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Abstract

In this paper, we present a consolidation method that is based on
a new representation of 3D point sets. The key idea is to augment
each surface point into a deep point by associating it with an inner
point that resides on the meso-skeleton, which consists of a mix-
ture of skeletal curves and sheets. The deep points representation
is a result of a joint optimization applied to both ends of the deep
points. The optimization objective is to fairly distribute the end
points across the surface and the meso-skeleton, such that the deep
point orientations agree with the surface normals. The optimization
converges where the inner points form a coherent meso-skeleton,
and the surface points are consolidated with the missing regions
completed. The strength of this new representation stems from the
fact that it is comprised of both local and non-local geometric in-
formation. We demonstrate the advantages of the deep points con-
solidation technique by employing it to consolidate and complete
noisy point-sampled geometry with large missing parts.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: Points representation, meso-skeleton, consolidation

1 Introduction

Objects in computer graphics are commonly represented only by
their surface. However, objects are typically volumetric and their
analysis and processing should consider also their volume. To
account for the volume, skeletal shape representations have been
widely used for shape modeling, analysis and editing. Skeletal rep-
resentations usually keep their linkage to the surface. One of the
best known examples is the medial axis transform (MAT), which is
the set of centers of tri-tangent spheres. Each point on the surface
is then represented by a point and a radius on the MAT’s skeleton.

In this paper, we introduce a new representation for point sets that,
similarly to the MAT, makes a link between the surface and its lo-
cal volume. Each surface point is associated with an inner point
that resides on a meso-skeleton [Tagliasacchi et al. 2012], which
consists of skeletal curves in cylindrical regions and skeletal sheets
(i.e., medial axes) elsewhere. The augmented representation is a set
of line sections, each with one end on the surface and the other on
the meso-skeleton. We term these augmented points, deep points,
or dpoints for short. See Figure 1 for an illustration of the deep
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Figure 1: The deep points representation (left) is a set of line sec-
tions, each with one end (red) on the surface (middle) and the other
(blue) on the meso-skeleton (right).

points representation. The deep points form a smooth mapping be-
tween the surface and meso-skeleton, where their orientations agree
with their corresponding surface normal directions. It is worth not-
ing that unlike the MAT, dpoints can be computed robustly from
noisy and highly incomplete input.

The deep points representation is a result of an optimization applied
to the raw input point set. The key idea is to jointly optimize the
surface and skeletal points so they form a valid deep points set. As
we will show, the optimization converges where the inner points
form a meso-skeleton, and the surface points are consolidated. The
strength of the dpoints representation stems from the fact that it is
comprised of both local and non-local geometric information. We
demonstrate the advantages of dpoints by employing them to con-
solidate and complete noisy point clouds with large missing parts.

Surface normal vectors have a critical role in surface reconstruction.
Advanced consolidation techniques [Guennebaud and Gross 2007;
Öztireli et al. 2009; Zheng et al. 2010; Huang et al. 2013a; Calderon
and Boubekeur 2014] that can deal well with artifacts such as noise,
outliers, irregular sampling, and sharp features rely on the availabil-
ity of accurate normals. However, vector normals as a second order
differential feature remain noisy, especially near open boundaries.
Thus, unreliable normals make it challenging to complete missing
surface data in the proximity of boundary points. Our consolidation
technique can complete the surface without assuming the availabil-
ity of accurate surface normals.

Figure 2 illustrates the main benefits of surface reconstruction us-
ing our dpoints representation. The raw scan in Figure 2(a) is non-
uniform, many regions are sparse, and large parts are completely
missing. Consequently, boundaries are not clearly defined and
normal data is unreliable. Our dpoints representation computes a
topologically correct meso-skeleton for the input shape, which pro-
vides non-local geometric information and guides the completion
of missing regions on the surface. The result of our consolidated
point set surface is shown in Figure 2(e), to which we apply Pois-
son reconstruction in Figure 2(f); see also the accompanying video.

In contrast, directly applying state-of-the-art reconstruction meth-
ods to the noisy and incomplete input, such as Poisson reconstruc-
tion [Kazhdan and Hoppe 2013] in Figure 2(b), does not provide



(a) Input. (b) Poisson recon. of (a). (c) WLOP consolidation. (d) Poisson recon. of (c). (e) Our consolidation. (f) Poisson recon. of (e).

Figure 2: The input point cloud (a) contains noise and large missing regions. Applying Poisson surface reconstruction [Kazhdan and Hoppe
2013] on either the input (a) or the WLOP consolidation [Huang et al. 2009] result (c) does not yield satisfactory models; see (b) and (d),
respectively. The surface points shown in (e) are consolidated and completed by our dpoints technique. This leads to a much better Poisson
surface reconstruction (f). In (c) and (e), the errors of the surface point normals estimated by local PCA are evaluated based on the ground
truth and color coded (blue means higher error).

plausible results. The WLOP technique [Lipman et al. 2007; Huang
et al. 2009] excels in that it can consolidate raw and imperfect data
without relying on normals. However, WLOP does not complete
missing regions as is obvious in Figures 2(c-d).

Note that surface completion is, by its nature, an ill-posed prob-
lem. We therefore guide it by a coherent meso-skeleton, resulting in
natural-looking reconstructions even for highly incomplete scans;
see an evaluation in Figure 11. Rather than completing the surface
with context-oblivious data, like circular [Tagliasacchi et al. 2009]
or elliptical [Huang et al. 2013b] cross sections, our completion ex-
ploits the context provided by the existing data, as represented by
the constructed meso-skeleton; see comparisons in Figure 12.

2 Related work

Surface reconstruction. In a broader context, our work is re-
lated to the vast literature on surface reconstruction [Hoppe et al.
1992; Turk and Levoy 1994; Amenta et al. 1998]. Noise is a major
challenge in handling real scanned data. Assuming local smooth-
ness, methods based on signed distance functions (SDF) [Carr et al.
2001; Kazhdan et al. 2006; Kazhdan and Hoppe 2013] can re-
construct watertight surfaces. These techniques assume the whole
model is scanned and when missing data is significant the recon-
structed surfaces are often overly smooth and may contain topolog-
ical errors. Please refer to Berger et al. [2013; 2014] for a more
comprehensive survey of state-of-the-art methods.

Surface Consolidation. Consolidation is an important prepro-
cessing step, such as normal estimation, denoising, smoothing and
regularization, which works directly on a point set itself. Early
work by Alexa et al. [2001] defines a point set surface through mov-
ing least squares (MLS) projection. Later works focus on remitting
the over-smoothing problem. Representative approaches include
anisotropic smoothing [Lange and Polthier 2005], point-sampled
cell complexes [Adamson and Alexa 2006], algebraic point set sur-
faces [Guennebaud and Gross 2007], robust implicit MLS [Öztireli
et al. 2009] and point set resampling [Huang et al. 2013a]. To pre-
serve sharp features, Avron et al. [2010] use a `1-sparse method to
compute piecewise smooth surfaces, whereas Huang et al. [2013a]
generate piecewise smooth point set surfaces through point projec-

tion. Recent work by Calderon and Boubekeur [2014] preserves
sharp features under a point morphology framework. All of these
techniques depend on oriented normals for the projection control.

The most related work to our approach is Weighted Locally Opti-
mal Projection (WLOP) [Lipman et al. 2007; Huang et al. 2009],
which generates a uniform distributed point set with oriented nor-
mals. Preiner et al. [2014] develop an accelerated version of WLOP
by using a more compact representation of the original input points.
WLOP-based consolidation methods are robust since they do not
rely on the normals of the input points. However, none of them was
designed to complete point clouds. In that sense, our method fuses
consolidation and completion into one coherent technique.

Completion. Missing data, caused by self-occlusion, light ab-
sorption, or challenging surface materials [Wu et al. 2014], is one of
the most challenging problems in surface reconstruction. Diffusion-
based methods [Davis et al. 2002] are able to fill small holes
with complex boundaries. To fill large holes, context-based [Sharf
et al. 2004; Harary et al. 2014], and repetition-based [Zheng et al.
2010] methods are proposed, with the assumption that the miss-
ing parts can be replaced with other parts of the input itself. Sur-
face evolution methods [Cohen and Cohen 1991; Esteve et al. 2005;
Tagliasacchi et al. 2011], on the other hand, fill large missing data
by shrinking a reasonably reconstructed initial mesh. Other meth-
ods infer missing data through exploiting high-level knowledge and
priors, such as symmetry relationships [Pauly et al. 2008], volumet-
ric smoothness [Tagliasacchi et al. 2011], canonical regularities [Li
et al. 2011], and global parity measurement [Seversky and Yin
2012]. Nevertheless, these techniques cannot avoid erroneous topo-
logical reconstructions. Hence, interactive methods were developed
to allow guiding the reconstruction with topology control [Sharf
et al. 2007b; Yin et al. 2014].

Skeletonization. Skeletonization has been intensely studied in
computer graphics, e.g., [Au et al. 2008; Cao et al. 2010; Bucksch
et al. 2010; Natali et al. 2011]. In particular, curve skeleton
techniques were developed in the context of surface reconstruc-
tion [Sharf et al. 2007a; Tagliasacchi et al. 2009; Li et al. 2010;
Livny et al. 2010; Huang et al. 2013b]. Tagliasacchi et al. [2009]
introduce a curve skeleton extraction mechanism by the use of the
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Figure 3: Deep points consolidation. Given the input point cloud (a) and its initial consolidation results (b), our approach creates deep
points by sinking the inner points to form a meso-skeleton (c) and moving the outer points along the surface to complete missing areas (d).
The final representation consists of a set of coherent vectors that connects the surface with the meso-skeleton.

rotation symmetry axis. Huang et al. [2013b] compute L1-medial
skeletons with conditional regularization.

The work of Tagliasacchi et al. [2012] computes meso-skeletons,
which combine medial sheets and curve skeletons. We adapt their
notion of meso-skeletons. However, our method differs in that we
do not assume having a complete surface with reliable normals. We
generate the meso-skeleton as a by-product of the point cloud con-
solidation from noisy and incomplete input that lacks reliable nor-
mals. Miklos et al. [2010] introduce a generalization of the MAT
that provides a medial representation at different levels of abstrac-
tion. While this approach is more robust to noise, it still does not
address the issue of incomplete data.

To complete the missing parts along the recovered curve skeleton,
these methods [Tagliasacchi et al. 2009; Huang et al. 2013b] typ-
ically run cross-sectional curve interpolation and assume that the
geometry of the cross-sectional curve is circular or elliptical. Our
approach for computing meso-skeletons is inspired by the skele-
tonization scheme of Huang et al. [2013b]. However, we introduce
new adaptive and anisotropic neighborhoods (Figure 5), which al-
low us to generate skeletons of different topologies (2D sheets &
1D curves) under the same framework.

3 Deep Points

A deep point consists of a pair of points 〈pi, qi〉, an outer point
pi ∈ R3 that resides on the surface and a corresponding inner point
qi ∈ R3 that resides on a meso-skeleton. We refer to the outer
points P = {pi}i∈I as surface points and the inner ones Q =
{qi}i∈I as skeletal points, where the index set I is the same. We
represent points in space and their orientations as column vectors,
and denote orientation vectors with bold fonts.

The deep points representation 〈P,Q〉 = {〈pi, qi〉}i∈I ⊂ R6 shall
satisfy the following criteria:

• the surface points P reside on the latent surface and are regu-
larly distributed;

• the collection of the skeletal points Q forms a meso-skeleton
of the surface, which may consists of both 2D surface sheets
and 1D curves;

• the dpoint orientation mi = (pi − qi)/‖pi − qi‖ agrees with
the surface normal ni at the corresponding surface point pi.

These objectives yield a joint optimization of the surface and the
skeletal points under both position and orientation constraints. As
the optimization converges, the deep points are generated.

We provide an overview of our algorithm in Figure 3. Let us de-
note the input point cloud with C = {cj}j∈J ⊂ R3 (Figure 3(a)).
The point cloud can be unoriented and unevenly distributed, and
it may have large missing parts. We start by applying WLOP
consolidation [Huang et al. 2009] on C to yield a denoised, ori-
ented, and downsampled point set S = {si,ni}i∈I (Figure 3(b)).
Through replicating the consolidated input S and sinking these
replicated points down into the shape interior (Section 4.1), an ini-
tial meso-skeleton (Figure 3(c), left) is formed. We refer to points
on this initial meso-skeleton as anchor points and denote them by
H = {hi}i∈I .

With set S serving as the initial surface points (Figure 3(d), left)
and set H serving as the initial skeletal points, we optimize the set
〈S,H〉 (Figure 3(d) and (c), left to right) to form a valid deep points
representation that satisfies the three criteria introduced above. In
Section 4.2, we describe the optimization of the skeletal points into
a connected and topologically correct meso-skeleton of the surface.
The corresponding surface point consolidation is presented in Sec-
tion 4.3. We show a sequence of optimized point clouds in Fig-
ure 3(c) and (d), including both skeletal and surface point sets, to
demonstrate how this joint optimization converges to a valid state
of deep points 〈P,Q〉 as presented in Figure 3(e).

4 Joint Optimization on Dpoints

The joint optimization of dpoints consists of three stages: sink-
ing the consolidated points S (Figure 3(b)) to obtain a set of an-
chor points H (Figure 3(c), left), and then consolidating these an-
chor points H to form a meso-skeleton (Figure 3(c), left to right),
and finally consolidating a second copy of the surface points S to
complete the missing areas and refine the connection to the meso-
skeleton (Figure 3(d), left to right). At the end, a good dpoints
representation is obtained, which consists of a meso-skeleton with
proper topology, a complete and consolidated point set surface,
and an one-to-one mapping between the two, where the mapping



(dpoint) orientation agrees with the surface normal (Figure 3(e)).

4.1 Sinking Consolidated Points

Our algorithm to obtain an initial meso-skeleton is loosely inspired
by the grassfire transform for binary images. Intuitively, we set the
consolidated points “on fire”, causing the fire to burn from the sur-
face into the volume of the shape. When opposing fire fronts meet,
they stop propagating and form the initial meso-skeleton. We con-
sider points that have met an opposing front as “anchored”. A key
challenge in this step is that we work with point sets that may have
large missing parts, i.e., are not closed, which may lead to regions
that never meet an opposing front. We handle this problem by ex-
ploiting the dpoints representation, that is, the connection between
moving inner points and their corresponding surface points.

We initialize outer and inner points of each dpoint 〈pi, qi〉 by plac-
ing both at the corresponding consolidated point si. This gives us
dpoints of zero length, where the length means the distance between
the outer and inner point. To move inner points into the volume of
the shape and anchor them at proper locations, we apply an iterative
procedure. For each dpoint, we compute a static neighborhood Pi
on the surface points, and a dynamic neighborhoodQi on the inner
points, which we update at each iteration. We use the static neigh-
borhood to determine the amount of movement into the volume for
each inner point, and to maintain smoothness among neighboring
inner points. On the other hand, we use the dynamic neighborhoods
to determine whether opposing fronts meet and inner points settle.

In a preprocessing step, we first compute the average sparsity r of
the consolidated point set S. That is, r is the average distance to
the closest neighbor,

r =
1

|S|
∑
i∈I

min
i′∈I\{i}

‖si − si′‖, (1)

where operator ‖ · ‖ computes the Euclidean norm of a vector and
| · | measures the size of a set. We compute the static neighborhood
Pi = {pi′ | ‖pi′ − pi‖ < σpr} for each surface point pi where
the parameter σp defaults to 5, and denote its set index (the set of
indices belonging to Pi) by IPi .

Within each iteration, we compute the dynamic neighborhood
Qi = {qi′ | ‖qi′ − qi‖ < σqr} with the parameter σq = 2 by
default, and denote a set index IQi for each inner point qi. We use
this neighborhood to detect whether an inner point qi should settle.
We say opposing fronts meet within the dynamic neighborhood if

max
i′∈IQi

ni′ · ni ≤ cos(ω), (2)

where ni are the normals of surface points, which we obtained in
the initial consolidation step [Huang et al. 2009]. Intuitively, the
above condition means that an inner point stops sinking once it
meets other inner points with sufficiently different normals. The
criteria for being sufficiently different is based on the parameter ω.
It controls how deep the inner points sink and it defaults to 45o.

Next, we move each unsettled inner point by a small distance along
the direction opposite to its normal, i.e., qi = qi − tni. In the first
iteration, the moving distance t is set to r/2 for all unsettled inner
points. In the following iterations, we adaptively compute t for each
inner point qi. For each qi, we set t as the average moving distance
in the previous iteration of all inner points (settled and unsettled) in
its static neighborhood {qi′}i′∈IPi .

After the inner points advance to the new locations, we further ad-
just their positions to maintain the smoothness among neighboring

Figure 4: Generating anchor points by sinking consolidated (red)
points. Most inner points (blue) stop sinking as they get close to
other inner points with different normals, but some (green) need to
be stopped through bilateral smoothing. The dashed green curve
shows the neighborhood used for one inner point (hollow green)
during smoothing. This neighborhood is static and is determined
based on the corresponding surface point (hollow red).

inner points. We smooth inner point positions using a form of cross-
bilateral filtering, where the filter weights are determined based on
the surface points Pi in the static neighborhood of each inner point.
In particular, the weights measure the proximity and normal simi-
larity of neighboring surface points. This leads to the cross-bilateral
filter updates of inner point positions qi as:

qi =

∑
i′∈IPi

θ(pi, pi′)φ(ni,ni′)qi′∑
i′∈IPi

θ(pi, pi′)φ(ni,ni′)
,

with the bilateral weighting functions:

θ(p1, p2) = e
−
( ‖p1−p2‖

r

)2
, φ(n1,n2) = e

−
(

1−nT
1 n2

1−cos(ω)

)2

. (3)

Here the parameter r is computed in Eq (1) and the parameter ω is
the same one used in Eq (2).

It is worth noting the importance of using the static neighborhood
Pi over surface points, and the positions and normals of surface
points in this neighborhood, to compute the weights in Eq (3). As
shown in Figure 5(d), this strategy helps the inner points to maintain
their structure as they move into the volume. In addition, since both
settled and unsettled points are used for smoothing, an unsettled
point may stop traveling and be marked as settled after most of its
neighbors are settled. This feature is very important for handling
highly incomplete point clouds because there may be points that
will never run into other points as determined by Eq (2). They
hence would never stop traveling along their anti-normal directions;
see e.g., the green points in Figure 4.

4.2 Forming the Meso-Skeleton

Once all the inner points settle at the interior of the 3D shape, they
form a set of fixed anchor points H = {hi}i∈I . As shown in Fig-
ure 5(d), these anchor points do not necessarily form an intuitive
meso-skeleton consisting of connected curves and surfaces. In ad-
dition, due to the missing data, there are sparse areas where the
anchor points still leave gaps. We compute a point-based meso-
skeleton with topologically-correct connections by further consol-
idating the inner points. We formulate an optimization with two
objectives: first, to keep the inner points close to the L1-median
of their neighboring anchor points; second, to uniformly distribute
them along connected curves and surface sheets.



(a) Input (C). (b) WLOP (S). (c) Contraction of (b). (d) Anchor points (H). (e) Contraction of (d). (f) Meso-skeleton.

Figure 5: Given a highly incomplete raw scan (a) and its WLOP consolidated points (b), direct point contraction fails to provide a good set
of skeletal points (c). Sinking the inner points first until they settle into anchor points (d) and then applying contraction yields cleaner skeletal
curves (e), but does not form skeletal surface sheets. Using anisotropic repulsion, our approach generates the meso-skeleton (f) with mixed
curves and surface sheets in a uniform framework. The green ellipsoids in (f) show the anisotropic neighborhoods used in three areas.

The key issue in implementing both objectives is to determine a
proper anisotropic neighborhood for each inner point. In cylindri-
cal areas, we are aiming to obtain skeletal curves, hence neighbor-
hoods of long and thin prolate ellipsoid shapes are appropriate. For
plane-like areas, we want to generate skeletal surface sheets, and
flat neighborhoods of large oblate ellipsoid shapes would work best.
Finally, in areas near the endpoints of skeletal curves or at bound-
aries of skeletal surfaces, a small ellipsoid should be used to avoid
shrinkage of the skeletal curves or surfaces.

To automatically determine the appropriate elliptical neighborhood
at an inner point qi, we first apply PCA on inner points within qi’s
neighborhood Qi (as computed in Section 4.1). We use the three
principle axes {v1

i ,v
2
i ,v

3
i } as the local coordinates of the ellipsoid.

Instead of using the PCA eigenvalues to determine the semi-axis
lengths of the ellipsoid, however, we develop a different procedure
exploiting our dpoints representation. We will discuss the bene-
fits of this below. Let us denote the semi-axis lengths by scalars
{l1i , l2i , l3i }. We compute them by first projecting the normal di-
rections of all inner points within the neighborhood Qi to the cor-
responding principle axis and then computing the average normal
projection length. The larger the projection length, the shorter the
semi-axis length l is set to. To be precise, we set

lmi =

(∑
i′∈IQi

|nTi′vmi |
|Qi|

+ ε

)−1

, m = 1, 2, 3.

The constant parameter ε is small and set to 0.1 by default.

As shown in Figure 5(f) and illustrated in Figure 6, the ellipsoids
computed can automatically adapt to the local topology of the in-
ner points. In the center regions of the skeletal curves or skele-
tal surface sheets, where surface normals are perpendicular to the
dominant PCA directions, the normal projection length is small,
resulting in a large semi-axis length. This helps to connect gaps
on skeletal curves and close holes on skeletal surface sheets. On
the other hand, at the end points of skeletal curves and the bor-
ders of skeletal surface sheets, the normal projection length is large
even along the dominant PCA directions. Hence, a small semi-axis
length is used to avoid shrinkage in these areas, because the inner
points are constrained to smaller regions.

With the anisotropic neighborhood defined, we now formulate the
meso-skeleton as the result of an optimization that attempts, first, to

Figure 6: The anisotropic neighborhoods (dashed ovals) defined
for two inner points along their local PCA axes (orange arrows).
Even though the eigenvalues along the dominant PCA direction are
high in both cases, the normal projection lengths are different, re-
sulting in the green oval being much longer than the purple one.

keep the inner points close to the L1-median of their neighboring
anchor points, and second, to consolidate the inner points to form
regularly sampled, connected skeletal curves and surfaces. Hence,
the optimization is a sum of a data and a regularization term:

argmin
Q

∑
i∈I

∑
k∈I

ϑ(qi, hk)‖qi − hk‖+R(Q). (4)

The first term (data term) is the weighted L1-median, where the
weight function ϑ(qi, hk) = e−d

2
e(qi,hk)/r

2

is defined based on the
ellipsoid (Mahalanobis) distance between the neighboring anchor
point hk and the center point qi. This distance function returns the
same constant number for all points on the ellipsoid surface defined
at qi; and hence gives them equal weights. It is computed as

de(qi, hk) = ‖AT
i (qi − hk)‖,

where the 3 × 3 column matrix Ai = [v1
i /l

1
i ;v

2
i /l

2
i ;v

3
i /l

3
i ] con-

sists of the semi-axes of our elliptical neighborhoods; see green
ellipsoids in Figure 5(f) as an illustration.

Applying the L1-median term alone tends to yield a sparse but non-
regular point distribution; see Figure 5(e) where local L1-median



(a) meso-skeleton

(b) Repulsion force (c) Fitting with prior (d) normal update

Figure 7: Once the meso-skeleton (a) is formed, we consolidate the
surface points through alternatively optimizing surface point loca-
tions and updating their normals. The repulsion force introduced
by the regularization term pushes the point along the tangential (or-
ange line) direction (b), whereas the data fitting term with the shape
prior moves the point towards the local L1-median with adjustment
on the dpoint length (c). (d) Once the optimal location is found, the
normal direction is updated based on dpoint orientation (orange
arrow) and PCA normal (green arrow).

centers are accumulated in clusters. We avoid clustering using the
regularization term R(Q), which represents additional repulsion
forces. Our approach is derived from previous ones [Lipman et al.
2007; Huang et al. 2009], but with important differences. The key
idea is that to allow the inner points to form thin skeletal curves or
surfaces, we cannot repulse points along the directions that are per-
pendicular to the skeletal curves or surfaces. Hence, we use our el-
liptical neighborhoods to define novel anisotropic repulsion forces.
The regularization term is a sum of these forces at each inner point
qi, summed over all inner points i ∈ I with {λi},

R(Q) =
∑
i∈I

λi
∑

i′∈I\{i}

ϑ(qi, qi′)

‖de(qi, qi′)‖3
. (5)

Intuitively, the repulsion force between an inner point qi ∈ Q and a
neighbor q′i, i

′ ∈ I \ {i} is given by the projection of the neighbor
into the local coordinates of the ellipsoid {v1

i ,v
2
i ,v

3
i }, and apply-

ing stronger repulsion along the direction where the semi-length of
the ellipsoid is longer. The balancing weight λi is determined by a
regularization parameter µ that we define next in this subsection.

It is also worth noting that our anisotropic regularization is different
from that of the L1-medial skeleton [Huang et al. 2013b]. There the
conditional regularization stops to push points whenever the skele-
tal points are forming a curve structure. Under the same situation,
our anisotropic repulsion still pushes points along the curve direc-
tion, allowing them to connect broken skeletal curves and to obtain
a more uniform point distribution. This not only removes the need
of finding bridge points to connect broken curves, but also han-
dles different topologies (curves and surface sheets) under a uni-
form framework.

When the gradient of the energy in Eq (4) equals to zero, the fol-

lowing relation is satisfied at each qi with fixed coefficients:∑
i′∈I\{i}

αii′(qi − qi′)− λi
∑

i′∈I\{i}

βii′A
T
i Ai(qi − qi′) = 0,

where αii′ =
ϑ(qi,qi′ )
‖qi−qi′‖

and βii′ =
ϑ(qi,qi′ )

‖de(qi,qi′ )‖5
.

Applying a fixed point iteration, we update inner points by

qi =

∑
i′∈I\{i} αii′qi′∑
i′∈I\{i} αii′

+ µ‖`i‖2
∑
i′∈I\{i} βii′A

T
i Ai(qi − qi′)∑

i′∈I\{i} βii′
.

Here we have µ‖`i‖2 = λi
∑
i′∈I\{i} βii′/

∑
i′∈I\{i} αii′ and the

column vector `i = [l1i ; l
2
i ; l

3
i ]. We empirically set the regulariza-

tion parameter µ = 0.4 by default to control the global level of
anisotropic penalty applied on accumulated points.

4.3 Surface Point Consolidation

As shown in Figure 5, after the second stage, the inner points form
a complete meso-skeleton (2D sheets & 1D curves) with a regular
point distribution. The meso-skeleton now provides the non-local
information that can guide surface point consolidation to complete
large missing areas. In practice, the location of each pi is adjusted
through optimization based on the following objectives: i) pi re-
sides on the underlying surface and hence shall be close to the L1-
median of nearby input points; ii) the points {pi} shall be regu-
larly distributed on the underlying surface; and iii) in incompletely
scanned areas where input points are missing, additional shape pri-
ors are needed to guide surface completion. See also Figure 7.

Based on the above objectives, we define the optimization function
for surface points as the sum of three terms: a L1-median data term,
a regularization term R̂, and a shape prior term G:

argmin
P

∑
i∈I

η(pi)
∑
cj∈Ci

θ(pi, cj)‖pi − cj‖+ R̂(P ) +G(P ). (6)

The θ function in the data term is the same as the one defined in
Eq (3), and Ci = {cj | ‖cj − pi‖ < σpr} is a subset of input points
in pi’s neighborhood. The data term is weighted using a function
η(pi) = 1 +

∑
cj∈Ci θ(cj , pi), which outputs high weight when

the density of the input points in Ci is high. Hence, when there are
sufficient data in the neighborhood of pi, the data term has higher
weight to ensure the position of pi fits the data.

The second regularization term applies repulsion forces introduced
from all neighboring surface points. To avoid points being pushed
away from the surface, here the repulsion is performed along the
local tangent plane at pi. That is:

R̂(P ) =
∑
i∈I

∑
i′∈I\{i}

θ(pi, pi′)

‖BT
i (pi − pi′)‖3

, (7)

where the 3 × 2 projection column matrix Bi = [u1
i ;u

2
i ], with

{u1
i ,u

2
i } being two arbitrary orthogonal directions on pi’s tangen-

tial plane, ensures R̂(pi) only introduces repulsion forces perpen-
dicular to the surface normal ni.

When the point set surface in the neighborhood of pi is complete,
repulsion forces from all directions maintain the regularity of the
point distribution. Otherwise, if pi is near the open boundary of
missing areas, its neighboring points will push it towards the hole,
allowing small gaps on the surface being naturally filled. However,
when the scan contains large missing areas, e.g., the object is only



scanned from one side as in Figure 11(a), additional shape priors
are needed to further guide the completion.

A big benefit introduced by the dpoints representation is the notion
of volume, i.e., the length of a given dpoint ‖pi−qi‖ indicates how
far the surface is away from the local meso-skeleton at location
pi. This allows us to incorporate different types of shape priors
with ease. For example, under the assumption that surface points
in areas with missing data shall preserve a similar volume as their
neighbors, we can define a volume preserving shape prior term as:

G(P ) =
1

2

∑
i∈I

γ(pi)(‖pi − qi‖ − L(pi))2, (8)

where L(pi) =

∑
i′∈IP

i
θ(pi,pi′ )‖pi′−qi′‖∑

i′∈IP
i
θ(pi,pi′ )

computes the average

dpoint length within pi’s neighborhood, and the weight function
γ(pi) = (1 + var({‖pi′ − qi′‖}i′∈IPi ))−1 assigns high weight
when the dpoint length variance within the neighborhood is low.

In other cases, we may want to minimize the volume of the recon-
structed shape. To achieve this, we can define a minimal volume
shape prior term as:

G(P ) =
1

2

∑
i∈I

γ(pi)(L(pi))
2. (9)

Similarly as solving Eq (4), we can solve Eq (6) and update surface
points by applying a fixed point iteration. For example, when the
volume preserving shape prior from Eq (8) is used, the optimization
can be solved by:

pi =
η(pi)

∑
cj∈Ci αijcj

γ(pi) + η(pi)
∑
cj∈Ci αij

+
γ(pi)(qi + L(pi)mi)

γ(pi) + η(pi)
∑
cj∈Ci αij

+ µ̂

∑
i′∈I\{i} β̂ii′B

T
i Bi(pi − pi′)∑

i′∈I\{i} β̂ii′
,

with weights αij =
θ(pi,cj)

‖pi−cj‖
and β̂ii′ =

θ(pi,pi′ )

‖BT
i (pi−pi′ )‖5

. The pa-

rameter µ̂ =
∑
i′∈I\{i} β̂ii′/(γ(pi)+η(pi)

∑
cj∈Ci αij) that con-

trols the tangential repulsion forces defaults to 0.4.

Once the location of surface point pi is adjusted, its correspond-
ing surface normal ni is updated. Using a similar idea as above,
when dense input data is available in the local neighborhood, higher
weight is given to the conventional oriented PCA normal ñi; other-
wise, we set ni closer to the dpoint orientation mi:

ni =
(η(pi)− 1)ñi +mi

‖(η(pi)− 1)ñi +mi‖
.

Alternatively optimizing the locations of surface points and updat-
ing their normals allows these surface points to redistribute along
the underlying surface, converging to a regular distribution with
missing areas completed. In addition, since the normal calculation
considers the dpoint orientation mi, the two orientations generally
agree with each other in the final dpoints representation.

5 Results

We test our deep point consolidation technique on various incom-
plete scans of both physical and virtual objects. The input data in
Figures 1, 5, 9, 10, 12, 14 and 15 was acquired using a laser scan-
ner, the ones in Figure 13(a) were downloaded from the SHREC
2015 dataset [NIST 2015], and those used in Figure 11 are digital
scans of a synthetic model.

Figure 8: The initial consolidated points contain large missing ar-
eas (left). The surface consolidation process gradually closes the
gaps (middle) and finally converges to a set of complete surface
points (right). The color of surface points encodes the density of
local input points.

Table 1: Timing for dpoints computation on all examples presented.
|C| and |S| denote numbers of raw input points and deep points,
respectively. Tw and Td are the time (in sec.) needed for the initial
WLOP consolidation and then dpoints consolidation, respectively.

|C| |S| Tw Td
Fig. 1 84772 2143 3.1 26.3
Fig. 5 & 8 58710 6870 4.8 41.2
Fig. 9 22148 5234 2.7 30.5
Fig. 10 T 43545 3996 4.1 83.9
Fig. 10 B 78630 6727 8.4 87.3
Fig. 12 T 24292 13812 3.2 112.9
Fig. 12 B 32614 7252 5.5 61.5
Fig. 13 T 40509 40509 10.5 259.6
Fig. 13 B 67131 67131 18.9 408.8
Fig. 14 T 175312 19721 17.8 197.3
Fig. 14 B 300283 57791 47.3 449.9
Fig. 15 T 292910 32142 30.3 355.3
Fig. 15 B 483583 47083 134.9 723.7

Parameters and timing. On average, the initial WLOP consol-
idation needs 30-40 iterations to converge, whereas the iterations
needed for generating deep points (consisting of sinking WLOP
points into anchor points, forming meso-skeleton, and consolidat-
ing the surface) vary from 60 to 120 depending on how large the
missing data regions are. Table 1 presents computation time on an
Intel(R) Core(TM) i7-5930K CPU@3.5GHz with 32GB RAM.

There are two key controllable parameters in our approach: the
point settling threshold ω and the neighborhood size parameter σp
used for both sinking and surface point consolidation. All other pa-
rameters {σq, µ, µ̂, ε} are not sensitive to the inputs, and are fixed
at the aforementioned default values for all experiments.

Figure 9 illustrates the impact of ω on the results. Generally speak-
ing, since the inner points settle sooner under smaller ω, the meso-
skeleton follows the surface details more closely but is also more
sensitive to noise. With larger ω, the inner points often travel deeper
before they settle. When they cannot meet the opposing front due to
missing data, the final skeleton may deviate from the proper medial
position, causing the final consolidated shape having a bigger vol-
ume. In addition, some small branches may not be represented in
the meso-skeleton as well. Figure 10 illustrates that larger σp value
often leads to more uniform surface point distribution and makes
the representation more robust against input noise and large miss-
ing parts. However, on the other hand, the consolidated surface may
not represent the surface details as well.



(a) WLOP. (b) Anchor points (ω = 25o). (c) Meso-skeleton from (b). (d) Consolidation using (c). (e) Anchor points (ω = 45o).

(f) Meso-skeleton from (e). (g) Consolidation using (f). (h) Anchor points (ω = 90o). (i) Meso-skeleton from (h). (j) Consolidation using (i).

Figure 9: The impact of the parameter ω. With a small ω value (b-d), the inner points settle as anchor points sooner (b), the meso-skeleton (c)
consists of many 2D sheet structures and a small number of isolated points (orange box), and the final surface point set (d) follows the input
data reasonably well. In contrast, under a large ω value (h-j), the inner points have to sink deeper before they settle (h), the meso-skeleton (i)
consists of mostly 1D skeletal curves and may miss fine branches (green box in f). In addition, when a large part of a cylindrical surface is
missing, the location of the skeletal curve may drift away from the center (yellow box in i), causing the consolidated surface points (j) having
a much thinker cylinder and small holes on the model being improperly filled (yellow box in j).

Comparison to skeletonization and reconstruction. Figure 8
shows how the consolidation process gradually closes missing ar-
eas by adjusting the location of surface points. The benefit of hav-
ing consolidated surface points is shown in Figures 2, 12, 13, and
14, where the models reconstructed from these points are notice-
ably more faithful to the original shape than the ones generated
directly from the input or leveraging previous skeletonization tech-
niques [Tagliasacchi et al. 2009; Huang et al. 2013b]. In particu-
lar, through pushing surface points in an anisotropic manner, our
reconstruction results better preserve the connectivity of different
parts (Figures 2, 12 and 14 (bottom)), while avoiding improperly
fusing them together (Figure 13). The notion of local volume of
dpoints also allows the reconstruction to better preserve thin struc-
tures (Figure 14 (top)). Furthermore, Figures 11 and 12 show that
our approach can infer reasonable geometries when the objects are
scanned from one side only. In comparison, existing approaches
such as [Tagliasacchi et al. 2011] would fail in these cases as the
thickness of the objects cannot be estimated.

In terms of the meso-skeleton generated, Figure 12 shows that our
inner skeleton can better respect the topology of the input shape
than existing skeletonization approaches [Tagliasacchi et al. 2009;
Huang et al. 2013b]. Unlike the existing approaches, which produce
skeletal curves regardless surface topology, the meso-skeletons that
we generated for non-tubular shapes nicely form 2D skeletal sur-
face sheets; see, e.g., the flat surfaces in Figures 12 and 15, the
cylindrical and disk shapes in Figure 14.

Reconstruction accuracy. To quantitatively evaluate the recon-
struction accuracy, digital virtual scans of a synthetic model are

used. With the input model serving as the ground truth, the re-
construction error is measured using the average distance between
all 40K vertices on the input model and their closest points on the
reconstructed surface. As shown in Figure 11(a), the models recon-
structed using dpoints are more favorable than the one reconstructed
from input points directly. Also, as expected, the improvement is
more pronounced for incomplete scans (i.e., one or two scans are
used) than complete scans. Note that since the virtual scan is noise
free, employing consolidation methods such as WLOP, would not
improve the direct Poisson reconstruction.

Figure 11(b) further evaluates the reconstruction accuracy over
noise corrupted scans. Here, Gaussian noise with 2% magnitude
of the model dimension is added to the scan data. The accuracy
of Poisson reconstruction over WLOP consolidation results and
dpoints consolidation are plotted. The comparison again demon-
strates the benefits of using our dpoints consolidation.

Sharp features and fine details. Since the dpoints representa-
tion is computed based on a small set of WLOP points downsam-
pled from the input, it cannot fully preserve fine geometry details
and sharp features on the original model; compare e.g., examples in
Figures 15(b) and (d). Nevertheless, additional post-processing can
be applied to reconstruct these sharp features and high-frequency
details from the input. Here, the edge-aware point resampling tech-
nique (EAR) [Huang et al. 2013a] is applied to upsample the surface
points and then project the new samples that are close to the input
data to the underlying surface using bilateral projection. This can
effectively recover small geometry details; compare Figures 15(d)
and (f) bottom. Furthermore, we can run bilateral normal smooth-



(a) Photo. (b) Raw scan. (c) Meso-skeleton. (d) Dpoints with σp = 5. (e) Dpoints with σp = 3.

(f) Photo. (g) Raw scan. (h) Meso-skeleton. (i) Dpoints with σp = 5. (j) Dpoints with σp = 8.

Figure 10: The impact of the neighborhood size parameter σp. For shapes with complex topology, our approach generates proper meso-
skeletons (c) and (h). In (d) under the default value σp = 5, the partially scanned foot (green box) is noticeable thicker than the original
model shown in (a). Lowering the value of σp in (e) makes the foot area closer to the original model, but the surface points on the body (pink
box) are not as evenly distributed. In (i) due to noise in the raw scan (g), some surface points (pink box) deviate away from the underlining
surface under the default value. Increasing the value of σp in (j) makes the point set surface more robust against input noise, but does not
represent the surface details well (green box).

(a) 1 scan. (b) Poisson of (a). (c) Dpoints of (a). (d) Poisson of (c).
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(e) Under clean scans.
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(f) Under noise-corrupted scans.

Figure 11: Quantitative evaluation on reconstruction accuracy using virtual scans of a ground truth synthetic model. When a single scan
(a) is used, the direct Poisson reconstruction result (inset in (b)) does not resemble the model (shown in (b)). In comparison, the Poisson
reconstructed model (inset in (d)) based on dpoints (c) is visually much more accurate. The reconstruction errors, measured using the
distances between vertices on the ground truth model and their closest points on the reconstructed surface, are visualized in (b) and (d). The
error distributions under clean and noise-corrupted scans are plotted in (e) and (f), respectively.

ing to adjust the normals of surface points so that sharp features
can be better preserved on the consolidated surface; compare Fig-
ures 15(d) and (f) top. In Figure 16 we show that our approach
successfully reconstructs a shape with geometric features at differ-
ent scales. While this leads to a disconnected meso-skeleton, as
shown in blue in Figure 16(b), we can still reconstruct the small
scale detail (pink box) as well as the large scale shape.

Shape priors. When the input scans contain open boundaries,
e.g., the base of the models in Figures 9 and 10, our approach
with the volume preserving shape prior (8) tries to close it through
pushing surface points around the meso-skeleton and maintaining
dpoints length ‖pi − qi‖ to be similar to its neighbors. While such
a strategy minimizes local volume variation, the reconstructed sur-
face tends to have a “blobby” shape and may not accurately rep-
resent the real geometry of the missing surface, which is often flat
and connects known surface through edges with C1 discontinuities.



(a) Input + Poisson. (b) ROSA + Poisson. (c) L1-medial + Poisson. (d) Deep points + Poisson.

Figure 12: A comparison among the Poisson surface reconstructions [Kazhdan and Hoppe 2013] obtained using input points directly (a),
ROSA skeleton [Tagliasacchi et al. 2009] (b), L1-medial skeleton [Huang et al. 2013b] (c), and our dpoints consolidation (d).

(a) Input scan. (b) Poisson of (a). (c) Skeletal points. (d) Surface points. (e) Poisson of (d).

Figure 13: Results on standard benchmark 3D scans (a), which are downloaded from the SHREC 2015 dataset [NIST 2015]. The direct
Poisson reconstruction results (b) incorrectly fused multiple parts together. Using the consolidated dpoints (c & d), the thin and adjacent
structures are better preserved.

To address this problem, different shape priors shall be applied. For
example, the minimal volume shape prior in Eq (9) described in
Section 4.3 tries to close the surface so that the total volume of the
shape is minimized. The dpoints representations generated using
these two shape priors are compared in Figure 17, which demon-
strates the difference between the consolidated point set surfaces,
as well as the flexibility of our surface completion framework.

Limitations. In an effort to design a simple and elegant algo-
rithm, our approach handles all operations through local point pro-
jections. No global smoothness is enforced for either points on the
meso-skeleton or the consolidated surface points. Consequently,
as shown in Figures 5 and 8, although our approach successfully
connects the arms around the top of the model, the skeletal curve
and the reconstructed point set surface do not appear to be smooth
enough. Additional post-processing may therefore be needed.

Our method fails if the initial WLOP consolidation or the initial



(a) Photo. (b) Initial WLOP. (c) Dpoints. (d) Poisson of (b). (e) Poisson of (c).

Figure 14: Handling objects (a) with complicated thin and non-tubular structures. Directly applying Poisson reconstruction over WLOP
(b) failed to provide satisfying results (d). Our reconstruction results (e) based on dpoints consolidation (c) better preserve the thin and
non-tubular structures while maintaining the correct connectivity of different parts.

(a) Photo. (b) Input scan. (c) Dpoints. (d) Poisson of (c). (e) EAR of (c). (f) Poisson of (e).

Figure 15: Post-processing for reconstructing fine geometry details and sharp features. While due to downsampling, the Poisson reconstruc-
tion results (d) on dpoints (c) cannot preserve fine details and sharp features as well as on the original shapes (a, b), the post EAR [Huang
et al. 2013a] step (e) effectively helps to recover them (f) through inserting and projecting additional dpoints.



(a) Input scan. (b) Dpoints. (c) Poisson of (c).

Figure 16: The dpoints representation preserves different scales of
detail. While the meso-skeleton is disconnected, shown in blue in
(b), the Poisson reconstruction in (c) captures both the large scale
spherical shape as well as the small scale bumps.

Figure 17: Dpoints representations under different shape priors.
When there are C1 discontinuities between known and missing sur-
faces, using the volume preserving shape prior (left) results in
“blobby” shapes. The minimal volume shape prior can be applied
to alleviate this problem (right).

sinking stage fails. This may happen generally if either the data
has too large missing parts, or the input contains very strong noise;
see e.g., stress test results shown in supplementary materials. Our
method always generates closed watertight point sets while preserv-
ing holes as shown in Figure 14 (top). On the other hand, we might
mistakenly preserve holes due to large missing areas as boxed in
Figure 15 (bottom). We believe that more accurately detecting and
closing holes is a separate problem that would require stronger pri-
ors or user involvement.

6 Conclusions and future work

We present a novel representation for point sets, which facilitates
the consolidation of noisy points and the completion of missing re-
gions. The strength of the deep points representation comes from
the fact that it is comprised of both local and non-local geomet-
ric information. For example, the dpoint orientations are used to
adaptively determine the anisotropic neighborhoods when generat-
ing meso-skeletons and the dpoint lengths are used to control the
local volume of the shape when consolidating surface points.

Deep points encode a consolidated point set surface and its meso-
skeleton, and the mapping relations between the two in a highly

concise representation. We believe that the non-local information
that deep points carry is powerful for many applications. This is
evident by the competence of skeletons and medial axis structures.
In the future, we would like to explore the potential of using deep
points representation for applications such as retrieval of point-
based geometries and deformation of point set surfaces.
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