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ABSTRACT
Auto-encoder is an important architecture to understand point clouds
in an encoding and decoding procedure of self reconstruction. Cur-
rent auto-encoder mainly focuses on the learning of global struc-
ture by global shape reconstruction, while ignoring the learning of
local structures. To resolve this issue, we propose Local-to-Global
auto-encoder (L2G-AE) to simultaneously learn the local and global
structure of point clouds by local to global reconstruction. Specif-
ically, L2G-AE employs an encoder to encode the geometry infor-
mation of multiple scales in a local region at the same time. In addi-
tion, we introduce a novel hierarchical self-attentionmechanism to
highlight the important points, scales and regions at different lev-
els in the information aggregation of the encoder. Simultaneously,
L2G-AE employs a recurrent neural network (RNN) as decoder to
reconstruct a sequence of scales in a local region, based on which
the global point cloud is incrementally reconstructed. Our outper-
forming results in shape classification, retrieval and upsampling
show that L2G-AE can understand point clouds better than state-
of-the-art methods.

CCS CONCEPTS
• Computingmethodologies→ Computer vision; Shape rep-
resentations; • Information systems→ Information retrieval.
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1 INTRODUCTION
In recent years, point clouds have attracted increasing attention
due to the popularity of various depth sensors in different appli-
cations. Not only the traditional methods, deep neural networks
have also been applied to point cloud analysis and understand-
ing. However, it remains a challenge to directly learn from point
clouds. Different from 2D images, point cloud is an irregular 3D
data which makes it difficult to directly use traditional deep learn-
ing framework, e.g., traditional convolution neural network (CNN).
The traditional CNN usually requires some fixed spatial distribu-
tion around each pixel so as to facilitate the convolution. One way
to alleviate the problem is to voxelize a point cloud into voxels
and then apply 3D Cov-Nets. However, because of the sparsity of
point clouds, it leads to resolution-loss and explosive computation
complexity, which sacrifices the representation accuracy.

To address above challenges, PointNet [28] has been proposed
to directly learn shape representations from raw point sets. Along
with the availability of directly learning from point clouds by deep
learning models, auto-encoder (AE) has become an vital architec-
ture of the involved neural networks. Current AE focuses on the
learning of the global structure of point clouds in the encoding and
decoding procedure. However, current AE structure is still limited
by learning the local structure of point clouds, which tends to be
an important piece of information for point cloud understanding.
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Figure 1: Illustration of our local to global auto-encoder architecture. In the encoder, multi-scale areas is established in each
local region around the sampled centroids in (a). And a hierarchical feature abstraction is employed to abstract the global
feature of point clouds with self-attention in (b). The learned global feature is applied to shape classfication and retrieval
applications. In the decoder, local areas and the global point cloud are reconstructed by hierarchical feature decoding with the
interpolation layer, the RNN layer and the FC layer in (c)(d).

To simultaneously learn global and local structure of point clouds,
we propose a novel auto-encoder called Local-to-Global auto-encoder
(L2G-AE). Different from traditional auto-encoder, L2G-AE lever-
ages a local region reconstruction to learn the local structure of
a point cloud, based on which the global shape is incrementally
reconstructed for the learning of the global structure. Specifically,
the encoder of L2G-AE can hierarchically encode the information
at point, scale and region levels, where a novel hierarchical self-
attention is introduced to highlight the important elements in each
level. The encoder further aggregates all the information extracted
from the point cloud into a global feature. In addition, L2G-AE em-
ploys a RNN-based decoder to decode the learned global feature
into a sequence of scales in each local region. And based on scale
features, the global point cloud is incrementally reconstructed. L2G-
AE leverages this local to global reconstruction to facilitate the
point cloud understanding, which finally enables local and global
reconstruction losses to train L2G-AE.

Our key contributions are summarized as follows.
• We propose L2G-AE to enable the learning of global and
local structures of point clouds in an auto-encoder architec-
ture, where the local structure is very important in learning
highly discriminative representations of point clouds.

• We propose hierarchical self-attention to highlight impor-
tant elements in point, scale and region levels by learning
the correlations among the elements in the same level.

• We introduce RNN as decoding layer in an auto-encoder ar-
chitecture to employ more detailed self supervision, where
the RNN takes the advantage of the ordered multi-scale ar-
eas in each local region.

2 RELATEDWORK
Point clouds is a fundamental type of 3D data format which is
very close to the raw data of various 3D sensors. Recently, applica-
tions of learning directly on point clouds have received extensive
attention, including shape completion [33], autonomous driving
[27], 3D object detection [32, 39, 47], recognition and classification

[5, 23, 24, 28, 29, 31, 35, 37, 38, 42], scene labeling [22], upsampling
[41, 44], dense labeling and segmentation [34] , etc.

Due to the irregular property of point cloud and the inspiring
performances of 2D CNNs on large-scale image repositories such
as ImageNet [4], it is intuitive to rasterize point clouds into 3D
voxels and then apply 3D CNNs. Some studies [7, 27, 47] represent
each voxel with a binary value which indicates the occupation of
this location in space.Themain problem of voxel-based methods is
the fast growth of neural network size and computation complex-
ity with the increasing of spatial resolution. To alleviate this prob-
lem, some improvements [25] have been proposed to explore the
data sparsity of point clouds. However, when dealing with point
clouds with huge number of points, the complexity of the neural
network is still unacceptable.

Recently, deep neural networks work quite effectively on the
raw 3D point clouds. Different from learning from readered views
[6, 12–15, 17] 2D meshes [8] or 3D voxels [9–11], PointNet [28]
is the pioneer study which directly learns the representation for
point clouds by computing features for each point individually and
aggregating these features with max-pool operation. To capture
the contextual information of local patterns inside point clouds,
PointNet++ [29] uses sampling and grouping operations to extract
features from point clusters hierarchically. Similarly, several re-
cent studies [21, 30] explores indexing structures, which divides
the input point cloud into leaves, and then aggregates node fea-
tures from leaves to the root. Inspired by the convolution opera-
tion, recent methods [24, 35, 38] investigate well-designed CNN-
like operations to aggregate points in local regions by building lo-
cal connections with k-neareat-neighbors (kNN).

Capturing the context information inside local regions is very
important for the discriminative ability of the learned point cloud
representations. KC-Net [31] employs a kernel correlation layer
and a graph pooling layer to capture the local patterns of point
clouds. ShapeContextNet [37] extends 2D Shape Context [2] to the
3D, which divides a local region into small bins and aggregates
the bin features. Point2Seqeuce [26] employs an attention-based
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Figure 2: A multi-scale example inside a local region of
an airplane point cloud, where there are four scales areas
[A1,A2,A3,A4] with different colors around the centroid
point (red).

sequence to sequence architecture to encode the multi-scale area
features inside local regions.

In order to alleviate the dependence on the labeled data, some
studies have performed unsupervised learning for point clouds.
FoldingNet [40] proposes a folding operation to deform a canon-
ical 2D grid onto the suface of a point cloud. 3D-PointCapsNet
[46] employs a dynamic routing scheme in the reconstruction of
input point clouds. However, it is difficult for these methods to
capture the local patterns of point clouds. Similar to FoldingNet,
PPF-FoldNet [3] also learns local descriptors on point cloud with
a folding operation. LGAN [1] proposes an auto-encoder based on
PointNet and extends the decoder module to the point cloud gener-
ation application with GAN. In this work, we propose a novel auto-
encoder architecture to learn representations for point clouds. On
the encoder side, an hierarchical self-attention mechanism is ap-
plied to embedding the correlation among features in each level.
And on the decoder side, an interpolation layer and a RNN decod-
ing layer are engaged to reconstruct multi-scale areas inside local
regions. After building local areas, the global point cloud is gener-
ated by a fully-connected (FC) layer which acts as a down sampling
function.

3 METHOD
Now we introduce the L2G-AE in detail, where the structure is
illustrated in Figure 1. The input of the encoder is an unordered
point set P = {p1,p2, · · · ,pN } with N (N = 1024) points. Each
point in the point set is composed of a 3D coordinate (x,y, z). L2G-
AE first establishes multi-scale areas At (t ∈ [1,T ]) in each local
region around the sampled points. Then, a hierarchical feature ab-
straction is enforced to obtain the global features of input point
clouds with self-attentions. In the decoder, we simultaneously re-
construct local scale areas and global point clouds by hierarchical
feature decoding. The output of L2G-AE is the reconstructed local
areas A′

t and the reconstructed P
′ with same number of points to

P .

3.1 Multi-scale Establishment
To capture fine-grained local patterns of point clouds, we first es-
tablish multi-scale areas in each local region, which is similar to
PointNet++ [29] and Point2Sequence [26]. Firstly, a subset {pi1 ,pi2 ,

· · · ,piM } of the input points is selected as the centroid of local re-
gions by iterative farthest point sampling (FPS).The latest pointpi j
is always the farthest one from the rest points {pi1 ,pi2 , · · · ,pi j−1 }.
Compared to other sampling method, such as random sampling,
FPS can achieve a better coverage of the entire point cloud with
the given same number of centroids. As shown in Figure 2, around
each sampled centroid,T different scale local areas are established
continuously by kNN searchingwith {K1,K2, · · · ,KT } nearest points,
respectively. An alternative searching method is ball query [29]
which selects all points with a radius around the centroid. How-
ever, it is difficult for ball query to ensure the information inside
local regions, which is sensitive to the sparsity of the input point
clouds.

×
1x1 

conv

transpose

×

attention map

+
MLP

input 

feature map softmax

 (!)

"(!)

#(!)

$% × $&

skip link

$% × '

$% × '

$% × '

concatenate

$% × ($& + ')

!

Figure 3: Self-attention module. The input of this module is
aD1×D2 featuremap and the output is anotherD1×(D2+C)
feature map, where C is a parameter.

3.2 Hierarchical Self-attention
In currentwork of learning on point clouds,Multi-Layer-Perceptron
(MLP) layer is widely applied to integrate multiple features. Tra-
ditional MLP layer first abstracts each feature into higher dimen-
sion individually and then aggregates these features by a concise
max pooling operation. However, these two simple operations can
hardly encode the correlation between feature vectors in the fea-
ture space. Inspired by the self-attention machanism in [45], the
attention machanism is suitable for improving the traditional MLP
by learning the correlation between features. In this work, we pro-
pose a self-attention module to make up the defects of the MLP
layer with an attention mechanism. Here, self-attention refers to
learn the correlation among features in the same level.

Different from the raw self-attention, we enforce a hierarchical
feature extraction architecture with hierarchical self-attention in
the encoder. There are three different levels inside the encoder, in-
cluding point level, scale level, and region level. At each level, we
introduce a self-attention module to learn self-attention weights
by mining the correlations among the corresponding feature ele-
ments. Consequently, three self-attention modules are designed to
propagate features from the lower level to the higher level. Sup-
posed the input of the self-attention module is a feature map x ∈
RD1×D2 , where D1, D2 are the dimensions of the feature map.
Therefore, D1, D2 are equal to Kt , 3 in the point level, equal to
T , D in the scale level and equal toM , D in the region level, respec-
tively.



As depicted in Figure 3, the feature map x is first transformed
into two feature spaces f and д to calculate the attention below,
where f (x) =Wf x , д(x) =Wдx ,

βj ,i =
exp(si j )∑D1

i=1 exp(si j )
,where si j = f (xi )T д(xj), (1)

and βj ,i evaluates the attention degree which the model pays to
the ith location when synthesizing the jth feature vector. Then the
attention result is r = (r1, r2, · · · , rj, · · · , rD1

) ∈ RD1×D2 , where

rj =
D1∑
i=1

βj ,ih(xi ),where h(xi ) =Whxi . (2)

In above formulation,Wf ,Wд,Wh ∈ RD2×C are learned weight
matrices, which are implemented as 1 × 1 convolutions. We use
C = M/8 in the experiments.

In addition, inspired by the skip link operation in ResNet[18]
and DenseNet [20], we further concatenate the result of the atten-
tion mechanism with the input feature matrix. Therefore, the final
output of the self-attention module is given by

oi = xi ⊕ ri , (3)

where ⊕ is the concatenation operation. This allows the network
to rely on the cues among the feature vectors.

To aggregate the features with correlation information, a MLP
layer and a max pooling operation are employed to integrate the
multiple features. In particular, the first self-attention module ag-
gregates the points in a scale to a D-dimensional feature vector.
The second one encodes the multi-scale features in a region into a
D-dimensional feature. The final one integrates features of all lo-
cal regions on a point cloud into a 1024-dimensional global feature.
Therefore, the encoder hierarchically abstracts point features from
the levels of point, scale and region to a global representation of
the input point cloud.

3.3 Interpolation Layer
The target of the decoder is to generate the points of the local areas
and entire points. Previous approaches [1, 3, 40] usually use sim-
ple fully-connected (FC) layers or MLP layers to build the decoder.
However, the expressive ability of the decoder is largely limited
without considering the relationship among features. In this work,
we propose a progressive decoding way which can be regarded as
a reverse process of the encoding. The first step is to generate local
region features from the global feature. To propagate the global fea-
ture д to region features, a simple interpolation operation is first
engaged in the decoder. The local region feature li is calculated by

li =
c

(pi − p0)2
д, i ∈ [1,M], (4)

where c (c = 10−10) is a constant. Here, p0 = (0, 0, 0) is the cen-
troid of the input point cloud after the normalization processing.
And pi is the centroid point of the corresponding local region. By
the simple interpolation operation, the spatial distribution infor-
mation of local region can be integrated to facilitate the feature
decoding. The interpolated local region features are then concate-
nated with skip linked local region features from the encoder. The

concatenated features are passed through another MLP layer into
aM × D feature matrix.

RNN 

Chamfer 

loss

RNN RNN RNN �ilocal region feature:

Llocal

+ + +

Figure 4: The decoding process of the RNN layer.

3.4 RNN Layer
Given the feature of local regions, wewant to decode the scale level
features. Due to the multi-scale setting, the features of different
scales in a local region can be regarded as a feature sequence with
length T . As we all know that recurrent neural network [19] has
shown excellent performances in processing sequential data. Thus,
a RNN decoding layer is employed to generate the multi-scale area
features. The decoding process is shown in Figure 4. We first repli-
cate the local region feature li forT times, and the replicated local
region features are feed into the RNN layer by

ht = f (ht−1, lti ), t ∈ [1,T ], (5)
where f is a non-linear activation function and t is the index of
RNN step. Therefore, the predicted t th area feature at can be cal-
culated by

at =Wθht . (6)
Here,Wd is a learnable weight matrix. To generate the points in-
side each local area, several FC layers are adopted to reconstruct
the points. The local area A′

t is reconstructed by

A
′
t =Wθtat + bθt , (7)

whereWθt , bθt are weights of the FC layer. Based on the recon-
structed local areas, another FC layer is applied to incrementally
reconstruct the entire point cloud. All reconstructed areas are con-
catenated and then passed through the FC layer by

P =W [A′
1 ⊕ A

′
2 ⊕ · · · ⊕ A

′
T ] + b . (8)

Here, ⊕ represents the concatenation operation.

3.5 Loss Function
We propose a new loss function to train the network in an end-to-
end fashion. There are two parts in the loss function, local scale
reconstruction and global point cloud reconstruction, respectively.
As mentioned earlier, we should encourage accurate reconstruc-
tion of local areas and the global point cloud at the same time. Sup-
pose At is the t th scale area in the multi-scale establishment sub-
section, then, the local reconstruction error for A′

t is measured by
the well-known Chamfer distance,

Llocal = dCH (At ,A
′
t ) =

T∑
t=1

( 1

|At |
∑

pi ∈At

min
p′i ∈A

′
t

∥pi − p
′
i ∥2

+
1

|A′
t |

∑
p′i ∈A

′
t

min
pi ∈At

∥pi − p
′
i ∥2),

(9)



Similarly, let the input point set be P and the reconstructed point
set be P ′ . The global reconstruction error can be denoted by

Lдlobal = dCH (P, P ′) = 1

|P |
∑
pi ∈P

min
p′i ∈P

′
∥pi − p

′
i ∥2

+
1

|P ′ |
∑

p′i ∈P
′
min
pi ∈P

∥pi − p
′
i ∥2.

(10)

Altogether, the network is trained end-to-end by minimizing the
following joint loss function

L = Llocal + γLдlobal , (11)

where γ (γ = 1) is the proportion of two part errors.

4 EXPERIMENTS
In this section, we first investigate how some key parameters af-
fect the performance of L2G-AE in the shape classification task
on ModelNet10 [36]. Then, an ablation study is done to show the
effectiveness of each module in L2G-AE. Finally, we further evalu-
ate the performances of L2G-AE in multiple applications including
3D shape classification, 3D shape retrieval and point cloud upsam-
pling.

4.1 Network Configuration
In L2G-AE, we first sample M = 256 points as the centroids of
local regions by FPS. Then, around each centroid, a kNN search-
ing algorithm selects T = 4 scale areas with [K1 = 16,K2 =

32,K3 = 64,K4 = 128] points inside each area. In the multi-level
feature propagation process, we initialize the feature dimension
C = M/8 = 32 and D = 256. The encoder learns a 1024-dimension
global feature for the input point cloud through hierarchical fea-
ture extraction. Similarly, the decoder hierarchically reconstructs
local scales and global point cloud. In the RNN decoding layer,
we adopt LSTM as the default RNN cell with hidden state dimen-
sion h = D = 256. In the experiment, we train our network on
a NVIDIA GTX 1080Ti GPU using ADAM optimizer with the ini-
tial learning rate of 0.0001 and batch size of 8. The learning rate is
decreased by 0.3 for every 20 epochs.

4.2 Parameters
All experiments on parameter comparison are evaluated underMod-
elNet10.ModelNet10 contains 4899 CADmodels from 10 categories
and is split into 3991 for training and 908 for testing. For each
model, we adopt 1024 points which are uniformly sampled from
mesh faces and are normalized into a unit ball before being fed into
the network. During the training process, the loss function keeps
decreasing and stabilizes around the 180th epoch. To acquire the
accuracies on ModelNet10, we train a linear SVM from the global
features obtained by the auto-encoder. Specifically, the OneVsRest
strategy is adopted with the linearSVM function as the kernel.

We first explore the number of sampled points M which deter-
mines the distribution of local regions inside point clouds. In the
experiment, we keep the network settings as depicted in the net-
work configuration and vary the number of sampled pointsM from
128 to 320. The results are shown in Table 1, where the instance ac-
curacies on the benchmark of ModelNet10 have a tendency to rise

Table 1:The effects of the number of sampled pointsM under
ModelNet10.

M 128 192 256 320
Acc (%) 93.83 94.38 95.37 93.94

ground-truth
M=128

CD=0.003529
M=192

CD=0.003376
M=256

CD=0.003118
M=320

CD=0.003510

Figure 5: The reconstructed results with different sampled
points, where the CD represents the Chamfer distance be-
tween ground-truth and the reconstructed point cloud.

first and then fall. This comparison implies that L2G-AE can effec-
tively extract the contextual information in point clouds by multi-
level feature propagation andM = 256 is an optimal choice which
can well cover input point clouds without excessive redundant. To
learn the reconstructed results intuitively, Figure 5 shows the re-
constructed point clouds with different sampled points. According
to Chamfer distances, L2G-AE can also reconstruct the input point
cloud with the varying of sampled points.

With keeping the sampled points M = 384, we investigate the
key parameter dimension C inside the self-attention modules. To
unify the parameter in self-attention module, we keep the same
dimension C in different semantic levels. We change the default
C = 32 to 16 and 64, respectively. In Table 2, L2G-AE achieves
the best performance when the feature dimension C is 32. Finally,

Table 2: The effects of the feature dimension C of the self-
attention module under ModelNet10.

M 16 32 64
Acc (%) 93.94 95.37 94.16

we show the effects of feature dimension of local areas D and the
global feature Dдlobal . The dimension is varied as shown in Table
3 and Table 4. Neither the biggest nor the smallest, L2G-AE gets
better performances when D, Dдlobal are set to 256 and 1024 re-
spectively. There is a trade-off between the network complexity
and the expressive ability of our L2G-AE.

Table 3:The effects of the local feature dimension D onMod-
elNet10.

D 128 256 512
Acc (%) 93.72 95.37 93.28

4.3 Ablation Study
To quantitatively evaluate the effect of the self-attention module,
we show the performances of L2G-AE under four settings: with
point level self-attention module only (PL), with area level self-
attention module only (AL), with region level self-attention mod-
ule only (RL), remove all self-attention modules (NSA) and with



Table 4: The effects of the global feature dimension Dдlobal
under ModelNet10.

Dдlobal 512 1024 2048
Acc (%) 94.16 95.37 93.94

ground-truth local loss only global loss only

Figure 6:The reconstruction results of L2G-AEwith only the
local loss and only the global loss.

all self-attention modules (ASA). As shown in Table 5, the self-
attention module is effective in learning highly discriminative rep-
resentations of point clouds by capturing the correlation among
feature vectors. The results with only one self-attention module
outperform the results without any self-attention module. And we
achieve the best performance when three self-attention modules
work together. The performance of self-attentions is affected by
the discriminative ability of features. At the area level, the features
of areas in the same region are similar, since there are only four
areas, which makes the self-attention at area level contribute the
least among all three self-attentions. In contrast, at the point level
and the region level, the features of points or regions change a lot,
so these self-attentions contribute more. From our observation, the
results of PL and RL are coincidentally equal in the experiments.

Table 5: The effects of the self-attention module on Model-
Net10.

Metric PL AL RL NSA ASA
Acc (%) 94.16 94.05 94.16 93.72 95.37

After exploring the self-attention module, we also discuss the
contributions of the two loss functions Llocal and Lдlobal . In Table
6, the results with local loss only (Local), global loss only (Global)
and two losses together (Local + Global) are listed. The local loss
function is very important in capturing local patterns of point clouds.
And the two loss functions together can further enhance the clas-
sification performances of our neural network. In addition, Figure
6 shows the reconstruction results of our L2G-AE with only local
loss and only global loss, respectively. From the results of the re-
constructed point clouds, L2G-AE can reconstruct the input point
cloud with only part of the joint loss function. In particular, the
local reconstructed result in Figure 6 is a dense point cloud.

Table 6: The effects of the two loss functions Llocal and
Lдlobal on ModelNet10.

Metric Local Global Local+Global
Acc (%) 94.71 92.84 95.37

Table 7: The comparison of classification accuracy (%) under
ModelNet10 and ModelNet40.

Methods Supervised MN40 MN10
PointNet Yes 89.20 -

PointNet++ Yes 90.70 -
ShapeContextNet Yes 90.00 -

Kd-Net Yes 91.80 94.00
KC-Net Yes 91.00 94.4

PointCNN Yes 92.20 -
DGCNN Yes 92.20 -
SO-Net Yes 90.90 94.1

Point2Sequence Yes 92.60 95.30
MAP-VAE No 90.15 94.82
LGAN No 85.70 95.30

LGAN(MN40) No 87.27 92.18
FoldingNet No 88.40 94.40

FoldingNet(MN40) No 84.36 91.85
Our No 90.64 95.37

4.4 Classification
In this subsection, we evaluate the performance of L2G-AE under
ModelNet10 andModelNet40 benchmarks, whereModelNet40 con-
tains 12, 311 CADmodels which is split into 9, 843 for training and
2, 468 for testing. Table 7 compares L2G-AE with state-of-the-art
methods in the shape classification task on ModelNet10 and Mod-
elNet40.The compared methods include PointNet [28], PointNet++
[29], ShapeContextNet [37], KD-Net [21], KC-Net [31], PointCNN
[24], DGCNN [35], SO-Net [23], Point2Sequence [26], MAP-VAE
[16], LGAN [1] and FoldingNet [40].

L2G-AE significantly outperforms all the unsupervised competi-
tors under ModelNet10 and ModelNet40, respectively. In particu-
lar, L2G-AE achieves accuracy 95.37% which is even higher than
other methods of supervision under ModelNet10. Although the
results of LGAN [1] and FoldingNet [40] also show good perfor-
mances under ModelNet10 and ModelNet40. This is because these
methods are trained under a version of ShapeNet55 that contains
more than 57,000 3D shapes. However, this version of ShapeNet55
dataset is not avaiable for public download from the official web-
site. Therefore, we train all these methods under ModelNet40 for
the fair comparison.

Table 8: The comparison of retrieval in terms of under Mod-
elNet10.

Methods LGAN FoldingNet Our
Acc (%) 49.94 53.42 67.81

4.5 Retrieval
L2G-AE is further evaluated in the shape retrieval task under Mod-
elNet10 and compared with some other unsupervised methods of
learning on point clouds. The compared results include two state-
of-the-art unsupervised methods for point clouds, i.e., LGAN [1]
and FoldingNet [40]. The target of shape retrieval is to obtain the



Table 9: The quantitative comparison of 16× upsampling from 625 points under ModelNet10.

10−3 bathtub bed chair desk dresser monitor n.stand sofa table toilet
PU 1.01 1.12 0.82 1.22 1.55 1.19 1.77 1.13 0.69 1.39
EC 1.43 1.81 1.80 1.30 1.43 2.04 1.88 1.79 1.00 1.72
Our 1.74 1.46 1.58 2.08 1.40 1.61 1.86 1.67 1.86 2.10
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Figure 7: The comparison of PR curves for retrieval under
ModelNet10.

relevant information of a inquiry from a collection. In these exper-
iments, the 3D shapes in the test set are used as quires to retrieve
the rest shapes in the same set, and mean Average Precision (mAP)
is used as a metric.

As shown in Table 8, our results outperform all the compared re-
sults under ModelNet10. It shows that L2G-AE can be effect in im-
proving the performance of unsupervised shape retrieval on point
clouds. Their PR curves under ModelNet10 are also compared in
Figure 7 which intuitively shows the performances of these three
methods.

4.6 Unsupervised Upsampling for Point Clouds
Benefit from the design of local to global reconstruction, it is com-
petent for our L2G-AE to be applied in the unsupervised point
cloud upsampling application. In the local reconstruction, a dense
point cloud is obtained by reconstructingmultiple local scales with
overlapping.Therefore, it is convenient to produce the upsampling
results by downsampling from the dense local reconstructed re-
sults using some unsupervised methods, such as random sampling
or farthest point sampling. As far as we know, L2G-AE is the first
method which performs point cloud upsampling with deep neu-
ral networks in an unsupervised manner. To evaluate the perfor-
mance of L2G-AE, We compare our method on relatively sparse
(625 points) inputs with state-of-the-art supervised point cloud up-
samplingmethods, including PU-Net [44] and EC-Net [43].The tar-
get of upsampling is to generate a dense point clouds with 10000
points. For PU-Net and EC-Net, the 16× results (10000 points) are
obtained from inputs (625 points) in a supervised manner. Differ-
ently, L2G-AE first obtains the local reconstruction results and
then downsamples them to 10000 points.

As shown in Table 9, mean Chamfer Distance (mCD) is used as a
metric for quantitative comparison with PU-Net (PU) and EC-Net
(EC) under ModelNet10. Although the results of PU-Net and EC-
Net are better than ”Our” in some classes under ModelNet10, the
most likely reason is that the ground-truth is not visible to L2G-AE
in the training. In addition, the input point cloud with 625 points

input ground-truth our

Figure 8: Some upsampled results of L2G-AE.

ground-truth our ground-truth our

Figure 9: Some reconstructed examples of L2G-AE.

contains very limited information. Figure 8 shows some upsamled
results of our L2G-AE.

4.7 Visualization
In this section,we will show some important visualization results
of L2G-AE. Firstly, some reconstructed point clouds by L2G-AE
are listed with the ground-truths as shown in Figure 9. From the
results, the reconstructed point clouds of L2G-AE are consistent
with the ground-truths.



Figure 10: Some examples of the attention in the region level,
where each subfigure represents a 3D object.

Then, some visualizations of the attentionmap inside self-attention
modules are engaged to show the effect of attentions in the hi-
erarchical feature abstraction. There are three self-attention mod-
ules in the encoder, and we first visualize the attention map inside
the local region level. For intuitively understanding, we directly
attach the attention values to the centroids of local regions and
then show these centroids. By summing attention map by column
in the region level, the attention value of each centroid is cacu-
lated. For example, a 256 × 256 attention map is translated to a
256-dimension attention vector, when the number of sampled cen-
troids is 256. Then, both the size and the color of centroids are
associated with the attention values. Therefore, the centroids with
lighter colors and larger sizes indicate larger attention values. As
depicted in Figure 10, we show some examples of the region level
attention. Figure 10 shows that the self-attention in the region level
tends to on special local regions at conspicuous locations such as
edges, corners or protruding parts.

Similarly, we also show some examples of the scale level atten-
tion in Figure 11 and the point level attention in Figure 12. In Figure
11, each image shows the 4 scale attention values around 256 sam-
pled centroids of a point cloud. And the color indicates the value
of attention, where large attention value corresponds to a bright
color such as yellow. The results indicate that the network tends
to focus on the 4th scale which contains more information of lo-
cal structures. In Figure 12, each row represents the 4 scale areas
around a centroid. In different scale areas, the network concern on
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Figure 11: Some examples of the attention in the scale level.
The abscissa represents the 4 scales [s1, s2, s3, s4] around each
centroid in a point cloud and the ordinate indicates the in-
dex of 256 centroids, where each subfigure represents a 3D
object.

S1 S2 S3 S4

Figure 12: Some examples of the attention in the point level,
where the four subfigures in each row represent the four
scales of a local region.

different points inside the areas to capture the local patterns in the
local region.

5 CONCLUSIONS
In this paper, we propose a novel local to global Auto-encoder
framework for point cloud understanding in the shape classifica-
tion, retrieval and point cloud upsampling tasks. In the encoder,
a self-attention mechanism is employed to explore the correlation
among features in the same level. In contrast, an interpolation layer
and RNN decoding layer successfully reconstruct local scales and
global point clouds hierarchically. Experimental results show that
our method achieves competitive performances with state-of-the-
art methods.
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