 	Given a list of monster names� count the number
that are swarms�

��

���� Functional Abstraction

Use Library Functions

Libraries may have access to low�level e�ciency hacks�
and are often �ne�tuned�

BUT they may be too general� hence ine�cient�

Write a speci�c version when e�ciency is a problem�

Good� speci�c� concise

�defun find�character �char string�
See if the character appears in the string�
�find char string��

Good� e�cient

�defun find�character �char string�
See if the character appears in the string�
�declare �character char� �simple�string string��
�loop for ch across string

when �eql ch char� return ch��

��

���� Functional Abstraction

Use Library Functions

Given build�� which maps n to a list of n x�s�
�build� �� � �x x x x�

Task� De�ne build�it so that�
�build�it ��� �
�� � ��x x x x� �� �x x x��

Incredibly Bad�

�defun round
 �x�
�let ��result �����
�dotimes �n �length x� result�
�setq result �cons �car �nthcdr n x�� result�����

�defun build�it �arg�list�
�let ��result �����
�dolist �a �round
 arg�list� result�
�setq result �cons �build� a� result�����

Problems�

� round
 is just another name for reverse

� �car �nthcdr n x�� is �nth n x�

� dolist would be better than dotimes here

� push would be appropriate here

� �mapcar ��build� numbers� does it all

��

���� Control Abstraction

Control Abstraction

Most algorithms can be characterized as�

� Searching �some find find�if mismatch

� Sorting �sort merge remove�duplicates

� Filtering �remove remove�if mapcan

� Mapping �map mapcar mapc

� Combining �reduce mapcan

� Counting �count count�if

These functions abstract common control patterns�
Code that uses them is�

� Concise

� Self�documenting

� Easy to understand

� Often reusable

� Usually e�cient
�Better than a non�tail recursion

Introducing your own control abstraction is an impor�
tant part of strati�ed design�

�	

���� Control Abstraction

Recursion vs� Iteration

Recursion is good for recursive data structures� Many
people prefer to view a list as a sequence and use iter�
ation over it� thus de�emphasizing the implementation
detail that the list is split into a �rst and rest�

As an expressive style� tail recursion is often considered
elegant� However� Common Lisp does not guarantee
tail recursion elimination so it should not be used as
a substitute for iteration in completely portable code�
�In Scheme it is �ne�

The Common Lisp do macro can be thought of as syn�
tactic sugar for tail recursion� where the initial values
for variables are the argument values on the �rst func�
tion call� and the step values are argument values for
subsequent function calls�

do provides a low level of abstraction� but versatile and
has a simple� explicit execution model�

�

���� Control Abstraction

Recursion vs� Iteration �cont�d�

Bad� �in Common Lisp�

�defun any �lst�
�cond ��null lst� nil�

��car lst� t�
�t �any �cdr lst�����

Better� conventional� concise

�defun any �list�
Return true if any member of list is true�
�some ��not�null list��

or �find�if�not ��null lst�

or �loop for x in list thereis x�

or �explicit�

�do ��list list �rest list���
��null list� nil�

�when �first list��
�return t����

Best� e�cient� most concise in this case

Don�t call any at all�

Use �some p list� instead of �any �mapcar p list��

��

���� Control Abstraction

LOOP

	Keep a loop to one topic�like a letter to your
Senator�
 � Judy Anderson

The Common Lisp loop macro gives you the power to
express idiomatic usages concisely� However it bears
the burden that its syntax and semantics are often sub�
stantially more complex than its alternatives�

Whether or not to use the loop macro is an issue sur�
rounded in controversy� and borders on a religious war�
At the root of the con�ict is the following somewhat
paradoxical observation�

� loop appeals to naive programmers because it looks
like English and seems to call for less knowledge
of programming than its alternatives�

� loop is not English� its syntax and semantics have
subtle intricacies that have been the source of
many programming bugs� It is often best used
by people who�ve taken the time to study and un�
derstand it�usually not naive programmers�

Use the unique features of loop �e�g�� parallel iteration
of di�erent kinds�

��

���� Control Abstraction

Simple Iteration

Bad� verbose� control structure unclear

�LOOP
�SETQ �WORD� �POP �SENTENCE��� �get the next word
�COND
�� if no more words then return instantiated CD form
�� which is stored in the variable �CONCEPT�
��NULL �WORD��
�RETURN �REMOVE�VARIABLES �VAR�VALUE ��CONCEPT�����

�T �FORMAT T ����Processing �A �WORD��
�LOAD�DEF� � look up requests under

� this word
�RUN�STACK����� � fire requests

� No need for global variables

� End test is misleading

� Not immediately clear what is done to each word

Good� conventional� concise� explicit

�mapc ��process�word sentence�
�remove�variables �var�value ��concept���

�defun process�word �word�
�format t ���Processing �A word�
�load�def word�
�run�stack��

��

���� Control Abstraction

Mapping

Bad� verbose

� �extract�id�list �l!user�recs� ������������� �lambda�
� WHERE� l!user�recs is a list of user records
� RETURNS� a list of all user id�s in l!user�recs
� USES� extract�id
� USED BY� process�users� sort�users

�defun extract�id�list �user�recs�
�prog �id�list�
loop
�cond ��null user�recs�

�� id�list was constructed in reverse order
�� using cons� so it must be reversed now�
�return �nreverse id�list����

�setq id�list �cons �extract�id �car user�recs��
id�list��

�setq user�recs �cdr user�recs�� �next user record
�go loop���

Good� conventional� concise

�defun extract�id�list �user�record�list�
Return the user ID�s for a list of users�
�mapcar ��extract�id user�record�list��

��

���� Control Abstraction

Counting

Bad� verbose

�defun size ��
�prog �size idx�

�setq size � idx ��
loop
�cond ��� idx table�size�

�setq size �� size �length �aref table idx���
idx ��� idx��

�go loop���
�return size���

Good� conventional� concise

�defun table�count �table� � Formerly called SIZE
Count the number of keys in a hash�like table�
�reduce ��� table �key ��length��

Also� it couldn�t hurt to add�

�deftype table ��
A table is a vector of buckets� where each bucket
holds an alist of �key � values� pairs�
��vector cons��

��

���� Control Abstraction

Filtering

Bad� verbose

�defun remove�bad�pred�visited �l badpred closed�
��� Returns a list of nodes in L that are not bad
��� and are not in the CLOSED list�
�cond ��null l� l�

��or �funcall badpred �car l��
�member �car l� closed��

�remove�bad�pred�visited
�cdr l� badpred closed��

�t �cons �car l�
�remove�bad�pred�visited
�cdr l� badpred closed�����

Good� conventional� concise

�defun remove�bad�or�closed�nodes �nodes bad�node� closed�
Remove nodes that are bad or are on closed list
�remove�if ���lambda �node�

�or �funcall bad�node� node�
�member node closed���

nodes��

��

���� Control Abstraction

Control Flow� Keep It Simple

Non�local control �ow is hard to understand

Bad� verbose� violates referential transparency

�defun isa�test �x y n�
�catch �isa �isa�test� x y n���

�defun isa�test� �x y n�
�cond ��eq x y� t�

��member y �get x �isa�� �throw �isa t��
��zerop n� nil�
�t �any �mapcar

���lambda �xx�
�isa�test xx y ��� n�� �

�get x �isa� ��� � �

Problems�

� catch�throw is gratuitous

� member test may or may not be helping

� mapcar generates garbage

� any tests too late�
throw tries to �x this
result is that any never gets called�

��

���� Control Abstraction

Keep It Simple

Some recommendations for use of catch and throw�

� Use catch and throw as sub�primitives when imple�
menting more abstract control structures as macros�
but do not use them in normal code�

� Sometimes when you establish a catch� programs
may need to test for its presence� In that case�
restarts may be more appropriate�

��

���� Control Abstraction

Keep It Simple

Good�

�defun isa�test �sub super max�depth�
Test if SUB is linked to SUPER by a chain of ISA
links shorter than max�depth�
�and �	� max�depth ��

�or �eq sub super�
�some ���lambda �parent�

�isa�test parent super
�� max�depth ����

�get sub �isa�����

Also good� uses tools

�defun isa�test �sub super max�depth�
�depth�first�search �start sub �goal �is super�

�successors ��get�isa
�max�depth max�depth��

	Write clearly�don�t be too clever�

� Kernighan � Plauger

Be Aware�

Does 	improving
 something change the semantics�
Does that matter�

�	

���� Control Abstraction

Avoid Complicated Lambda Expressions

When a higher�order function would need a compli�
cated lambda expression� consider alternatives�

� dolist or loop

� generate an intermediate �garbage sequence

� Series

� Macros or read macros

� local function

� Speci�c� makes it clear where function is used

� Doesn�t clutter up global name space

� Local variables needn�t be arguments

� BUT� some debugging tools won�t work

�

���� Control Abstraction

Avoid Complicated Lambda Expressions

Find the sum of the squares of the odd numbers in a
list of integers�

All Good�

�reduce ��� numbers
�key ���lambda �x� �if �oddp x� �� x x� ����

�flet ��square�odd �x� �if �oddp x� �� x x� ����
�reduce ��� numbers �key ��square�odd��

�loop for x in list
when �oddp x� sum �� x x��

�collect�sum �choose�if ��oddp numbers��

Also consider� �may be appropriate sometimes�

�� Introduce read macro�
�reduce ��� numbers �key �L�if �oddp !� �� ! !� ���

�� Generate intermediate garbage�
�reduce ��� �remove ��evenp �mapcar ��square numbers���

��

���� Control Abstraction

Functional vs� Imperative Style

It has been argued that imperative style programs are
harder to reason about� Here is a bug that stems from
an imperative approach�

Task� Write a version of the built�in function find�

Bad� incorrect

�defun i�find �item seq �key �test ��eql� �test�not nil�
�start � s�flag� �end nil�
�key ��identity� �from�end nil��

�if s�flag �setq seq �subseq seq start���
�if end �setq seq �subseq seq � end���
����

Problems�

� Taking subsequences generates garbage

� No appreciation of list�vector di�erences

� Error if both start and end are given
Error stems from the update to seq

	�

���� Control Abstraction

Example� Simpli�cation

Task� a simpli�er for logical expressions�
�simp ��and �and a b� �and �or c �or d e�� f���
� �AND A B �OR C D E� F�

Not bad� but not perfect�

�defun simp �pred�
�cond ��atom pred� pred�

��eq �car pred� �and�
�cons �and �simp�aux �and �cdr pred����

��eq �car pred� �or�
�cons �or �simp�aux �or �cdr pred����

�t pred���

�defun simp�aux �op preds�
�cond ��null preds� nil�

��and �listp �car preds��
�eq �caar preds� op��

�append �simp�aux op �cdar preds��
�simp�aux op �cdr preds����

�t �cons �simp �car preds��
�simp�aux op �cdr preds������

	�

���� Control Abstraction

A Program to Simplify Expressions

Problems�

� No meaningful name for simp�aux

� No reusable parts

� No data accessors

� �and�� �and a� not simpli�ed

Better� usable tools

�defun simp�bool �exp�
Simplify a boolean �and�or� expression�
�cond ��atom exp� exp�

��member �op exp� ��and or��
�maybe�add �op exp�

�collect�args
�op exp�
�mapcar ��simp�bool �args exp�����

�t exp���

�defun collect�args �op args�
Return the list of args� splicing in args
that have the given operator� op� Useful for
simplifying exps with associate operators�
�loop for arg in args

when �starts�with arg op�
nconc �collect�args op �args arg��
else collect arg��

	�

���� Control Abstraction

Build Reusable Tools

�defun starts�with �list element�
Is this a list that starts with the given element�
�and �consp list�

�eql �first list� element���

�defun maybe�add �op args �optional
�default �get�identity op���

If � arg� return it� if �� return the default�
If there is more than � arg� cons op on them�
Example� �maybe�add �progn ���f x��� ��	 �f x�
Example� �maybe�add �� ��
 ��� ��	 ��
 ���
Example� �maybe�add �� ���� ��	 ��
assuming � is defined as the identity for ��
�cond ��null args� default�

��length�� args� �first args��
�t �cons op args����

�deftable identity
�init ���� �� �� �� �and t� �or nil� �progn nil���

	�

���� Syntactic Abstraction

A Language for Simplifying

Task� A Simpli�er for all Expressions�

�simplify ��� � �� x �� y y���� ��	 x
�simplify ��if �� � �� �f x��� ��	 nil
�simplify ��and a �and �and� b��� ��	 �and a b�

Syntactic abstraction de�nes a new language that is
appropriate to the problem�

This is a problem�oriented �as opposed to code�oriented
approach�

De�ne a language for simpli�cation rules� then write
some�

�define�simplifier exp�simplifier
��� x �� ��	 x�
��� � x� ��	 x�
��� x �� ��	 x�
��� x x� ��	 ��
��if t x y� ��	 x�
��if nil x y� ��	 y�
��if x y y� ��	 y�
��and� ��	 t�
��and x� ��	 x�
��and x x� ��	 x�
��and t x� ��	 x�
����

	�

���� Syntactic Abstraction

Design Your Language Carefully

	The ability to change notations empowers human
beings�
 � Scott Kim

Bad� verbose� brittle

�setq times��rule ��
simplify
�� �� e�� ��
�
times��rule
� �

�setq rules �list times��rule �����

� Insu�cient abstraction

� Requires naming times��rule three times

� Introduces unneeded global variables

� Unconventional indentation

Sometimes it is useful to name rules�

�defrule times��rule
�� �x �� ��	 ��

�Although I wouldn�t recommend it in this case�

	�

���� Syntactic Abstraction

An Interpreter for Simplifying

Now write an interpreter �or a compiler�

�defun simplify �exp�
Simplify expression by first simplifying components�
�if �atom exp�

exp
�simplify�exp �mapcar ��simplify exp����

�defun�memo simplify�exp �exp�
Simplify expression using a rule� or math�
�� The expression is non�atomic�
�rule�based�translator exp �simplification�rules�
�rule�pattern ��first
�rule�response ��third
�action ��simplify
�otherwise ��eval�exp��

This solution is good because�

� Simpli�cation rules are easy to write

� Control �ow is abstracted away �mostly

� It is easy to verify the rules are correct

� The program can quickly be up and running�
If the approach is su�cient� we�re done�
If the approach is insu�cient� we�ve saved time�
If it is just slow� we can improve the tools�
and other uses of the tools will bene�t too�

	�

���� Syntactic Abstraction

An Interpreter for Translating

	Success comes from doing the same thing over and
over again� each time you learn a little bit and you do
a little better the next time�
 � Jonathan Sachs

Abstract out the rule�based translator�

�defun rule�based�translator
�input rules �key �matcher ��pat�match�

�rule�pattern ��first� �rule�response ��rest�
�action �identity� �sub ��sublis�
�otherwise ��identity��

Find the first rule that matches input� and apply the
action to the result of substituting the match result
into the rule�s response� If no rule matches� apply
otherwise to the input�
�loop for rule in rules

for result � �funcall matcher
�funcall rule�pattern rule� input�

when �not �eq result fail��
do �RETURN �funcall action

�funcall sub result
�funcall rule�response rule����

finally �RETURN �funcall otherwise input����

If this implementation is too slow� we can index better
or compile�

Sometimes� reuse is at an informal level� seeing how
the general tool is built allows a programmer to con�
struct a custom tool with cut and paste�

		

���� Syntactic Abstraction

Saving duplicate work� defun�memo

Less extreme than de�ning a whole new language is to
augment the Lisp language with new macros�

defun�memo makes a function remember all computa�
tions it has made� It does this by maintaining a hash
table of input�output pairs� If the �rst argument is just
the function name� � of � things happen� �� If there
is exactly � arg and it is not a �rest arg� it makes a
eql table on that arg� �� Otherwise� it makes an equal
table on the whole arglist�

You can also replace fn�name with �name �test ��� �size
��� �key�exp ���� This makes a table with given test
and size� indexed by key�exp� The hash table can be
cleared with the clear�memo function�

Examples�

�defun�memo f �x� �� eql table keyed on x
�complex�computation x��

�defun�memo �f �test ��eq� �x� �� eq table keyed on x
�complex�computation x��

�defun�memo g �x y z� �� equal table
�another�computation x y z�� �� keyed on on �x y � z�

�defun�memo �h �key�exp x� �x �optional debug��
�� eql table keyed on x

����

	

���� Syntactic Abstraction

Saving Duplicate Work� defun�memo

�defmacro defun�memo �fn�name�and�options ��rest args�
�body body�

�� Documentation string on previous page
�let ��vars �arglist�vars args���
�flet ��gen�body �fn�name �key �test ���equal�

size key�exp�
��eval�when �load eval compile�
�setf �get ��fn�name �memoize�table�
�make�hash�table �test �test
���when size ���size �size����

�defun �fn�name �args
�gethash�or�set�default
�key�exp
�get ��fn�name �memoize�table�
�progn ��body������

�� Body of the macro�
�cond ��consp fn�name�and�options�

�� Use user�supplied keywords� if any
�apply ��gen�body fn�name�and�options��
��and �� �length vars� ��

�not �member ��rest args���
�� Use eql table if it seems reasonable
�gen�body fn�name�and�options �test ���eql

�key�exp �first vars���
�t � Otherwise use equal table on all args
�gen�body fn�name�and�options �test ���equal

�key�exp ��list� ��vars�������

	�

���� Syntactic Abstraction

More Macros

�defmacro with�gensyms �symbols body�
Replace the given symbols with gensym�ed versions�
everywhere in body� Useful for macros�
�� Does this everywhere� not just for variables
�sublis �mapcar ���lambda �sym�

�cons sym �gensym �string sym����
symbols�

body��

�defmacro gethash�or�set�default �key table default�
Get the value from table� or set it to the default�
Doesn�t evaluate the default unless needed�
�with�gensyms �keyvar tabvar val found�p�
��let ��keyvar �key�

�tabvar �table��
�multiple�value�bind �val found�p�

�gethash keyvar tabvar�
�if found�p

val
�setf �gethash keyvar tabvar�

�default������

�

���� Syntactic Abstraction

Use Macros Appropriately

�See tutorial by Allan Wechsler

The design of macros�

� Decide if a macro is really necessary

� Pick a clear� consistent syntax for the macro

� Figure out the right expansion

� Use defmacro and � to implement the mapping

� In most cases� also provide a functional interface
�useful� sometimes easier to alter and continue

Things to think about�

� Don�t use a macro where a function would su�ce

� Make sure nothing is done at expansion time �mostly

� Evaluate args left�to�right� once each �if at all

� Don�t clash with user names �with�gensyms

�

���� Syntactic Abstraction

Problems with Macros

Bad� should be an inline function

�defmacro name�part�of �rule�
��car �rule��

Bad� should be a function

�defmacro defpredfun �name evaluation�function�
��push �make�predfun �name �name

�evaluation�function �evaluation�function�
�predicate�functions���

Bad� works at expansion time

�defmacro defclass �name �rest def�
�setf �get name �class� def�
���
�list �quote name��

�

���� Syntactic Abstraction

Problems with Macros

Bad� Macros should not eval args

�defmacro add�person �name mother father sex
unevaluated�age�

�let ��age �eval unevaluated�age���
�list �if �� age �"� ��� ���� ������

�add�person bob joanne jim male �compute�age � #
��

What if you compiled this call now and loaded it in a
few years�

Better� Let the compiler constant�fold

�declaim �inline compute�age��

�defmacro add�person �name mother father sex age�
��funcall �if �� �age �"� ��� ���� ������

Very Bad� �what if increment is n	�

�defmacro for ��variable start end �optional increment�
�body body�

�if �not �numberp increment�� �setf increment ���
����

�for �i � ��� ����

�

���� Syntactic Abstraction

Macros for Control Structures

Good� �lls a hole in orthogonality of CL

�defmacro dovector ��var vector �key �start �� end�
�body body�

Do body with var bound to each element of vector�
You can specify a subrange of the vector�
��block nil
�map�vector ���lambda ��var� ��body�

�vector �start start �end end���

�defun map�vector �fn vector �key �start �� end�
Call fn on each element of vector within a range�
�loop for i from start below �or end �length vector��

do �funcall fn �aref vector�var index����

� Iterates over a common data type

� Follows established syntax �dolist� dotimes

� Obeys declarations� returns

� Extends established syntax with keywords

� One bad point�
No result as in dolist� dotimes

�

���� Syntactic Abstraction

Helper Functions For Macros

Most macros should expand into a call to a function�

The real work of the macro dovector is done by a func�
tion� map�vector because�

� It�s easier to patch

� It�s separately callable �useful for program

� The resulting code is smaller

� If prefered� the helper can be made inline
�Often good to avoid consing closures

�dovector �x vect� �print x��

macro�expands to�

�block nil
�map�vector ���lambda �x� �print x�� vect

�start � �end nil��

which inline expands to �roughly��

�loop for i from � below �length vect�
do �print �aref vect i���

�

���� Syntactic Abstraction

Setf Methods

As in macros� we need to be sure to evaluate each form
exactly once� in left�to�right order�

Make sure macro expansions �macroexpand� get�setf�method
are done in the right environment�

�defmacro deletef �item sequence �rest keys
�environment environment�

Destructively delete item from sequence�
�multiple�value�bind �temps vals stores store�form

access�form�
�get�setf�method sequence environment�

�assert �� �length stores� ���
�let ��item�var �gensym ITEM���
��let� ���item�var �item�

���mapcar ��list temps vals�
���first stores�
�delete �item�var �access�form ��keys���

�store�form����

�

�� Programming in the Large

Programming in the Large

Be aware of stages of software development�

� Gathering requirements

� Architecture

� Component Design

� Implementation

� Debugging

� Tuning

These can overlap� The point of exploratory program�
ming is to minimize component design time� getting
quickly to implementation in order to decide if the ar�
chitecture and requirements are right�

Know how to put together a large program�

� Using packages

� Using defsystem

� Separating source code into �les

� Documentation in the large

� Portability

� Error handling

� Interfacing with non�Lisp programs

	

�� Programming in the Large

Separating Source Code into Files

The following factors a�ect how code is decomposed
into �les

� Language�imposed dependencies
macros� inline functions� CLOS classes before use

� Strati�ed design
isolate reusable components

� Functional decomposition
group related components

� Compatibility with tools
chose good size �les for editor� compile�file

� Separate OS�machine�vendor�speci�c implemen�
tations

�� Programming in the Large

Using Comments E	ectively

Use comments to�for�

� Explain philosophy� Don�t just document de�
tails� also document philosophy� motivation� and
metaphors that provide a framework for under�
standing the overall structure of the code�

� O�er examples� Sometimes an example is worth
a pile of documentation�

� Have conversations with other developers� In
a collaborative project� you can sometimes ask a
question just by putting it in the source� You may
come back to �nd it answered� Leave the question
and the answer for others who might later wonder�
too�

� Maintain your �to do� list� Put a special marker
on comments that you want to return to later� ���
or $$$� maybe use $$$$ for higher priority� Some
projects keep to do lists and change logs in �les
that are separate from the source code�

�defun factorial �n�
�� $$$ What about negative numbers� ��Joe �
�Aug�

�� $$$ And what about non�numbers�� �Bill �%�Aug�

�if �� n �� �

�� n �factorial �� n ������

�

�� Programming in the Large

Documentation� Say What You Mean

Q� Do you ever use comments when you write code�

	Rarely� except at the beginning of procedures� and
then I only comment on the data structure� I don�t
comments on the code itself because I feel that prop�
erly written code is very self�documented�
 � Gary
Kildall

	I �gure there are two types of comments� one is ex�
plaining the obvious� and those are worse than worth�
less� the other kind is when you explain really involved�
convoluted code� Well� I always try to avoid convo�
luted code� I try to program really strong� clear� clean
code� even if it makes an extra �ve lines� I am almost
of the opinion that the more comments you need� the
worse your program is and something is wrong with it�

� Wayne Ratli

	Don�t comment bad code�rewrite it�
 � Kernighan
� Plauger

� Describe the purpose and structure of system

� Describe each �le

� Describe each package

� Documentation strings for all functions

� Consider automatic tools �manual

� Make code� not comments

��

�� Programming in the Large

Documentation� Over�commenting

These ���lines must document a major system�

� ��
�
� describe
� ��������
�
� arguments � snepsul�exp � �snepsul�exp�
�
� returns � �node set�
�
� description � This calls �sneval� to evaluate �snepsul�exp� to
� get the desired �node set��
� It prints the description of each �node� in the
� �node set� that has not yet been described during
� the process� the description includes the
� description of all �node�s dominated by the �node��
� It returns the �node set��
�
� implementation� Stores the �node�s which have already been described
� in �describe�nodes��
� Before tracing the description of a �node�� it
� checks whether the �node� was already been described
� to avoid describing the same �node� repeatedly�
� The variable �describe�nodes� is updated by �des	��
�
� side�effects � Prints the �node�
s descriptions�
�
� written� CCC ������
� modified� CCC ������
� ejm 	�	���
� njm ������
� njm �����

��

�� Programming in the Large

Documentation� Over�commenting

�defmacro describe ��rest snepsul�exp�
��let� ��crntct �processcontextdescr ��snepsul�exp��

�ns �in�context�ns �nseval �getsndescr
��snepsul�exp��

crntct��
�described�nodes �new�ns��
�full nil��

�declare �special crntct described�nodes full��
�terpri�
�mapc ���lambda �n�

�if �not �ismemb�ns n described�nodes��
�PP�nodetree �des� n����

ns�
�terpri�
�values ns crntct���

Problems�

� Documentation too long� lose big picture

� Documentation is wrong� describe�d�nodes�

� Documentation is ine�ective� no doc string

� Documentation is redundant �arglist

� Bad idea to shadow Lisp�s describe function

� Need function that is separate from macro

� Abbreviations are obscure

��

�� Programming in the Large

Documentation� Commenting

Better�

This doesn�t handle crntct �whatever that is

�defmacro desc ��rest snepsul�exp�
Describe the node referred to by this expression�
This macro is intended as an interactive debugging tool�
use the function describe�node�set from a program�
��describe�node�set �exp�	node�set ��snepsul�exp���

�defun describe�node�set �node�set�
Print all the nodes in this node set�
�� Accumulate described�nodes to weed out duplicates�
�let ��described�nodes �new�node�set���
�terpri�
�dolist �node node�set�
�unless �is�member�node�set node described�nodes�
�� des� adds nodes to described�nodes
�pp�nodetree �des� node described�nodes����

�terpri�
node�set��

��

�� Programming in the Large

Portability

Make your program run well in the environment�s you
use�

But be aware that you or someone else may want to
use it in another environment someday�

� Use ��feature and ��feature

� Isolate implementation�dependent parts�

� Maintain one source and multiple binaries

� Evolve towards dpANS CL
Implement missing features if needed

� Be aware of vendor�speci�c extensions

��

�� Programming in the Large

Foreign Function Interface

Large programs often have to interface with other pro�
grams written in other languages� Unfortunately� there
is no standard for this�

� Learn your vendor�s foreign interface

� Try to minimize exchange of data

� Beware of areas that cause problems�
Memory management
Signal handling

��

�� Miscellaneous

Mean what you say

� Don�t mislead the reader
Anticipate reader�s misunderstandings

� Use the right level of speci�city

� Be careful with declarations
Incorrect declarations can break code

� One�to�one correspondence

Bad declaration� only made�up example

�defun lookup �name�
�declare �type string name��
�if �null name�

nil
�or �gethash name �symbol�table��

�make�symbol�entry name����

Should be �declare �type �or string null� name��

��

�� Miscellaneous

Naming Conventions� Be Consistent

Be consistent in names�

� Be consistent with capitalization
most prefer like�this� not LikeThis

� �special�variable�

� �constant� �or some convention

� Dylan uses �class	

� Consider structure�slot

� �p or �� $ or n� �	 or �to�

� verb�object� delete�file
object�attribute� integer�length
compare name�file and file�name
don�t use object�verb or attribute�object�

� Order arguments consistently

� Distinguish internal and external functions
Don�t mix �optional and �key� use carefully
� or � �optional args �Dylan �
Use keywords consistently �key� test� end

�	

�� Miscellaneous

Naming Conventions� Choose Names Wisely

Choose Names wisely�

� Minimize abbreviations

Most words have many possible abbreviations but
only one correct spelling� Spell out names so they
are easier to read� remember� and �nd�

Some possible exceptions� char� demo� intro� and
paren� These words are becoming almost like real
words in English� A good test �for native English
speakers is� Would you say the word aloud in
conversation� Our earlier example with crntct and
processcontextdescr wouldn�t pass this test�

� Don�t shadow a local variable with another�

� Clearly show variables that are updated�

� Avoid ambiguous names� Use previous or final
instead of last�

�

�� Miscellaneous

Notational Tricks� Parens in Column

Most text editors treat a left paren in column � as the
start of a top�level expression� A paren inside a string
in column � may confuse the editor unless you provide
a backslash�

�defun factorial �n�
Compute the factorial of an integer�

&�don�t worry about non�integer args��
�if �� n �� �

�� n �factorial �� n ������

Many text editors will treat a �def in column � as a
de�nition� but not a �def in other columns� So you
may need to do this�

�progn
�defun foo ����
�defun bar ����
�

��

�� Miscellaneous

Multi�Line Strings

In case of a multi�line string as a literal constant� such
as�

�defun find�subject�line �message�header�string�
�search

Subject� message�header�string��

consider instead using read�time evaluation and a call
to format�

�defun find�subject�line �message�header�string�
�search ���format nil ��Subject�� message�header�string�

Where the same string is used many times� consider
using a global variable or named constant�

�defparameter �subject�marker� �format nil ��Subject���

�defun find�subject�line �message�header�string�
�search �subject�marker� message�header�string��

���

�� Miscellaneous

Multi�Line Strings �cont�d�

For long format strings� you can indent the continua�
tion lines with �Return	 or ��Return	� The following
two forms do the same thing�

�format t ��This is a long string���
This is more of that string��

This is a long string�
This is more of that string�

�format t ��This is a long string��
��This is more of that string��

This is a long string�
This is more of that string�

The latter syntax permits you to indent a �xed amount
easily�

�format t ��This is a long string��
�� This is more of that string� indented by one�

This is a long string�
This is more of that string� indented by one�

���

�� Miscellaneous

Notational Tricks� Multi�Line Comments

Avoid using �' and '� in strings� since it will confuse any
later attempt to comment out such a string� Again� a
backslash helps�

Good�

�defun begin�comment �� �write�string �&'��
�defun end�comment �� �write�string '&���

This means that you can later comment out sections
containing these strings without editing the strings them�
selves�

If your editor provides support �comment�region and
uncomment�region commands it is better to use ex�
plicit �� comments� That way the reader will never get
confused about which sections have been commented
out�

���

�� Miscellaneous

Some Red Flags

The following situations are 	red �ags�
 They are of�
ten symptoms of problems�even though technically
most of them do happen in completely legitimate sit�
uations as well� If you see one of these red �ags� you
do not automatically have a problem in your code� but
you should still proceed cautiously�

� Any use of eval

� Any use of gentemp !

� Any use of append

� The absence of an �environment parameter in a
macro that uses setf or calls macroexpand�

� Writing a condition handler for type error
�including use of ignore�errors�

� Any use of the c���r functions except caar� cad���r�
�where the 	���
 is all d�s�

! No known good uses�

���

�� Miscellaneous

Avoid Common Mistakes

Good style involves avoiding mistakes�

� Always prompt for input
�Or user won�t know what�s happening

� Understand defvar and defparameter

� Understand flet and labels

� Understand multiple values

� Understand macros �shown above

� Recompile after changing macros or
inline functions

� Use ���lambda ����� not ��lambda ����

� Remember ��f is just �function f�

� Use �test ��equal as needed

� Make sure declarations are e�ective

� Have a policy for destructive functions

���

�� Miscellaneous

Destructive Functions

Have a policy for destructive functions�

� Most programs use destructive updates when they
can prove the arguments are not needed elsewhere
�as when a function nconc�s partial results�

� Otherwise� assume that arguments cannot be al�
tered

� Assume that results will not be altered

� Major interfaces often make copies of results they
pass out� just to be safe�

� Note that generation scavenging GC can be slowed
down by destructive updates�

���

�� Miscellaneous

Minor Mistakes

Bad�

�defun combine�indep�lambdas �arc�exp�
�apply ���

�mapcar ��eval�arc�exp �cdr arc�exp����

� apply may exceed call�arguments�limit

� mapcar generates garbage

� cdr violates data abstraction

Good�

�reduce ��� �in�arcs arc�exp� �key ��eval�arc�exp�

Learn to use accumulators�

�defun product �numbers �optional �key ��identity�
�accum ���

Like �reduce ��� numbers�� but bails out early
when a zero is found�
�if �null numbers�

accum
�let ��term �funcall key �first numbers����
�if �� term ��

�
�product �rest numbers� key �� accum term����

Consider Series�

�collect�fn �number �constantly �� ��� numbers�

���

�� Miscellaneous

Multi�Tasking and Multi�Processing

Multi�Tasking 	Time Slicing

It is reasonable to spend time structuring your code
to work well in the face of multi�tasking� Many com�
mercial Lisp implementations have this even though
there is not yet a portable standard� It �ts in well with
existing language semantics�

� Watch out for global state like setq and property
lists�

� Synchronize processes with without�interrupts�
without�aborts� without�preemption� etc� Consult
implementation�speci�c documentation for the set
of available operators and learn how they di�er�

Multi�Processing 	True Parallelism

Think about true parallelism� but don�t waste a lot of
time structuring your programs to work well if things
suddenly become parallelized� Making a sequential pro�
gram into a parallel one is a non�trivial change that
won�t happen by accident �e�g�� due to some overnight
change in Common Lisp�s semantics� It will take a
whole new language to support this� you�ll have time
to prepare�

��	

�� Miscellaneous

Expect The Unexpected

Murphy�s Law

	If something can go wrong� it will�

Don�t omit checking for things because you�re sure
something will never happen unless you�re very sure�
� � � And even then� don�t omit them anyway� It is su��
ciently commonplace to get errors from systems saying
	This can�t happen
 that it�s clear that people are not
always as brilliant as they think�

��

�� Miscellaneous

Read Other People�s Code

	You need to study other people�s work� Their ap�
proaches to problem solving and the tools they use
give you a fresh way to look at your own work�
 �
Gary Kildall

	I�ve learned a lot from looking at other people�s pro�
grams�
 � Jonathan Sachs

	I still think that one of the �nest tests of programming
ability is to hand the programmer about �� pages of
code and see how quickly he can read through and
understand it�
 � Bill Gates

	The best way to prepare �to be a programmer is to
write programs� and to study great programs that other
people have written� In my case� I went to the garbage
cans at the Computer Science Center and I �shed out
listings of their operating system�
 � Bill Gates

	You�ve got to be willing to read other people�s code�
then write your own� then have other people review
your code�
 � Bill Gates

� Lisp Machine Operating System

� Internet FTP sites �comp�lang�lisp FAQ

� CMU CL Compiler and Utilities

� Macintosh Common Lisp examples

���

�� Miscellaneous

Example� deftable

Task� Make it easy to de�ne and use tables�

� Like defstruct

� Should be fast� inline functions

� Should handle one or multiple tables

� CLOS�

� Operations� Arguments and return value�s�

� Default values� Mutated or returned�

Separation between user and implementor code� with
support for both�

� Way to de�ne new table implementations

� Naming� packages�

� Documented limitations�

� Instrumentation�

� Automatic selection�

Lessons learned�

� Capture common abstractions� tables� others�

� Complex macros can be designed with a little care

� Consider the possibility of extension

���

�� Miscellaneous

Prototype

Lisp allows you to develop prototypes easily�

	Plan to throw one away� you will� anyhow�
 � Fred
Brooks

	I think a lot before I do anything� and once I do some�
thing� I�m not afraid to throw it away� It�s very impor�
tant that a programmer be able to look back at a piece
of code like a bad chapter in a book and scrap it with�
out looking back�
 � John Warnock

	Don�t bind early� don�t ever make decisions earlier
than you have to� Stay an order of magnitude more
general than you think you need� because you will end
up needing it in the long term� Get something working
very quickly and then be able to throw it away�
 � John
Warnock

	So I tend to write a few lines at a time and try it out�
get it to work� then write a few more lines� I try to
do the least amount of work per iteration to make real
substantive change�
 � Wayne Ratli

	����� began with a working program� and it continued
to be a working program throughout its development�

� Jonathan Sachs

���

�� Miscellaneous

Other Ideas

Learn to type� If you type less than �� wpm� you�re
holding yourself back�

	Also� while you�re working hard on a complicated pro�
gram� it�s important to exercise� The lack of physical
exercise does most programmers in� It causes a loss of
mental acuity�
 � John Page

Q� What does it take to become a great programmer�

	What does it take to be good at anything� What does
it take to be a good writer� Someone who�s good is a
combination of two factors� an accidental mental cor�
respondence to the needs of the disciplines� combined
with a mental ability to not be stupid� That�s a rare
combination� but it�s not at all mystical� A good pro�
grammer must enjoy programming and be interested
in it� so he will try to learn more� A good programmer
also needs an aesthetic sense� combined with a guilt
complex� and a keen awareness of when to violate that
aesthetic sense� The guilt complex forces him to work
harder to improve the program and to bring it more in
line with the aesthetic sense�
 � Bob Frankston

���

�� Miscellaneous

Recommended Books

Introductions to Common Lisp

� Robert Wilensky Common LISPcraft

� Deborah G� Tatar A Programmer�s Guide to Com�
mon Lisp

� Rodney A� Brooks� Programming in Common Lisp

References and a Must�Have

� Guy L� Steele Common Lisp� The Language� nd
Edition

� ANSI Draft Proposed Common Lisp Standard

� Harold Abelson and Gerald Jay Sussman� with Julie
Sussman� Structure and Interpretation of Com�
puter Programs �Scheme

���

�� Miscellaneous

Recommended Books

More Advanced�

� Patrick H� Winston and Berthold K� P� Horn� LISP�
�rd edition�

� Wade L� Hennessey Common Lisp

� Sonya E� Keene Object�Oriented Programming in
Common Lisp� A Programmer�s Guide to CLOS

� Eugene Charniak� Christopher K� Riesbeck� Drew
V� McDermott and James R� Meehan� Arti�cial
Intelligence Programming� �nd edition�

� Peter Norvig� Paradigms of AI Programming� Case
Studies in Common Lisp

Periodicals�

� LISP Pointers� �ACM SIGPLAN Since �"���

� LISP and Symbolic Computation� Since �"�"�

� Proceedings of the biannual ACM Lisp and Func�
tional Programming Conference� Since �"���

���

�� Miscellaneous

Quotes

Quotes from Programmers at Work� Susan Lammers�
Microsoft Press� �"�"�

� Bob Frankston� Software Arts VisiCalc� Lotus

� Bill Gates� Altair BASIC� Microsoft

� Gary Kildall� Digital Research CP�M

� Scott Kim� Stanford� Xerox� Inversions

� Butler Lampson� Xerox Ethernet� Alto� Dorado�
Star� Mesa� DEC

� John Page� HP� Software Publishing PFS�FILE

� Wayne Ratli�� NASA� Ashton�Tate dBASE II

� Jonathan Sachs� MIT� Lotus �����

� Charles Simonyi� Xerox Bravo� Microsoft Word�
Excel

� John Warnock� NASA� Xerox� Adobe PostScript

���

�� Miscellaneous

Quotes

Other quotes�

� Harold Abelson� MIT� SICP� Logo

� Judy Anderson� Harlequin� Inc�

� Fred Brooks� IBM ��� architect� now at UNC

� Bear Bryant� Alabama football coach

� Brian Kernighan # P�J� Plauger� Bell Labs UNIX

� David McDonald� MIT� UMass natural language
generation

� Guy Steele� Thinking Machines� Scheme� CLtL

� Gerald Sussman� MIT� SICP� Scheme

� Deborah Tatar� DEC� Xerox� author

� Niklaus Wirth� ETH Zurich� Pascal

Almost all Bad Code examples are taken from published
books and articles �whose authors should know better�
but will remain anonymous��

���

