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Abstract

We present an approach to improve the search efficiency for near-optimal motion synthesis using motion graphs.
An optimal or near-optimal path through a motion graph often leads to the most intuitive result. However, finding
such a path can be computationally expensive. Our main contribution is a bidirectional search algorithm. We
dynamically divide the search space evenly and merge two search trees to obtain the final solution. This cuts the
maximum search depth almost in half and leads to significant speedup. To illustrate the benefits of our approach,
we present an interactive sketching interface that allows users to specify complex motions quickly and intuitively.

Categories and Subject Descriptors (according to ACM CCS):

Graphics and Realism—Animation

1.3.7 [Computer Graphics]: Three-Dimensional

1. Introduction

Realistic motion synthesis is a core topic in computer ani-
mation. Many of the most successful techniques are based
on recombining motion fragments using motion graphs.
By reusing and concatenating motion capture data, these
methods can generate complex and natural-looking motions.
Most systems allow a user to provide a number of constraints
to specify the desired motion. Such constraints are formu-
lated as a cost function. Motion synthesis is cast as a search
problem for a path through the motion graph that minimizes
the total cost. The search complexity for an optimal or near-
optimal solution, however, is exponential to the connectivity
of the graph and the length of the desired motion sequence.
Applying these techniques for interactive applications is thus
challenging.

In this paper we present a novel approach to apply bidi-
rectional search for motion synthesis using motion graphs.
Our technique improves the search efficiency while preserv-
ing the search quality. The key idea is to expand two search
trees simultaneously, one from the beginning and one from
the end of the motion sequence. A core component of our
bidirectional search algorithm is a novel technique to effi-
ciently merge the two search trees to obtain one continuous
motion sequence. We dynamically divide the search space
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to ensure that the two trees have similar height. We cache
partial paths using hash tables so that we can merge nearby
nodes efficiently. This approach allows us to reduce the re-
quired search depth by a factor of almost two, which leads to
a significant performance improvement. More applications
can thus be improved to achieve interactive performance.
Since A* search is optimally efficient and considered the
state-of-the-art technique for near-optimal motion synthesis,
we demonstrate our approach using bidirectional A* search
in this paper.

To demonstrate the efficiency of our approach, we present
an intuitive sketch interface for interactive motion synthe-
sis. Today’s video games include characters with a rich set
of behaviors. It becomes increasingly difficult to control
varied motions with conventional interfaces, such as joy-
sticks, game pads, mice, or keyboards, since they often re-
quire memorizing awkward keystroke combinations or ges-
tures. With existing sketching systems, users need to memo-
rize a list of mappings between stroke patterns and motions.
Our system, on the other hand, does not require any mem-
orization but allows users to control the motion intuitively
by sketching a trajectory on a specified body part. Given
a stroke input, we search and compose a sequence of mo-
tions whose projected trajectory best matches the input, as
shown in Figure 1. With our bidirectional A* search, we
achieve a significant speedup over traditional near-optimal
techniques, and can synthesize motions in seconds with a
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Edit hand trajectory to grasp object

Edit foot trajectory to step over

Final motion

Figure 1: An editing session with our sketch interface. The user first edits the trajectory of the character’s hand to pick up
an object. The original trajectory is marked in blue, and the user edit in green. Our bidirectional search algorithm provides
immediate feedback to visualize the edited motion. The user next selects the character’s foot and edits its trajectory to step over
an obstacle. Our system synthesizes the final motion, shown on the right, satisfying all the constraints in a near-optimal fashion.

moderate-sized graph. In summary, this paper makes the fol-
lowing contributions:

e We describe a bidirectional search algorithm to improve
the search efficiency for near-optimal motion synthesis.
We present a novel strategy to dynamically divide the
search space evenly and to merge two search trees effi-
ciently.

e We develop a sketching interface for interactive motion
synthesis. It allows a user to intuitively generate complex
motions in an interactive environment.

2. Related Work

Motion Synthesis with Motion graphs. Motion graphs
and related approaches have proven to be quite successful as
a tool to synthesize natural and complex motions [KGP02,
AF02, AFO03, CLS03]. These techniques organize frag-
ments of captured motion in a graph structure, and gen-
erate new motions by building walks on the graph. Over
the past few years, a number of approaches have been de-
veloped to combine interpolation techniques with motion
graphs to provide smoother transitions and more accurate
control [SO06, HG07,SH07, BCvdPP08].

Given user constraints, Kovar et al. [KGP02] use depth-
first search to obtain graph walks. They improve the effi-
ciency of naive depth-first search using a branch-and-bound
strategy and incremental search. Lee et al. use greedy best-
first search and traverse only a fixed number of frames
to maintain a constant rate of motion [LCR*02]. Arikan
et al. [AF02] developed a hierarchical, randomized search
strategy. In their follow up work, Arikan et al. [AFOO03]
presented a method that allows users to specify constraints
as intuitive annotations. This method uses a dynamic pro-
gramming approach and coarse-to-fine refinement to search
for the motion sequence that satisfies the user constraints.
Choi et al. [CLS03] adapt probabilistic roadmaps (PRMs) to
search in a motion graph, which is a popular algorithm in
path planning. However, the quality of the synthesized mo-

tion is not guaranteed to be near-optimal with any of these
methods.

Safonova and Hodgins [SHO7] use interpolation between
motion graphs to increase the range and accuracy of out-
put motions. They emphasize the benefits of performing op-
timal search and employ anytime A* to achieve this goal.
Their approach, however, is not well-suited for interactive
applications, unless the optimality bound is increased signif-
icantly. Lau and Kuffner [LKOS5] also use A* search. They
build a finite state machine of character behaviors that re-
duces the search space and the computational cost of global
search. They also show how pre-computation can be lever-
aged to further increase runtime performance [LKO06]. Their
state machines, however, are limited to contain at most a few
dozen states to achieve interactivity.

Bidirectional search. Bidirectional search has been ex-
plored in artificial intelligence and path planning [RNO3,
LaVO06]. The critical step is to design a mechanism to merge
the two partial searches, which needs to be custom tailored
for the given search problem. Without proper designs, bidi-
rectional search might have worse performance than unidi-
rectional search [Poh71, Kwa89], because it is necessary to
prevent two search frontiers from passing each other. Kandl
and Kainz [KK97] presented one of the first successful ap-
proaches to bidirectional search and demonstrated that it can
be more efficient than unidirectional search. They run an A*
algorithm and change the search direction only once, so the
two searches might not be well balanced. They hash the fron-
tier nodes in the first search to cut off some branches in the
reverse search meeting the opposite frontier. In our work,
we exploit properties of the state space in motion synthesis
to define a cut that divides the search. This allows us to dy-
namically balance the two searches to gain more speedup.

The Rapidly-Exploring Random Tree (RRT) planner is
popular in motion planning [LKO0O, LaVO06]. The basis of
the RRT method is the incremental construction of search
trees that attempt to rapidly and uniformly explore the state
space. This can be considered as a Monte-Carlo way of bias-
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ing the search into the largest Voronoi regions. Kuffner and
LaValle [KLOO] described a bidirectional extension of RRT.
The objective of RRT related search, however, is to find a
feasible path quickly. It does not attempt to find an optimal
or even close to optimal path.

In computer animation, Sung et al. [SKGO05] developed
a bidirectional variation of probabilistic roadmaps (PRM)
for efficient searching in motion graphs. Their PRM search
strategy is based on randomized greedy search from both the
beginning and the end of the motion sequence. They con-
struct a continuous output motion by merging the two paths
at their closest point. This strategy does not decrease search
depth. Shapiro et al. [SKF07] use the bidirectional RRT al-
gorithm to modify motions to obey constraints such as being
collision-free. Their search algorithm returns only a feasi-
ble result, while we focus on finding a near-optimal solution
efficiently.

User interfaces for motion control/synthesis. Intuitive
user interfaces are essential for effective motion synthe-
sis applications. Shiratori and Hodgins [SHOS] provided
an extensive overview of recent techniques that employ
a variety of input devices. Our approach is most similar
to previous techniques that use sketching. In some early
works [LCR*02, KGP02], the character is able to follow the
path sketched by the user. Other sketch-based approaches al-
low a user to generate a wider variety of motions by drawing
simple strokes [TBvdP04, OshO5]. These techniques, how-
ever, depend on predefined dictionaries that map different
stroke patterns to motions. Our system is more intuitive in
that the users are not required to memorize any control pat-
tern, but can sketch the trajectory in an intuitive way.

3. Search in Motion Graphs

The optimal path through a motion graph that satisfies user
constraints often leads to the most intuitive results [SHO7].
However, finding such a path can be computationally expen-
sive. This makes it challenging to perform optimal or near-
optimal search in interactive applications. The main idea of
our approach is to run two searches simultaneously from the
start state and from the end state of the final motion to boost
the search performance. The main benefit of this approach is
that it reduces the maximum search depth almost by a fac-
tor of two. This reduction in search depth causes drastic gain
not only in computing but also memory efficiency, for we
reduce the number of nodes that are expanded and stored.
We demonstrate the benefits of the bidirectional strategy by
applying it to existing search algorithms. We focus on A*
search, since it is provably the most efficient among all the
optimal search algorithms [RNO3].

Before going into the details of the search algorithm we
provide some notations. Each node in the motion graph is
defined as G = (I), where I is an index of the pose in
the motion capture database. The links in the motion graph
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are short motion clips that transition between the poses de-
fined on both sides. Each node in the search tree is a tuple
N = (X, f(X),N’), consisting of the current state X € S of
the character, a cost function f(X) associated with the state,
and the parent N’ of this node in the search tree. The state
space, S, is defined as the range of all possible states. When-
ever a node in the motion graph is unrolled into the environ-
ment, new nodes are added to the search tree and their states
X are determined based on the motion clips (i.e., the links in
the motion graph) that are traversed. The state may include
any information that can be derived from unrolling the mo-
tion graph, such as global position and orientation. We refer
readers to Lau and Kuffner’s work [LKO5] for more details
about the implementation of unrolling a motion graph into
the environment to form a search tree.

3.1. Standard A* Search

A* search is a best-first graph search algorithm that finds
the lowest-cost path from a given initial node to a goal
node [RNO3]. The main feature of A* search is that it uses
a cost function to determine the order in which the search
visits nodes in the graph. The algorithm evaluates the cost
of a node N = (X, f(X),N’) by combining the actual cost
to reach the node, g(X), and a heuristic function h(X) that
estimates the cost to get from the node to the goal. Hence,
F(X) =g(X)+h(X). We can interpret f(X) as an estimated
cost of the cheapest solution that passes through N.

Starting with an initial node, A* search maintains a prior-
ity queue of nodes to be traversed, where the node N with the
lowest estimated cost f(X) has the highest priority. At each
step, the node with the highest priority is expanded and re-
moved from the queue, the costs of its neighbors are updated
accordingly, and the neighbors are inserted into the priority
queue. The algorithm continues until the lowest f value in
the priority queue exceeds the cost of the best solution so
far, or until the queue is empty.

The solution of A* search is guaranteed to be optimal if
the heuristic function 4 is admissible, that is, if h(X) never
overestimates the cost to reach the goal. Further, A* search
is appealing because it is optimally efficient: given a graph
and a heuristic function, no other optimal algorithm is guar-
anteed to expand fewer nodes than A* [RNO3]. In motion
synthesis, A* search has been successfully adopted to search
for optimal or near-optimal motions in motion graphs or fi-
nite state machines [LKO05, SHO7].

3.2. Bidirectional A* Search for Motion Synthesis

We propose a bidirectional algorithm that can make existing
search algorithms, especially A* and its variants, more ef-
ficient. If unidirectional search has a branching factor, i.e.,
an average number of successors of any node, of b, then the
search space for finding a path of length d is on the order of
O(b%). A bidirectional algorithm, however, can reduce the
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(a) Bidirectional search and initial cut

(b) Merge hash tables

(d) Second adjustment of cut

Figure 2: Bidirectional A* search: (a) We expand two search trees alternately from the start and end states. The numbers in the
nodes indicate the time they are created. C indicates the initial cut, and we visualize the two halves of state space in blue and
green. Nodes in search queues are yellow. When links cross the cut we insert the nodes on both sides (e.g. 5-7 and 8-10) into
the corresponding MHT. (b) When inserting a node into a MHT, we check its neighboring states in the opposite MHT to find all
possible matches. (c) The left tree stops growing since all its frontier nodes either pass the cut (node 7) or have costs exceeding
the current minimal total cost (node 11). The fully explored space is shaded in red. To keep both trees growing, we move the cut
to the right. We update the queues and MHTs accordingly, by putting nodes across the new cut (nodes 2,4 in green) into the
MHTs, and deleting nodes beyond these pairs (nodes 6,8,10 in grey). Node 7 in the left tree is inserted into the queue again. (d)
Some time later, the right tree stops growing before the left tree (all the frontiers pass Cy), so we move the cut to the left again,
splitting the unexplored space into two equal halves. Nodes 4,12 are then inserted into search queue again.

d
size of search space to O(b2). In our application, this trans-
lates into significant speedups as we will show in Section 5.1
and Section 5.2.

The performance of bidirectional search strongly depends
on two factors: a stopping criteria that determines when to
stop the searches from each direction, and a merge query
that efficiently evaluates potential merge points between the
two searches. The performance may be even worse than uni-
directional A* if they are not properly designed. The core
component of our bidirectional search algorithm is a novel
strategy to design these factors for motion synthesis. We ad-
dress the first issue by defining and dynamically adjusting a
global cut, which determines where the search is stopped. To
solve the second issue, we introduce an efficient data struc-
ture that we call a merge hash table (MHT).

The Cut. The search starts by alternately expanding two
search trees from both ends by maintaining two priority
queues. We expand both trees until they reach the cur. The
idea is that the cut halves the search space, the set of all pos-
sible solutions, so the work required to expand both trees is
well balanced. When a node passes the cut, we stop its fur-
ther expansion, since this side will be explored by the other

search tree. At the beginning of the search, without sufficient
information about how the search will proceed, it is difficult
to know where to place the cut. We thus place an initial cut
between the start and end states as a hyperplane that splits
the state space S into two equal halves, as shown in Fig-
ure 2a.

The performance of bidirectional A* largely depends on
where the cut is placed, since this determines how the search
space is split. The initial cut, estimated in the state space,
may not divide the search space evenly, because search depth
is not directly proportional to distances in state space. For
example, some arcs in the search tree, such as the jumping
motion, span a longer distance in state space than others,
such as a small step. Hence, one tree may surpass the cut and
terminate much earlier than the other. It is also possible that
one search converges more quickly to the optimal solution
than the other. Unfortunately, after one tree’s termination the
search behavior resembles unidirectional A*, so we would
like to keep both trees growing for as long as possible.

We propose an algorithm to adjust the cut dynamically so
that it eventually converges to the halfway cut in the search
space. If one of the trees terminates before the other, we
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move the cut toward the other tree so that it splits the remain-
ing, not yet fully explored space into two equal halves. This
procedure is iterated every time one tree stops growing (all
the frontier nodes either pass the cut or have costs exceeding
the current minimal cost). We repeat this process until both
trees terminate, or until there is not enough space remain-
ing to make the adjustment. Two iterations of dynamic cut
adjustment are illustrated in Figure 2c¢ and Figure 2d.

Merging two Search Trees. When a node passes the cut,
we need to detect whether the current path can be merged
with any existing paths from the opposite search. To this end
we record the following state attributes with each node in
the search tree: an index G to the corresponding node in the
motion graph, and the character’s position x, z, and orienta-
tion O in a global coordinate system. We say that two paths
p1 and py are mergeable if they contain any pair of nodes
N; and N, that are close enough in state space. More pre-
cisely, they are mergeable if IN| € p;, N, € p; such that
G| =Gy, ‘xl —x2| < &, |Z] —Zz‘ < &, and ‘91 —62| < &g,
where € = (&y,€;,€g) is the tolerable deviation in (x,z,0)
between two states. Instead of evaluating all pairs of nodes
for merging, which takes linear-time computation, we would
like to perform the query efficiently.

To achieve efficient merging, we maintain merge hash ta-
bles (MHT) individually for each search tree. Each MHT
records a set of candidate nodes for merging from each
side. The main idea is to quantize the state space into a
grid of cells, and to use the quantized state of each node
to compute the key for hashing. Pairs of nodes that can be
merged will be guaranteed to fall into neighboring cells.
The hash table allows us to retrieve nodes in neighboring
cells in constant time while storing the grid efficiently. This
approach is a variation of spatial hashing [GG98], which
has been used in graphics for example for collision detec-
tion [THM* 03, LHO6].

To quantize the state space we use a cell size of % X % X
%". Note that G is discrete by definition. For each node in the
search tree, its x, z, and 6 coordinates are discretized to the
closest cell and used to compute the hash key. When a node
N passes the cut, we insert N and its parent N’ into their own
MHT (Figure 2a). Then we use their states X and X’ to query
the MHT of the other search tree (Figure 2b). For each query,
we also check its neighbors. That is, for a key X, we also use
(Gyx+ %,zi %,6 + %") to query for matches. If a match
is found between two nodes Ny and N, the total cost of the
corresponding path is g(X1) + g(Xa) +A||X; — Xz||, where A
is a scaling constant for the cost in merging two states.

During the entire search we always keep record of the path
with minimal cost. Similar to standard A* search, each tree
will terminate growing if every node in the queue has greater
cost than the best solution so far, or if the queue is empty
(in this case, every path surpasses the cut). The search ends
when both trees terminate.

Every time we adjust the cut, we must update the MHTs
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along with the search queues. To do the update efficiently,
we maintain a Fibonacci heap for each search tree respec-
tively to order the nodes according to their distance to the
search root in state space. Given a cut, this allows us to ex-
tract all nodes beyond the cut efficiently (the amortized run-
ning time is O(mlogn), where m is the number of nodes be-
yond the cut, and n is the number of nodes in the tree). More
specifically, we update the search queues and MHTs as fol-
lows: First, insert every pair of successive nodes crossing the
new cut into the MHT; second, mark all nodes beyond these
pairs as obsolete; third, insert all the other frontiers into the
search queue if they are not already in it and if their costs are
smaller than the current minimal total cost. We illustrate the
updated status after cut adjustments in Figure 2c and Fig-
ure 2d.

4. Intuitive Motion Control with Strokes

The basic idea of our system is to allow the user to specify a
motion by sketching a desired trajectory for any controllable
body part. Then we generate a motion whose trajectory of
the specified body part best resembles the input stroke un-
der the current viewing perspective. Our system is intuitive
to use in that similar strokes may represent different motions
under different viewing perspectives (Figure 3a and b), and
different stroke trajectories can predictably generate differ-
ent motions (Figure 3¢ and d) even with the same start and
end conditions. These features are infeasible with gesture-
based sketching systems [TBvdP04, Osh05].

Searching motion based on user sketches as described
above is an under-constrained problem. There may be more
than one, or even many, motions that result in similar tra-
jectories. Also, the user-input strokes may jiggle, and stray
away from a natural trajectory. Our system must be able to
handle these inputs robustly. To achieve this goal, we syn-
thesize motion by searching a path on the motion graph that
minimizes the difference in trajectories along with the en-
ergy required to perform the motion. We design a cost func-
tion for the search to represent the user intention while being
robust to noisy input. Bidirectional A* search as described in
Section 3.2 allows us to compute a near-optimal motion se-
quence in seconds on a moderate-sized motion graph.

4.1. Input Stroke Analysis

The input strokes convey the user’s intentions for a motion
in several ways. First, the shape of the stroke represents the
desired motion trajectory under the current viewing perspec-
tive. Second, the user can draw strokes at different speeds to
control the speed of the final motion. At last, the intersection
of the stroke and the objects in the environment represents
the character’s contact with the environment. We next de-
scribe different cost functions that capture these constraints.

Distance Cost. The distance cost measures the deviation
of the synthesized motion from the trajectory specified by
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Figure 3: Our system allows users to intuitively generate
motions using a simple stroke interface. Similar strokes un-
der different situations can lead to different motions.

the input stroke. We use the technique proposed by Hoff et
al. [HKL*99] to generate a distance function to the input
stroke. The distance is measured in the image plane where
the user draws the strokes. We sample the input stroke uni-
formly in time, and for each pixel ¢ on the image plane we
store its distance to the closest sample point. We denote the
distance function by D(c) : R> — R, which enables constant
time look-up of distances. Along with the distance, we also
use T'(c): R> = Rto keep track of the identity of the closest
sample point for each pixel on the image plane. T'(c) pro-
vides information about the sketching speed along with the
chronological flow of the stroke.

We compute the distance cost for each new node in the
search tree that we explore. To obtain a robust cost that is
also efficient to compute, we evaluate the distance to the
stroke only at a few key frames [ACCOO05]. Let us denote the
state of a parent node in the search tree by X’ and the state
of one of its children by X. To measure the distance error of
X with respect to the stroke, we project the controlled body
part to the image plane at each key frame. We denote the 3D
positions at the key frames by (p1, p2,. .., pn) and their pro-
jected positions on image the plane by (cy,c2,...,cn). Our
distance cost is then

n—1 ) o
o(x',X) = )Y (||Pi—l7i+1|| X %D(’“))’

i=1
which penalizes large deviation of the projected trajectory
from the input stroke, weighted by the actual distance trav-
eled in 3D. Since the stroke is defined on the 2D plane, there
might be more than one sequence of motions fulfilling the
constraint. We use ||p; — pi+1]| to give preference to those
having shorter paths in the 3D environment, which are usu-
ally more intuitive.

Speed Cost. The speed cost attempts to adjust the speed of

the synthesized motion to the speed of the user stroke. It also
ensures that the character follows the stroke in a chronolog-
ical order. In the preprocessing stage we calculate and store
the moving speed along each link in the motion graph. The
speed of a motion is simply the distance between the charac-
ter root at the beginning and the end of the motion divided by
the temporal length of the motion. At run time, we compute
the speed cost of the transition from state X’ to X as
)~ M7 =T
min (|7 (c) —T(c")|,s)

where s is the pre-computed speed associated with the link
in the motion graph, and ¢ and ¢’ represent the projected
position of the character’s controlled body part on the image
plane in state X and X’ respectively. Note that we normalize
the walking speed to a reference sketching speed to calibrate
this cost. To ensure correct chronological order, 7 (c¢) should
be greater than T(c’) if they belong to the forward search
tree and vice versa in the backward search tree.

Complete Cost. The cost function also considers the
smoothness of the transition between the poses G’ and G,
and the physical energy required to perform the in between
motion. We adopt the point cloud metric [KGP02] with
weights on different joints [WB04] to compute the transi-
tion cost. The energy cost is the sum of the squared torques
via inverse dynamics [SHO7]. There may be more than one
sequence of motions fulfilling the input stroke, but the one
with the least energy usually looks more natural. Hence, the
complete cost function is defined as

g(X") = g(X) + Yo @(X.X") + 7 ¥(X,X') + 1aA(G,G),

where A(G,G’) denotes the sum of transition and energy
cost, and Yo, Yy, YA are scaling constants.

Environmental Constraints. We provide environmental
constraints that allow users to gain more control over the
character motion. The users can specify contacts with the
environment by pausing a few seconds when drawing. We
then use ray tracing to find the intersection of the user stroke
with objects in the environment. From the intersections we
obtain contact information, such as the position and normal
of the contact point, which serve as hard constraints in the
search. This allows users to guide the character to interact
with the environment, e.g. pick up, kick, or sit on an object.

4.2. Bidirectional A* Search

In this section, we provide more details about applying bidi-
rectional A* search with the stroke interface. Our objective
is to find two mergeable state sequences with minimal cost,
(XﬂX{,...,X,{;) and (X,f,anfl,..leb), from forward and
backward searches respectively. X,J,: and X? are mergeable
states, as illustrated in Figure 4a. The state in our system is
defined as X = (G, x,z,0,r), where G, x, z, and 6 have been
introduced in Section 3.2, and ¢ indicates the chronological
order of the current state along the user stroke. We find this
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(a) Before merging X

(b) After merging and warping

Figure 4: (a) A possible solution of bidirectional search.
The two mergeable nodes are colored in purple. (b) We warp
the whole sequence while fixing the start and end states so
that the final pose can fulfill the constraint more precisely.

value by projecting the controlled body part (pelvis for ex-
ample) of the character onto the image plane and looking up
the identity of the closest sample point on the input stroke
using the T function.

The bidirectional search begins from the start state le .

and the end state X lb respectively. X'lf is simply the charac-
ter’s current state. On the other hand, there may exist more
than one candidate for the end state le . In this case, we cre-
ate a virtual root node for the backward search tree and set
all the candidates as its children. The candidates are derived
from the user input. We first determine the end pose by in-
tersecting the tail of the input stroke with objects in the en-
vironment. If there is an intersection, we use the contact in-
formation to extract all the possible final poses. Otherwise,
we adopt all the resting poses without environmental con-
tacts. Secondly, we estimate the end position by shooting a
line from the current viewpoint to the tail of the stroke and
matching it with the controlled body part in the poses. Fi-
nally, we allow the user to adjust the final orientation freely.

We define the cut by dividing state space. More specifi-
cally, we split the space along the ¢ axis only, since it pro-
vides enough indication for splitting the search space. The
initial cut is the hyperplane (t{ +1%)/2. Note that t{ is the
identity of the first sample point on the stroke (the minimal
value of T(-)), while ¢/ is that of the last (the maximal value
of 7(-)). During the dynamical cut adjustment, we update
the value of the cut as the median ¢ value in the unexplored
state space.

The mergeable states X;,C and X,é’ in the result sequences
may not match exactly because the motion space is discrete
and the environment is quantized. If we simply concatenate
the two sequences, the final state of the merged sequence
will deviate from the user-specified state. Although the devi-
ation is within the error tolerance, the result motion will be
unnatural in some cases. For example in the case of grasp-
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ing or kicking the character will act to the air. Therefore, we
include a warping step [WP95,Gle01] so that the final states
match more precisely. We illustrate the solution before and
after warping in Figure 4a and Figure 4b respectively. To
avoid foot sliding due to warping we apply analytical IK at
run time to plant the feet [TB96, LS99]. Warping should be
reduced to a minimum since it often degrades the motion
quality. An advantage of near-optimal solutions is that they
require less warping than motions with higher costs, which
deviate further from user constraints. In the appendix, we
show that we can control the optimality of the final solution
by adjusting the size of quantization, €.

The heuristic function in our search is used to estimate
the cost of getting to the goal. Our heuristic function is a
product of the shortest distance from the current position to
the goal, multiplied by the minimum cost function value re-
quired to travel one unit distance. We run a number of tests
to empirically compute this minimum value from the motion
graph data, similar to the heuristic function on the character
location in [SHO7].

5. Results

To produce our results, we adopt the technique proposed
by Zhao and Safonova [ZS08] to construct well-connected
graphs. During the construction, we interpolated the mo-
tions in a close to physically correct way [SHOS5]. The re-
sulting graph is larger than a standard motion graph since
it includes many interpolated poses that do not belong to
the original data to achieve better quality in the synthe-
sized motion. We compress the graph by retaining only the
nodes where contact changes happen, and the links among
them [SHO7]. We first use the technique from Lee and his
colleagues [LCR*02] to identify contacts and then modify
them manually. There may be more than one path connect-
ing each pair of contact change nodes, and we use Dijkstra’s
shortest path algorithm to compute and retain the optimal
one. The culling step does not affect the functionality of the
graph as long as users are not allowed to control the details
of the motion during a period of time when the contacts are
not changing [SHO7].

5.1. Search Performance Comparison

We generated a variety of examples on a Quad Core 2.4 GHz
Intel processor to show the effectiveness of our approach.
We construct the motion graph from a varied set of motion
capture data, including walking with various turns, jumping,
ducking, stepping over, cartwheeling, sitting, stepping onto,
kicking, slapping, punching, picking, and pitching. The total
length of original data is about 4 minutes long. The graph
has 11436 nodes (including interpolated and original nodes)
and 15471 links. We compress the graph into 84 nodes and
827 links, by keeping only the nodes where contact changes
happen and links among them.
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WA o s

(a) Simple walk (b) Jump and duck

m% S

(c) Walk and pick (d) Long walk

Figure 5: Motion sequences obtained from our algorithm
(without the final warping step). The character is controlled
at its pelvis (a), right hand (b), right hand (c), and pelvis (d)
respectively. In (d), the character jumps and lifts his leg up
high once because under this viewing perspective the input
stroke only provides constraint on the moving path, and these
actions happen to fulfill the trajectory better.

We set € and €; to be about half of the length of a walking
step, while setting €9 to 5.7 degrees. We compute the dis-
tance function and chronological flow for each input stroke
by rendering distance meshes on the GPU. The computation
takes less than 0.01 seconds, but the read back latency from
GPU to CPU is about 0.1 seconds.

We compare the search performance of standard A*, bidi-
rectional A*, and bidirectional A* with dynamic cut adjust-
ment. In all the test cases presented in this section, we use
the same graph, cost function, and heuristic function. The
synthesized results and performance comparisons are shown
in Figure 5 and Figure 6 respectively. Since the synthesized
results of the three approaches are indistinguishable, we only
show those of bidirectional A* with cut adjustment in Fig-
ure 5.

In the first test case (“simple walk”) the user draws a
straight line in a side view to guide the character to walk
from left to right, as shown in Figure 5a. This case is simple
and the two search trees are almost balanced, so adjusting
the cut provides no further speed up. The second test case
(“jump and duck”) is harder because the constraint is ab-
stract and strays away from the actual trajectory. A larger
search space is required to better fulfill the constraints. Fig-
ure 6 shows that both versions of bidirectional A* outper-
form standard A*. Bidirectional A* without dynamic cut ad-
justment, however, does not fully utilize the advantage of
search space splitting. Since the link of the jumping motion
is longer than average, the forward search tree terminates
much earlier, and dynamic cut adjustment can improve per-

A* Bidirectional A* Bidirectional A*+

Simple walk, 6 seconds

time 0.031's 0.016 s 0.016 s

exp 3,175 78 + 65 78 + 65

speedup 1.00x 1.93x 1.93x
Jump & duck, 9 seconds

time 4.781s 325s 1.781 s

exp 879,771 1,506 + 413,356 68,219 + 210,757

speedup 1.00x 1.47x 2.68x
Walk & pick, 19 seconds

time 14.188 s 0375s 0.187 s

exp 2,841,462 37,238+9,918 10,122 + 9,918

speedup 1.00x 37.83x 75.87x

Long walk, 30 seconds

time 325s 3344 s 0.875 s

exp 567,542 68,995 + 507,839 69,658 + 67,223

speedup 1.00x 0.97x 3.25x

Figure 6: Performance comparison between standard A*
search (A*), bidirectional A* search without cut adjustment
(bidirectional A*), and our proposed bidirectional A* search
with cut adjustment (bidirectional A*+). With each example
we indicate the time it takes to execute the motion. We re-
port the computation times to find a near-optimal motion,
the number of nodes expanded in the forward and backward
search trees, and the speedup.

formance by moving the cut towards the other end. In the
next test (“walk and pick”), shown in Figure 5c, the charac-
ter is asked to detour in an S route to pick up a ball. Both
bidirectional versions outperform standard A* search by a
large margin. Our approach is more than seventy times faster
than unidirectional search. The main reason is that this case
is more favorable to backward search, so bidirectional A*
with cut adjustment gains an advantage by moving the cut
toward the start state several times. In the last experiment
(“long walk™) the character is asked to walk a long way
before making a 180-degree turn in the end, as shown in
Figure 5d. This example favors forward search a bit more
than backward search. Without cut adjustment, the forward
search waits while backward search expands ten times more
nodes, so the performance is even slightly worse than A*.
With our cut adjustment the cut is moved backward twice to
balance the search, and we achieve interactive performance
even for this motion that takes 30 seconds to execute.

5.2. Scalability

Our bidirectional strategy can be applied on many graph-like
structures to improve the performance of motion synthesis,
e.g. state machines, motion graphs, or even interpolated mo-
tion graphs [SHO7]. Also, the bidirectional strategy can be
applied on other A* variants (truncated A*, inflated A*, or
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Bidirectional+ Unidirectional

MG, =1 IMG, 6=1

SAMILR SINSHip S gLt SN
DAL LGP S s0p WAL

IMG, 6=3 IMG, 6=10

Figure 7: Synthesized results from unidirectional and bidirectional search. The result motions are about 7 second long. The
green line indicates the input stroke, while the blue line represents the trajectory of the synthesized motion.

anytime A*), which would promise further performance im-
provement at the cost of reduced quality of the solution.

In this section, we show how the performance of different
search algorithms scales with the size of the graph. We ran
experiments on an interpolated motion graph created from a
well-connected motion graph, which includes walking with
various turns and has 45 abstract nodes and 230 abstract
links (after compression). The interpolated graph has 1493
abstract nodes and 24882 abstract links.

First, we compare unidirectional and bidirectional search
(with dynamic cut adjustment) using a motion graph and
an interpolated motion graph on the same input. The syn-
thesized motions and performance results are shown in Fig-
ure 7 and Figure 8 respectively. With the interpolated motion
graph, the synthesized motion can fulfill the constraint more
precisely, but the running time increases accordingly. With
depth reduction, however, our bidirectional search suffers
less from the increased graph size and achieves a speedup of
more than 10. We also implemented inflated A* by multiply-
ing the estimated cost with an error tolerance & > 1, so that
the cost of the solution is bounded from above by & times the
cost of an optimal solution. From Figure 8, we can see that
even with 8 = 10, unidirectional search still requires 5 sec-
onds, which is 3.7 times slower than our bidirectional search
with no inflation (& = 1, 1.36 seconds). This shows that our
algorithm is able to find a better solution in a considerably
shorter amount of time (the quality of the synthesized mo-
tions can be compared in Figure 7).

Secondly, we make the same comparison as above but
with a longer and more complicated input. The synthesized
results and performance comparisons are shown in Figure 9
and Figure 10 respectively. In this case, without inflation,
both unidirectional and bidirectional search cannot find a so-
lution within two minutes, and more than ten million search
nodes are expanded. Setting 8 = 2, we are able to find a so-
Iution with bidirectional inflated A*, but fail again with stan-
dard inflated A*. With standard inflated A*, we need to set a
much larger tolerance 6 = 10 to find a solution in a compa-
rable amount of time. Since the cost of the solution is only

(© 2010 The Author(s)
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Unidirectional Bidirectional+
MG 5= 1 time 0.297 s 0.078 s
exp 47,821 4,786 + 6,310
speedup 1.0x 3.80x
MG §=1 time 14.171s 1.36s
exp 2,450,768 78,278 + 83,434
speedup 1.0x 10.41x
IMG  §=3 time 10.547 s 0.078 s
exp 1,235,655 1,447 + 3,119
speedup 1.0x 135.21x
MG §=10 time 5.094 s 0.063 s
exp 625,766 1,554 + 1,274
speedup 1.0x 80.85x

Figure 8: Performance comparison between unidirectional
and bidirectional search. We applied both search algorithms
on a motion graph (MG) and an interpolated motion graph
(IMG) with the same input. We also made comparisons with
both standard A* (8 = 1) and inflated A* (3 > 1).

guaranteed to be bound within 10 times the optimal cost, its
quality is reduced significantly as shown in Figure 9.

Although we demonstrated the bidirectional strategy only
on basic A* and inflated A*, we can apply it to other variants
too. We would expect similar results for example for anytime
A*, which is a variant of inflated A* that dynamically adjusts
the optimality bound & at run time. We can also adopt the
approach of pre-expanding A* search trees [LKO06] to further
enhance the search performance.

6. Conclusions

We present an algorithm to improve the search efficiency
for near-optimal motion synthesis using motion graphs, and
demonstrated its application to interactive motion synthesis
using an intuitive sketching interface. The main idea of our
algorithm is to use a bidirectional search strategy. The bene-
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>
e
Bidirectional+, 6 =2 Unidirectional, 8 = 10

Figure 9: Synthesized results from unidirectional and bidi-
rectional inflated A*. Note the deviation from the synthesized
motion (blue line) to the input (green line) in the right image
due to large inflation. Bidirectional search produces a higher
quality result (8 = 2) in a shorter amount of time (6.6 sec.)
than unidirectional search (& = 10,10.18 sec).

search type time exp

> 10 million
354,641 + 459,431

2,385,957

Unidirectional, § = 2 > 2 mins
Bidirectional+, = 2 6.60 s

Unidirectional, 6 = 10 10.18 s

Figure 10: Performance comparison between unidirec-
tional and bidirectional search with interpolated motion
graph using a longer and more complicated input.

fit of this approach is that it can reduce the maximum search
depth by almost a factor of two. We demonstrate that this
leads to significant performance improvements. To fully ex-
ploit the potential of bidirectional search, we propose to dy-
namically adjust a cut that separates the two search trees, and
we use efficient data structures to limit the overhead required
to merge them. We showed that in some cases, the bidirec-
tional search outperforms unidirectional search by an order
of magnitude.

We see the following limitations and opportunities for ex-
tensions that we plan to address in future work: Although
our approach is more efficient than unidirectional search, the
length of motions that we can generate at interactive rates
is still limited. This could be addressed with a hierarchical
approach. Another alternative is to use A* variants. Both ap-
proaches are orthogonal to the bidirectional search strategy
and could be plugged into our framework easily. A common
issue in motion synthesis governed by a cost function is to
adjust the parameters of the cost to obtain intuitive results.
This often requires experimentation. It would be useful to
have a more robust and automatic way to determine appro-
priate parameters.

Appendix

In this section, we clarify that, due to discretization of the
motion space and quantization of the environment, the mo-
tions found by unidirectional and bidirectional A* search
may not be exactly the same, but the difference is bounded.

N
Xm

x! /6 X!

g(X;)) d

Figure 11: Direct merging result of the two partial paths in
Figure 4a found with bidirectional search.

Because of discretization, most solutions will not meet the
goal exactly, but it is important that the motion should fulfill
the end constraint precisely. Thus, to evaluate the cost of a
solution, we warp its tail to the goal position. This warping
step will change the cost evaluated during the search frame-
work. The cost difference between the original and warped
solutions, however, is bounded above by a linear function,
o(g,l), where [ is the length of solution, and € is a threshold
used to discard solutions with large deviation. The reason
why the bound depends on € and / can be visualized intu-
itively as the difference of the shaded area in Figure 11 and
Figure 4b.

Now to compare a unidirectional solution with a bidirec-
tional solution, we can split the unidirectional solution into
two pieces and shift the second half so that the end goal
is reached exactly. The cost difference of the split is also
bounded by ¢. Let C,, and C}, denote the cost of the optimal
solution in unidirectional A* before and after splitting re-
spectively, then C, — 6 < Cj, < Cy + 6. The optimal solution
in bidirectional A*, Cl/,, is the optimal one over all paths with
two segments divided by the cut, then C; ,/, < Cy—+o0. Thus, the
cost of the bidirectional solution C}, is at most & plus the cost
of the optimal unidirectional A* solution Cy.

To conclude, the difference between the warped solution
from A* search and that from bidirectional A* search is
bounded by O(G). We can adjust the tolerable threshold € to
control the difference. When ¢ is negligible, the difference is
unnoticeable.
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