
Distributed Rendering for Multiview Parallax Displays

Annen T.a, Matusik W.b, Pfister H.b, Seidel H-P.a, Zwicker M.c

aMPI, Saarbrücken, Germany
bMERL, Cambridge, MA, USA
cMIT, Cambridge, MA, USA

ABSTRACT

3D display technology holds great promise for the future of television, virtual reality, entertainment, and visual-
ization. Multiview parallax displays deliver stereoscopic views without glasses to arbitrary positions within the
viewing zone. These systems must include a high-performance and scalable 3D rendering subsystem in order
to generate multiple views at real-time frame rates. This paper describes a distributed rendering system for
large-scale multiview parallax displays built with a network of PCs, commodity graphics accelerators, multiple
projectors, and multiview screens. The main challenge is to render various perspective views of the scene and
assign rendering tasks effectively. In this paper we investigate two different approaches: Optical multiplexing for
lenticular screens and software multiplexing for parallax-barrier displays. We describe the construction of large-
scale multi-projector 3D display systems using lenticular and parallax-barrier technology. We have developed
different distributed rendering algorithms using the Chromium stream-processing framework and evaluate the
trade-offs and performance bottlenecks. Our results show that Chromium is well suited for interactive rendering
on multiview parallax displays.

Keywords: Multiview Parallax Displays, Distributed Rendering, Software/Optical Multiplexing, Automatic
Calibration

1. INTRODUCTION

For more than a century, the display of true three-dimensional images has inspired the imagination and ingenu-
ity of engineers and inventors. Ideally, such 3D displays provide stereopsis (i.e., binocular perception of depth),
kineopsis (i.e., depth perception from motion parallax), and accommodation (i.e., depth perception through fo-
cusing). 3D displays that provide all of these depth cues are called multiview autostereoscopic or automultiscopic
displays.1 They allow uninhibited viewing (i.e., without glasses) of high-resolution stereoscopic images from
arbitrary positions. Modern automultiscopic displays use either holographic, volumetric, or parallax technology.

Holographic displays record the complex amplitude (including phase) of optical wave fronts scattered off a
three dimensional object. Consequently, the data rates of these displays are very large, and the display size
is typically much smaller than average. Volumetric displays use rotating surfaces, transparent cubes of light-
absorbing material, or stacked LCDs to isotropically emit light at points in 3D. These displays are typically
not able to provide opacity, making the displayed images translucent, and none of them are able to reproduce
view-dependent effects, such as reflections or specularity.

Multiview parallax displays are either based on parallax- barriers, lenticular sheets, or integral lens sheets. A
parallax-barrier – introduced by Wheatstone in 1838 – is a raster-barrier placed in front of an image that blocks
visibility of some parts of the image from each viewing angle. Lenticular or integral lens sheets consist of many
micro-lenses which direct light from the image to different areas in the viewing zone. Lenticules are cylindrical
lenses and provide only horizontal parallax, whereas integral lenses provide both horizontal and vertical parallax.

Further author information: (Send correspondence to Annen T.)
Annen T.: E-mail: tannen@mpi-inf.mpg.de, Telephone: +49 (0)681 9325 426
Matusik W.: E-mail: matusik@merl.com, Telephone: +1 617 621 7500
Pfister H.: E-mail: pfister@merl.com, Telephone: +1 617 621 7566
Seidel H-P.: E-mail: hpseidel@mpi-sb.mpg.de, Telephone: +49 (0)681 9325 400
Zwicker M.: E-mail: matthias@csail.mit.edu, Telephone: +1 617 452 2124

Multiview parallax displays offer many advantages that have lead to their dominance among recently intro-
duced commercial 3D displays. They are automultiscopic without need for glasses or head-tracking technology.
They can be manufactured easily by placing parallax-barriers or lens sheets in front of LCD and plasma panels
without requiring prohibitive precision or cost. Because they are based on standard 2D display technology, they
immediately benefit from economics of scale and future improvements in display resolution and quality. Multi-
view parallax displays are also capable of showing high-resolution 2D images, which is important for backwards
compatibility and the display of text.

Multiview parallax displays project multiple views into the viewing zone. Current commercial flat-screen 3D
displays are able to display up to nine perspective views,2, 3 whereas multi-projector 3D displays project 16
or more views.4 This leads to a many-fold increase in image bandwidth. It also makes the design of the 3D
rendering subsystem challenging, because multiview parallax displays must support interactive and immersive
applications for entertainment (games), visualization, and virtual reality.

In this paper we present distributed rendering approaches for multiview parallax displays using multiple
commodity graphics accelerator cards in PCs connected by a network. Our parallel rendering system is capable
of driving multiview parallax displays with scalable rendering performance and resolution. We make the following
contributions:

Large-scale parallax-barrier display: We built several large (72′′×48′′) rear- and front-projection multiview
parallax displays with 16 independent perspective views. We present background and a classification of
projection-based parallax displays and a novel rear-projection parallax-barrier display prototype.

Automatic calibration for parallax-barrier displays: We present a novel, fully automatic camera based
calibration procedure for parallax-barrier displays.

Evaluation of distributed rendering strategies: We describe various distributed rendering approaches for
multiview parallax displays and evaluate their trade-offs and performance bottlenecks.

Chromium-based implementation: To make our rendering techniques widely available, we have implemented
them non-invasively using Chromium.5 Our methods can be applied to existing applications, such as Quake
III, without modification or re-compilation.

Practical demonstration: We present results of interactive OpenGL applications running on our systems and
describe the user experiences and avenues for future work.

2. PREVIOUS WORK

2.1. Multi-Projector 3D Displays

The literature on 3D display technology consists of thousands of publications and patents, see6, 7 for excellent
overviews. Multiview parallax displays require an underlying display resolution that is the product of the
resolution of each view and the number of views. To meet this substantial challenge for maximum HDTV output
resolution with 16 distinct horizontal views requires 1920 × 1080 × 16 or more than 33 million pixels, which is
well beyond most current display technologies.

Fortunately, multi-projector display systems offer very high resolution, flexibility, excellent cost-performance,
scalability, and large-area images.8, 9 The use projector arrays for 3D displays goes back to the beginning of
last century.10 More recently, Liao et al.11 use a 3× 3 projector array to produce an integral display with three
views of horizontal and vertical parallax and an output resolution of 240 × 180 pixels.

The design of our multi-projector 3D displays was influenced by the 3D TV system of Matusik and Pfister.4

We implemented their front- and rear-projection lenticular display with a linear array of 16 projectors. In
addition, we also implemented a novel rear-projection parallax-barrier display using a 4 × 4 array of projectors
(see Section 5). Our 3D displays have a display area of 72′′ × 48′′ and project 16 different perspective views at
1024 × 768 resolution into the viewing area. The large physical dimension of our displays lead to a very natural
and immersive 3D experience.

Retro-Reflector

Lenticular Sheet
or Parallax Barrier

Projectors

Viewer

Servers

Camera

Gigabit
Ethernet
Network

Client

Figure 1. Our distributed rendering and display system.

Precise manual alignment of the projector array is tedious and becomes downright impossible for more
than a handful of projectors. Similar to previous work4, 8, 11, 12 we use a static camera for automatic geometric
alignment of the projected images. We present a novel, fully-automatic geometric calibration method for the
precise alignment of parallax-barrier displays in Section 5.

Of particular importance in multi-projector displays is to correct for the inherent differences in color and
intensities between projectors.13–15 We use the method by Majumder and Stevens16 to correct photometric non-
uniformities in our systems. We do not address the important issues of optical distortions17 or interperspective
aliasing18 in multiview parallax displays.

2.2. Cluster Graphics

Graphics rendering19 and rendering for tiled displays20 can be efficiently parallelized on clusters of PCs. Many
techniques require modifications of application source code, which is often not available. Instead, we prefer
non-invasive techniques for manipulating existing graphics applications. We use Chromium,5 a modern stream
processing API for clusters of PCs. Chromium’s stream processing units (SPUs) are able to modify or replace
any of the graphics API calls made by the application. In addition, many useful SPUs are available that can be
adapted for our needs. We will discuss the details of our rendering approaches for multiview parallax displays
in Section 6.

Opticality (formerly known as X3D Corp.), a commercial provider of 3D display technology, sells OpenGL
Enhancer for non-invasive adaption of existing OpenGL applications for their multiview parallax displays. How-
ever, the tool does not support distributed rendering, and no publications with further details are available.
Our proposed solutions are distributed, scalable, and provide interactive rendering rates for high-resolution 3D
displays with 16 or more views.

3. SYSTEM OVERVIEW

Figure 1 shows a schematic representation of our overall system. One client PC and n server PCs with fast
graphics accelerator cards are connected by a gigabit ethernet network. The server PCs are connected to projec-
tors (we use one projector per server) that display the appropriate views on the multiview parallax display. The
figure shows a front-projection setup, although we also implemented rear-projection 3D displays (see Section 4).
One of the servers is connected to a camera placed in the viewing area for automatic display calibration. After a
general description of multiview parallax displays we describe the implementation of our 3D display prototypes
in Section 5. In Section 6 we investigate the issues in constructing a high-performance rendering system driving
those 3D displays. In Section 7 we present results from experiments using our distributed rendering approaches.

Left Right

Parallax
Barrier

Screen

(a) Parallax-barrier displays

Lenticules

Left Right

Screen

(b) Lenticular displays

Figure 2. Multiview 3D displays with horizontal parallax using parralax-barriers 2(a) or lenticular sheets 2(b).

4. MULTIVIEW PARALLAX DISPLAYS

Multiview parallax displays rely either on parallax-barriers or lenticular sheets to multiplex several views into
the viewing zone as illustrated in Figure 2. A parallax-barrier is a mask of parallel opaque stripes that reveals
different parts of the underlying image depending on the viewing direction. The same effect can be achieved
with lenticular sheets, which are linear arrays of narrow cylindrical lenses. Both techniques are used to show a
single view from each position in the viewing zone. Hence, a viewer experiences parallax motion and binocular
stereo without the use of special glasses. Different arrangements of lenticular sheets and parallax-barriers in
multi-projector systems can be found in.6 To project k views at m× n resolution requires an underlying image
with km × n pixels. We will refer to pixels of the underlying image as sub-pixels to distinguish them from
the view-dependent multiview pixels, which comprise all corresponding sub-pixels visible through an individual
parallax- barrier slit or cylindrical lense. Vertical slits or lenses result in a k-fold loss in horizontal resolution.
Slanting the slits or lenses at a small angle1 balances the loss of resolution in both directions. Parallax-barriers
and lenticular sheets provide only horizontal parallax. Horizontal and vertical parallax is obtained using arrays
of spherical lenses, or integral lens sheets. However, integral displays sacrifice significant spatial resolution in
both dimensions to gain full parallax.

Important parameters of lenticular sheets and parallax-barriers are the number of lenticules (slits) per inch
and the field-of-view (in degrees) of the viewing zone. While parallax-barriers reduce some of the brightness
and sharpness of the image, lenticular sheets suffer from increased blurriness due to light diffusion inside the
transparent sheet substrate. All multiview parallax displays suffer from crosstalk between neighboring images.

5. 3D DISPLAY PROTOTYPES

We implemented both a front-projection and a rear-projection 3D display prototype as illustrated in Figure 3(c
and d). The front-projection system (Figure 3(a)) uses a lenticular sheet and a retro-reflective screen. The lentic-
ular sheet both optically multiplexes and de-multiplexes the light. In the rear-projection system in Figure 3(b),
each projector covers only a quadrilateral tile of the display surface. Tiling the display with an array of projectors
allows us to display a very high-resolution image onto the diffuser. In contrast to the front projection system,
the image tile of each projector does not only contain a single view, but multiplexes parts of all views. On the
viewer side, we use a a lenticular sheet or a parallax-barrier to de-multiplex the light. Note that, in both cases,
equivalent systems can be built using either parallax- barriers or lenticular screens. We call the view multiplexing
in systems in Figure 3(a) optical multiplexing and refer to the view multiplexing for the rear-projection system in
Figure 3(b) as software multiplexing. This distinction will be important when we discuss distributed rendering
algorithms in Section 6.

Figure 3(c and d) show our prototype displays. We use 16 NEC LT-170 projectors with 1024 × 768 native
output resolution. The front-projection lenticular display with optical multiplexing (Figure 3(c)) uses 72′′ × 48′′

lenticular sheets with 30 degrees field of view and 180/30 = 6 viewing zones. The 16 projectors are arranged
in a linear array. We tried to match the horizontal separations between cameras and projectors approximately,
which required mounting the projectors in separate rows. For a more detailed description of identical 3D display
systems see Matusik and Pfister.4

 Front-Projection System
Optical Multiplexing

Retro-Reflector

Lenticular Sheet

Projectors

(a)

Diffuser

Projectors

Viewer

 Rear-Projection System
Software Multiplexing

Parallax-Barrier

(b) (c) (d)

Figure 3. Rear-projection and front-projection multiview parallax displays setups are shown in 3(a) and 3(b). Equivalent
systems can be built using parallax-barriers instead of lenticular sheets. 3(c) shows our front-projection lenticular dis-
play implementation with optical multiplexing and 3(d) shows our rear-projection parallax-barrier display with software
multiplexing.

The rear-projection parallax-barrier display with software multiplexing (Figure 3(d)) is our latest system
that has not been previously published. The projectors are arranged in a 4 × 4 array and project an image
with 4096 × 3072 resolution onto a diffusing rear-projection screen. Instead of a lenticular sheet we produced a
custom-made 72′′ × 48′′ parallax- barrier. We use a computer-guided laser to cut the parallax-barrier slits into a
sheet of black Mylar polyester film. The Mylar sheet is glued to a sheet of glass that is mounted about 10 mm
in front of the rear-projection screen. The slits are 1 pixel wide and spaced 16 pixels apart to project 16 views
into the viewing area.

We have developed a novel procedure to automatically calibrate the position of the parallax-barrier with
respect to the underlying rear-projection image. We place a highresolution (3K × 2K) digital camera facing the
center of the screen in the viewing area approximately 3 meters away from the screen. Our procedure has three
steps: first, we compute homographies to register all projector images in a common coordinate system; second,
we determine pixels in all projector images that are visible from one view-point; third, we compute pixels for
other views using interpolation. We start by displaying a checkerboard images on each projector and taking
corresponding images. We fit both horizontal and vertical lines to each of the observed checkerboard images as
shown in Figure 4(a). Next, we compute intersection of each horizontal line with each vertical analytically. This
gives us 48 coordinates of checker corners in each of the camera images. We can find the mapping of points on
the display to camera pixels. This is expressed by a 3 × 3 homography matrix. In the next step, we project a
white image on each projector and capture a single image with the camera. This creates a continuous bright
surface to the human eye. However, the resolution of our camera is sufficiently high to detect the slits in the
parallax-barrier. The captured camera image has high intensities in the slit areas and it has low intensities in
the other areas of the parallax-barrier. First, we apply a Laplacian edge detector to the observed image, and
we threshold the result. This operation produces pixels that belong to the slits. Next, we perform a flood-fill
operation to group the pixels corresponding to each slit. Once we have all pixels that belong to the same slit
grouped together, we use a linear regression to compute an analytical line equation for the slit. We show a
closeup of the captured image and the superimposed analytically computed slits (shown in red) in Figure 4(b).
The homographies allow us to transform the slit lines from camera space to the image space of each projector.
In our setup, the slit lines in the projector images are roughly 16 pixels apart our display supports 16 distinct
views. In order to obtain the slit lines for the other 15 views, we interpolate the line equations for the neighboring
original slit lines. Once we rasterize all lines for all 16 views, we entirely fill the projector image space each
sub-pixel in the projector space has a view assignment. This assignment is sufficient to perform the software
multiplexing of views to sub-pixels.

(a) (b)

Figure 4. Calibration of the multi-projector parallax-barrier display. (a) Checkerboard and detected lines. (b) Maximum
intensity image and detected slit lines.

Tilesort

Application

Server

RenderViewSetup

Server

RenderViewSetup

MultiView

Application

Tilesort

Server

RenderCompositing

Server

(a) (b)

RenderCompositing

Figure 5. Chromium setup: (a) optical multiplexing, (b) software multiplexing.

6. RENDERING APPROACHES

We now present two strategies to render 3D scenes to a multiview parallax display and describe their imple-
mentation in a distributed rendering environment using Chromium.5 We will exploit Chromium’s concept of
programmable stream processing units (SPUs), which act as filters on the stream of OpenGL commands. SPUs
allow us to re-implement desired rendering commands and modify the way they are processed. Since Chromium
does not allow us to define custom commands that can be inserted into a stream, we will use existing OpenGL
commands to piggy-back information about special events that are necessary to control multiview rendering.
Chromium SPUs can have internal state variables, which we will use to share information between the cus-
tom implementation of different commands. In the following sections, we will describe the SPUs that we have
developed for multiview rendering.

As discussed in Section 4, in optical multiplexing (Section 6.1) each view is rendered as a whole and multi-
plexing of the views, i.e., the assignment of sub-pixels to multiview pixels, is achieved by the physical setup of
the display. In contrast, in software multiplexing (Section 6.2) the rendering software combines all the views and
assigns to each multiview pixel the corresponding sub-pixels.

6.1. Optical Multiplexing

In optical multiplexing, each view is projected as a whole to the display surface. After display calibration (see
Section 5) we can ensure that each multiview pixel receives the contributions of the corresponding sub-pixels.4

Optical multiplexing is straightforward to implement in a distributed rendering environment; our Chromium
setup is illustrated in Figure 5a. Each Chromium server is assigned to one view, i.e., the number of servers
corresponds to the number of views. We use the standard Chromium tilesort SPU to distribute the rendering
commands. Each server renders its view by piping the rendering commands through a custom viewsetup SPU
followed by the standard render SPU. The viewsetup SPU intercepts commands changing the viewing matrix,
modifying it to match the view associated with the server; the render SPU feeds all commands into a standard
OpenGL pipeline for rendering. Each Chromium server is assigned to one view, i.e., the number of

multiview SPU compositing SPU

SPU multiview {
Matrix viewMatrix;

<-LoadMatrix(Matrix m) {
m_prime = m.Premultiply(viewMatrix);
->LoadMatrix(m_prime);

}

<-SwapBuffers() {
for(view=0; view<nViews; view++) {

viewMatrix = computeViewMatrix(view);
->DepthBoundsEXT(view, nViews);
->playBack();

}
->DepthBoundsExt(END_MULTIVIEW_FRAME, 0);
->SwapBuffers();

}
}

SPU compositing {
bool beginFlag;

<-DepthBoundsEXT(float zmin, float zmax) {
if(zmin!=END_MULTIVIEW_FRAME) {

beginFlag = true;
->renderDepthMask(zmin);
->DepthBoundsEXT(0.0, 0.5);

} else {
->renderAlphaMask();

}
}

<-glClear(enum mask) {
if(beginFlag) {

beginFlag = false;
->glClear(mask & ~DEPTH);

} else {
->glClear(buffer & ~(COLOR|DEPTH));

}
}

Figure 6. Pseudo-code for the new multiview and compositing SPU. The symbol <- indicates commands read from the
previous SPU in the pipeline. Similarly, -> indicates commands that are passed on to the next SPU.

In this scenario, the rendering command stream is sent just once per frame from the application to all servers,
inducing little network bandwidth overhead for multiview rendering. However, the display setup required for
optical multiplexing has a number of disadvantages. Since each projection needs to cover the entire display, the
distance between projectors and the display surface is typically quite large, e.g., 2

√
3/3 times the display width

for a field of view of 60 degrees. Flat-screen displays, for example using high resolution LCDs, are not feasible
with optical multiplexing. In addition, changing the field of view requires tedious readjustments of the projector
positions.

6.2. Software Multiplexing

In software multiplexing, sub-pixels are projected directly to their corresponding multiview pixels by the rendering
software. Hence, we can reduce the need for optical elements to a diffuser and a single lenticular sheet or parallax-
barrier (see also Figure 3).

We implemented distributed rendering with software multiplexing using a tile-based architecture. Each
Chromium server is assigned to a display tile and renders all the views for this tile. During rendering, the
sub-pixels are interleaved such that they appear at the correct positions on the diffuser. The architecture of
Chromium SPUs involved in this approach is shown in Figure 5b.

On the application side, our implementation consists of a custom multiview and a standard Chromium
tilesort SPU. The multiview SPU transforms the application command stream for a single view of a frame
into a stream that renders a multiview frame; pseudocode is given in Figure 6(left).

The SPU first packs all incoming rendering commands for one frame into a buffer. The glSwapBuffers

command then triggers a loop over all views. For each view, the SPU sets up the appropriate viewing matrix.
Then it inserts a special command into the stream to signal the servers which view is about to be transmitted.
Next, the packed application rendering commands are replayed. After all views have been processed, another
special command is added to the stream to indicate the end of the multiview frame. We chose to misuse the
depth bounds test command DepthBoundsEXT and encode its meaning (beginning of a view, end of a multiview
frame) in its zmin and zmax parameters. In case of conflicts with application commands, its role can be taken
over by any other command that is not used by the application.

After the multiview SPU, the command stream is processed by a standard tilesort SPU that bucket-sorts
geometry based on the view frustum of the tiles and the current view and sends the appropriate commands to

the corresponding servers. This culling mechanism effectively reduces the network bandwidth overhead due to
the re-transmission of the rendering commands for each view.

On the server side, the command stream flows through a custom compositing SPU, followed by the Chromium
render SPU. Pseudocode for the compositing SPU is shown in Figure 6(right).

First, this SPU re-implements the designated DepthBoundsEXT command and interprets its parameters to
decide whether the command indicates the start of a view or the end of a multiview frame. If the beginning of
the command stream for a view is detected, the SPU renders a depth mask that is used to discard all pixels in
the tile that do not belong to the current view (encoded in the zmin parameter). For this purpose, the SPU
enables the OpenGL extension DepthBoundsEXT. This allows masking pixels without interfering with depth,
alpha, or stencil testing performed by the application. When the end of a multiview frame is detected (i.e., a
DepthBoundsEXT command with appropriate parameters appears), the compositing SPU inserts commands to
render an alpha mask into the stream, which will smoothly blend between tiles in the overlapping boundaries.
Lastly, the compositing SPU also re-implements the glClear command. This command is usually issued by
the application at the beginning of a frame. However, we must clear the framebuffer only at the beginning of
each multiview frame; to preserve the depth mask, clearing of the depth buffer is disabled. During rendering of
the following views, glClear is also re-implemented to have no effect on the color buffer, which stores the views
rendered so far.

In contrast to optical multiplexing described in Section 6.1, software multiplexing allows for more flexible
and compact display designs. Individual tiles can be displayed by projectors or as tiles of high-resolution LCD
displays. By changing the distance between the diffuser and the parallax- barrier, the view zone of the display
can be adjusted easily to the requirements of the scene being displayed. Also, the number of tiles, i.e., Chromium
servers, does not need to correspond to the number of views. Finally, the elimination of a lenticular sheet for
optical multiplexing reduces cross talk and light diffusion and increases image quality.

However, our implementation of software multiplexing incurs, in the best case, an n times network bandwidth
overhead for n views, since the application distributes each view separately to the servers. In practice, the
overhead is slightly higher because of overlaps at the tile boundaries. We could avoid this overhead by looping
over the views on the servers instead of the client node. However, this would require a modified tilesort SPU
on the client that bucket-sorts geometry based on a meta view frustum that spans all the views for each tile. We
leave the implementation of such an SPU as future work.

Alternatives We have chosen a brute-force approach for distributed multiview rendering with the goal to
allow autostereoscopic viewing of existing applications without requiring any changes in their rendering code.
However, there are alternatives for multiview rendering that can be more efficient when directly supported by the
application. Halle’s multiple viewpoint rendering algorithm21 exploits the geometric structure of epipolar plane
images (EPIs) to render scenes from several views simultaneously. While the complexity of this approach is an
order of magnitude lower than brute-force multiview rendering, it cannot be applied with existing applications in
a non-immersive way. Similarly, the architecture proposed by Stewart et al.22 relies on a radically new rendering
pipeline that is not compatible with existing applications.

7. RESULTS

To compare the different display designs, we have built a front-projection display with a lenticular sheet and
optical multiplexing similar to the one by Matusik et al.4 and we have developed a novel prototype with rear-
projection, a parallax-barrier and software multiplexing 5. Both systems consist of 16 rendering servers, each
one a Windows workstation with an Intel PIV processor running at 3GHz and an NVidia FX5700LE or FX5900
graphics board. They are connected to a client node, also a Windows workstation with Intel PIV processor
running at 2.2GHz, through a Gigabit Ethernet network with a single switch.

The physical setup of the novel rear-projection prototype is shown in Figure 7 on the right. The projectors
are placed in a 4×4 grid at a short distance from the display plane, tiling an overall projection area of 72′′×48′′.
Figure 7, left, shows a close-up of the high resolution image on the projection side of the display, illustrating the
multiplexed views using slanted slits. A performance comparison between optical and software multiplexing is

Figure 7. Left: Physical setup of the software multiplexing display. Right: Close-up of high resolution image with
multiplexed views.

CPU Utilization

0

50

100

150

1 2 4 8 16

Number of Views

U
ti

li
z
a
ti

o
n

Network Bandwidth

0

20

40

60

80

1 2 4 8 16

Number of Views

R
e
la

ti
v
e
 B

a
n

d
w

id
th

Optical Multiplexing

0

200

400

600

1 2 4 8 16

Number of Views

F
P

S

Optical multiplexing

Softw are multiplexing

Figure 8. Performance comparison between optical and software multiplexing. From left to right: CPU utilization on the
application node, network bandwith relative to theoretical peak bandwith (1GBit/sec.), and rendered multiview frames
per second.

given in Figure 8. We use a simple test scene with an average of less than one thousand triangles per frame. The
major bottlenecks in both cases are either stream processing on the application node CPU, network bandwidth, or
rendering performance on the servers. Optical multiplexing seems to be limited by the network for all interesting
cases (i.e., more than four views). In our current implementation of software multiplexing, the CPU of the
application node traverses and sorts the scene geometry and distributes it over the network for each view. This
leads to high loads on the application CPU and on the network already for eight views. As a consequence, the
frame rate drops almost linearly with the number of views. We plan to alleviate this problem by implementing
a custom tilesort SPU and move multiview rendering completely to the server nodes.

8. CONCLUSIONS AND FUTURE WORK

We have investigated the issues in constructing a low-cost parallel rendering system on a network of PCs to
drive multiview parallax displays. We presented a classification of rear- and front-projection 3D displays and
implementation details of a novel rear-projection parallax-barrier display. We discussed different rendering
algorithms for software and optical multiplexing using Chromium. Our results show that optical multiplexing
has superior performance but less flexibility in terms of display implementation. This work is a first step towards
understanding how to use Chromium to build a parallel rendering system for multiview parallax displays.

We continue to improve the performance of our Chromium SPUs. In particular, implementing a tilesort SPU
for multiview frames will reduce the geometry processing bottleneck in the application node and reduce network
bandwidth. We are also improving the quality of our multiview parallax-barrier display by investigating solutions
to interperspective aliasing.18

REFERENCES

1. J. Konrad and P. Agniel, “Subsampling models and anti-alias filters for 3-d automultiscopic displays,” IEEE
Trans. Image Process. , Jan. 2005. In print.

2. L. Lipton and M. Feldman, “A new stereoscopic display technology: The synthagram,” in Proc. SPIE
Stereoscopic Displays and Virtual Reality Systems, 4660, pp. 229–235, Jan. 2002.

3. A. Schmidt and A. Grasnick, “Multi-viewpoint autostereoscopic displays from 4d-vision,” in SPIE Stereo-
scopic Displays and Virtual Reality Systems, 4660, pp. 212–221, Jan. 2002.

4. W. Matusik and H. Pfister, “3D TV: A scalable system for real-time acquisition, transmission, and au-
tostereoscopic display of dynamic scenes,” ACM Transactions on Graphics (SIGGRAPH 2004) 23, pp. 811–
821, Aug. 2004.

5. G. Humphreys, M. Houston, Y. Ng, R. Frank, S. Ahern, P. Kirchner, and J. Klosowski, “Chromium: A
stream processing framework for interactive graphics on clusters,” ACM Transactions on Graphics (SIG-
GRAPH 2002) 21(3), pp. 693–703, 2002.

6. T. Okoshi, Three-Dimensional Imaging Techniques, Academic Press, 1976.
7. B. Javidi and F. Okano, eds., Three-Dimensional Television, Video, and Display Technologies, Springer-

Verlag, 2002.
8. K. Li, H. Chen, Y. Chen, D. Clark, P. Cook, S. Damianakis, G. Essl, A. Finkelstein, T. Funkhouser,

T. Housel, A. Klein, Z. Liu, E. Praun, R. Samanta, B. Shedd, J. P. Singh, G. Tzanetakis, and J. Zheng,
“Building and using a scalable display wall system,” IEEE Computer Graphics and Applications 20, pp. 29–
37, Dec. 2002.

9. R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs, “The office of the future: A unified
approach to image-based modeling and spatially immersive displays,” in Proceedings of SIGGRAPH 98,
pp. 179–188, (Orlando, FL), 1998.

10. H. E. Ives, “The projection of parallax panoramagrams,” Journal of the Optical Society of America , pp. 397–
409, July 1931.

11. H. Liao, M. Iwahara, N. Hata, I. Sakuma, T. Dohi, T. Koike, Y. Momoi, T. Minakawa, M. Yamasaki,
F. Tajima, and H. Takeda, “High-resolution integral videography autostereoscopic display using multi-
projector,” in Proceedings of the Ninth International Display Workshop, pp. 1229–1232, 2002.

12. R. Raskar, M. Brown, R. Yang, W. Chen, G. Welch, H. Towles, B. Seales, and H. Fuchs, “Multi-projector dis-
plays using camera-based registration,” in IEEE Visualization, pp. 161–168, (San Francisco, CA), Oct. 1999.

13. W. Kresse, D. Reiners, and C. Knöpfle, “Color-consistency for digital multi-projector display systems: The
heyewall and the digital cave,” in IPT / EGVE 2003: Seventh Immersive Projection Technology Workshop
and Ninth Eurographics Workshop on Virtual Environments, pp. 271–280, May 2003.

14. M. Stone, “Color and brightness appearance issues in tiled displays,” Computer Graphics and Applica-
tions 21, pp. 58–67, Sept. 2001.

15. A. Majumder, Z. He, H. Towles, and G. Welch, “Achieving color uniformity across multi-projector displays,”
in IEEE Visualization 2000, pp. 117–124, Oct. 2000.

16. A. Majumder and R. Stevens, “Color nonuniformity in projection-based displays: Analysis and solutions,”
IEEE Transactions on Visualization and Computer Graphics 10, pp. 177–188, Mar. 2004.

17. A. Woods, T. Docherty, and R. Koch, “Image distortions in stereoscopic video systems,” in Stereoscopic
Displays and Applications IV, Proceedings of the SPIE Volume 1915, pp. 1–13, (San Jose, CA), Feb. 1993.

18. C. Moller and A. Travis, “Correcting interperspective aliasing in autostereoscopic displays,” IEEE Trans-
actions on Visualization and Computer Graphics 11(2), pp. 228–236, 2005.

19. S. Tomov, R. Bennett, M. McGuigan, A. Peskin, G. Smith, and J. Spiletic, “Application of interactive
parallel visualization for commodity-based clusters using visualization apis,” Computers & Graphics 28,
pp. 273–278, Apr. 2004.

20. R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh, “Load balancing for multi-projector rendering
systems,” in 1999 SIGGRAPH / Eurographics Workshop on Graphics Hardware, pp. 107–116, Aug. 1999.

21. M. Halle, “Multiple viewpoint rendering,” in Computer Graphics, SIGGRAPH 98 Proceedings, ACM Press.
22. J. Stewart, E. P. Bennett, and L. McMillan, “Pixelview: A view-independent graphics rendering architec-

ture,” in Eurographics Workshop on Graphics Hardware, 2004.

