
Optimized CUDA-based PDE Solver for
Reaction Diffusion Systems on Arbitrary

Surfaces

Samira Michèle Descombes1, Daljit Singh Dhillon1, and Matthias Zwicker1

Institute of Computer Science, University of Bern, Bern, Switzerland.
samira.descombes@students.unibe.ch, djdhillon@gmail.com,

zwicker@inf.unibe.ch,
WWW home page: http://www.cgg.unibe.ch/

Abstract. Partial differential equation (PDE) solvers are commonly
employed to study and characterize the parameter space for reaction-
diffusion (RD) systems while investigating biological pattern formation.
Increasingly, biologists wish to perform such studies with arbitrary sur-
faces representing ‘real’ 3D geometries for better insights. In this paper,
we present a highly optimized CUDA-based solver for RD equations on
triangulated meshes in 3D. We demonstrate our solver using a chemotac-
tic model that can be used to study snakeskin pigmentation, for example.
We employ a finite element based approach to perform explicit Euler time
integrations. We compare our approach to a naive GPU implementation
and provide an in-depth performance analysis, demonstrating the signifi-
cant speedup afforded by our optimizations. The optimization strategies
that we exploit could be generalized to other mesh based processing
applications with PDE simulations.

Keywords: CUDA · GPU programming · Reaction-Diffusion Systems ·
Nonlinear PDEs · FEM · Explicit time-stepping

1 Introduction

Partial differential equations defined on triangulated meshes in 3D play an
important role in many applications. In 3D geometry processing, for example, 3D
shapes are smoothed and denoised via curvature flow, or heat diffusion on surfaces
can be used to define geometric features. Physical effects such as deformation
or cracking can also be modeled using PDEs on surfaces. In this paper we are
considering reaction-diffusion equations, which are widely believed to play a
crucial role in biological pattern formation. For these applications, efficient PDE
solvers on triangulated surfaces are crucial components. To address this need,
the goal of this paper is to develop an optimized GPU implementation for one
type of surface PDEs, in particular reaction-diffusion equations, and study the
improvements that can be achieved over a naive approach by careful profiling.

Reaction-diffusion (RD) models have first been hypothesized by Turing as
a mechanism that is involved in biological pattern formation. For biologists



it is important to study these equations on 3D geometries to obtain better
insights about their behavior in realistic scenarios. In this paper we employ
a finite element based approach and perform explicit Euler time integration
to solve these equations on triangulated meshes in 3D. The discretization and
time integration lead to simple discrete operators that we need to evaluate
locally on small neighborhoods of mesh vertices. This offers the possibility of a
straightforward parallel implementation on GPUs, where the discrete operators
are computed simultaneously on many vertices. We develop a more sophisticated,
optimized implementation, however, that demonstrates how techniques such as
kernel fusion, partitioning the input data, and effective use of shared memory and
device arrays provides significant further performance gains. A contribution of
this paper is to show how these techniques could also be leveraged to implement
other mesh based PDE solvers efficiently on GPUs. We discuss how the different
degrees of freedom that can be exploited to optimize a mesh based PDE solver
could be leveraged more generally, for example by exposing them in a domain-
specific language that targets this problem. Our discussion is inspired by the
recent development and popularity of Halide, a domain-specific language for
image processing.

2 Related Work

Partial differential equations based on reaction-diffusion, or Turing [14], models
have been widely postulated to be relevant in biological pattern formation, and
experimental evidence supporting this hypothesis has been found in various
instances. Pioneering work by Kondo and Asai [8] showed for the first time how
a simulation of a reaction-diffusion model correctly predicts skin patterns on the
marine angelfish, Pomacanthus. For an excellent recent survey we refer to the
review by Kondo and Miura [9].

There is an abundance of libraries and frameworks for mesh based PDE
solvers that target a variety of systems, ranging from GPUs to large-scale clusters.
Libraries like PETSc [3] or Sandia’s Sierra [2] build on the SPMD model to
enable programmers to write code that largely resembles single-threaded pro-
grams, while execution may be distributed over a variety of processors. Similarly,
Liszt’s [5] concept of “for-comprehension” allows the system to choose a parallel
implementation, while hiding this from the program code. Other frameworks [4, 6]
rely on the concept of kernels to express computations that need to be executed
on a set of data elements. While some of these systems include back-ends for
GPU code generation, they do not easily allow the user to optimize the per-
formance of GPU code. In contrast, Halide [12] is a domain-specific language
for image processing that also abstracts away the parallel execution from the
specification of an algorithm. A key idea is that it allows the user to provide a
so-called schedule in addition to the algorithm, which is a high level description
of a desired parallel execution configuration. By adjusting the schedule a user
can obtain highly optimized implementations for various back-ends including
multicore CPUs and GPUs. Halide is restricted to operate on the rectangular



(a) Laplace-Beltrami (b) Face gradient (c) Vertex gradient

Fig. 1: Illustrating discrete geometry operations

topology of images, however, and it does not consider general meshes. We believe
our optimizations could be exposed in a similar high-level language, but targeted
at processing data on meshes.

3 Computational Model

We first present a chemotactic RD model that has been proposed for snakeskin
pattern formation [11]. We then explain the use of discrete geometric constructs
to simulate this PDE based system on an arbitrary mesh. Finally, we give the
details of the simulation steps.

Reaction-Diffusion with Chemotaxis. The chemotactic model proposed by Murray
et al. [11] is expressed mathematically in a dimensionless form as,

∂fn
∂t

= D∇2fn − αfn∇2fc − α∇fn · ∇fc + srfn(N − fn) ,

∂fc
∂t

= ∇2fc + s

(
fn

1 + fn
− fc

)
. (1)

Here, fn is a non-negative cell density function, fc is a non-negative chemoat-
tractant density function, ∇2 is the Laplacian operator, ∇ is a gradient operator,
D a positive cell diffusion rate, α a positive chemotactic rate, r the cell growth
rate, s a positive scale factor, and N the maximum cell density capacity. The
PDEs operate on a restricted region within the snakeskin surface, subject to
zero Neumann boundary conditions. For further discussion of the cell-chemotaxis
model see the work by Murray [11] and Winters et al. [1].

FEMs and Discrete Geometry. We use discrete geometric operators to simulate
Equation 1 on an arbitrary surface. The Laplacian ∇2 is replaced by a Laplacian-
Beltrami operator that is evaluated for a surface function f around a mesh vertex
vi as,

∇2f(vi) =
1

2Ai

∑
vj∈N1(vi)

(cotαij + cotβij)(f(vj)− f(vi)) . (2)



Here, Ai is the area of the averaging region dAi around vertex vi and (cotαij +
cotβij) is called cotangent weighting. Figure 1a illustrates the calculation. Reuters
et al. [13] state that using cotangent weights with the normalizing weights as Ai’s is
equivalent to a lumped-linear FEM formulation for the Laplace eigenproblem. We
thus use these weights as expressed in Equation 2. Next we compute the function
gradients in two steps: (a) computing face-gradients from the function values
at vertices, and (b) computing vertex-gradients at the vertices by appropriate
weighted averaging over face-gradients. For a face ui consisting of vertices vi, vj
and vk the face-gradient is given by,

∇f(ui) = (f(vj)− f(vi))
(xi − xk)⊥

2AT
+ (f(vk)− f(vi))

(xj − xi)
⊥

2AT
, (3)

where x is the 3D coordinate of vertex v, AT is the area of the face and ⊥ is
a counterclockwise rotation of a vector by 90◦, at its tail, in the triangle plane.
The definition is illustrated in Figure 1b. Next, the gradient for each vertex vi is
computed as,

∇f(vi) =
∑

uj∈nbr(vi)

∇f(uj)wj . (4)

Here nbr(vi) is a set of faces uj incident on vertex vi and wj are the normalized
weights for neighborhood-averaging, see Figure 1c. With an appropriate choice
of the weights in Equations 3 and 4, these computations approximate first order
differentials well [10]. We simply use the incident angles θj to generate normalized
weights for Equation 4 since this is appropriate in a discrete geometric sense.

Euler Integration. For our simulation we use explicit time-stepping. For a system
state Y (t) defined by (fn, fc), we calculate the state at later time Y (t+ δt) =
Y (t) + δt(∂Y/∂t), where δt is a small time-step. Each simulation begins with: (a)
An initialization with parameters D = 0.25, r = 1.522, α = 12.02, s = 1 and
N = 1 unless otherwise specified. Also fn = N and fc = N/(1 +N) and we add
minor random perturbations to both. This is followed by: (b) A transition loop
where all gradients are computed using discrete operations, as discussed earlier,
to evaluate the time-derivatives in Equation 1 and to update the system state
Y (t) through explicit time-stepping. Finally: (c) we terminate the iterations in
the transition loop upon reaching convergence or a predetermined number of
time-steps. We use time-steps δt of a fixed size that is small enough and O(dx2),
where dx is the average edge length for the given mesh.

4 GPU Optimizations Step

update()

n[]

lap() faceGradient()

vertexGradient()

c[]

lap() faceGradient()

vertexGradient()

Fig. 2: The baseline implementation

In this section we describe in detail our use
of various GPU optimization techniques
and state their overall impact briefly.
Later, in Section 5 we provide an in-depth
performance analysis for each of the tech-
niques to understand their influence on the
speedup.



(a) Graph

v0 v1 v2 v3

v0

v1

v2

v3

0

0

0

0

0

0

1 1

1 1

1

11

11

1

(b) Adjacency matrix

Indices:

Offsets:

1 2 0 2 3 0 1 3 1 2

0 2 5 8 10

(c) Compressed sparse row

Fig. 3: Storing neighborhood references

Step

update()

n[],c[]

lap() faceGradient()

vertexGradient()

(a) Fusion 1

lap()

faceGradient()

vertexGradient()

compute() {
// face gradients
...

//vertex gradients
...

// laplacian
}

co
m

p
u
te

()
(b) Fusion 2

compute()

update()

step() {
// face gradients
...

//vertex gradients
...

// laplacian
...

// update
}

step()

(c) Fusion 3

Fig. 4: Implementation outline for Fusion 1, Fusion 2 and Fusion 3

Naive baseline implementation. We begin with a baseline GPU implementation
for our iterative transition loop with four CUDA kernels as shown in Figure 2.
Kernel lap() computes surface Laplacians for functions fn and fc as expressed
in Equation 2. We then compute gradients with kernels faceGradients() and
vertexGradients() implementing Equations 3 and 4 respectively. Finally, we
compute the time-derivatives and update the system state Y (t) ≡ (fn, fc) in
kernel update() with an explicit time-step. Our baseline implementation uses: (a)
one thread per vertex, (b) a compressed sparse row (CSR) representation for vertex
connectivity (see Figure 3c), (c) only the memory registers and the global memory.
This implementation incurs huge memory overloads due to uncoalesced, repetitive
memory accesses for the context data and intermediate results stored in the global
memory. Also, it experiences frequent thread stalls due to divergent executions.
The naive baseline implementation still provides a speedup of about 125× with
single-precision operations compared to a single-threaded CPU implementation.

Our optimized implementation. Mainly there are two areas that deserve con-
sideration for optimizations, namely: (a) computational flow, and (b) memory
accesses. We perform three kernel fusions as depicted in Figure 4 to optimize the
computational flow and use shared memory and device arrays to optimize memory
accesses. With these optimizations, we improve performance by a multiplicative
factor of about 4 over the baseline version. This gives overall improvements on
the order of 500× for the single-precision version and 350× with double-precision
operations.

Kernel fusions. The baseline computation flow has two major areas of improve-
ment: (a) shared input data, mainly the function values, are loaded repeatedly for
each kernel and (b) intermediate data resides in global memory. We first improve
by fusing together the computation kernels for fn and fc. This reduces kernel



invocations from 7 to 4 (see Figure 4a). Then, we merge the computing kernels
together (see Figure 4b) and finally, we merge the remaining two kernels into one,
as shown in Figure 4c. Fusion 1 results in 1.5× performance gains but Fusion 2
& 3 does not give immediate gains. However, Fusion 2 leads to important data
reorganization as explained below, which ultimately reduces data access time
considerably with memory optimizations.

Mesh partitioning. Fusion 2 is problematic since kernel vertexGradient() depends
on the output of kernel faceGradient() and this warrants a synchronization.

Face
Vertex

Block 1
Face
Vertex

Block 2

Fig. 5: Vertices and faces
arbitrarily assigned to
blocks

Within a single kernel however, only block-wide syn-
chronization is possible which is insufficient. Con-
sider the computation flow for the blue block in Fig-
ure 5 where only block-wise synchronization leads
to erroneous results in vertex-gradients for shared
vertices in adjoining orange block. We thus parti-
tion the mesh such that each block is associated
to a locally fully-connected patch. The process is
illustrated by Figure 6. Partitioning results in a few
halo faces, shown in Figure 6c that are added to
multiple blocks which add few redundant computations to our computational
flow. These overheads are negligible in comparison with later gains due to memory
optimizations. We use the METIS library [7] to perform offline multilevel mesh
partitioning to: (1) produce partitions of near equal size and (2) minimize the
number of halo faces.

For Fusion 3 we merge kernels update() and compute() to reduce data transfers
for intermediate results. We use double-buffering to avoid data corruption due to
concurrent access to function values fn and fc while computing the gradients
involving halo faces. With all three kernel fusions we reduce the computational
flow optimally and reorganize data to improve memory accesses as explained
next.

Memory optimizations. There are two main areas of improving memory accesses:
(a) The same function values are accessed multiple times during the kernel run
and (b) some intermediate results reside in global memory. We first change
array indices to point to a fixed size shared memory that stores face-gradients
for a given block. Next, we use shared memory for vertex-gradients which is

(a) Input mesh

Face
Vertex

Block 1
Face
Vertex

Block 2

(b) Inner vertices + faces

Face
Vertex

Block 1

Face
Vertex

Block 2
Halo

(c) Partitioned blocks

Fig. 6: Partitioning a mesh into two blocks



offset[] neighbors[]
0
4

25
1
3
17
9

v
ertices

(a) CSR representation

25
1
3
17

0

9
vertices

n
eig
h
b
o
rs 0

(b) 2D array

0

0 0

0

pitch
25
1
3
17

0

9
vertices

n
eig
h
b
o
rs 0

(c) Pitched 2D array

Fig. 7: Reorganizing neighborhood references using device arrays

slightly complicated. With this new optimization, each thread first calculates
the face-gradients and then adds the result to the vertex-gradient stored in the
shared memory. Thus, to avoid data corruption due to concurrent accesses during
vertex-gradient computations, we make some operations atomic. Using shared
memory in conjunction with kernel fusions yields, in general, a multiplicative
gain of 2.25× over our baseline version.

Next, we use device arrays to make memory accesses more efficient. Efficient
in this context means coalescing loads and stores. Global memory is divided into
segments of 128 bytes. Thus, coalescing global memory accesses needs manual
reorganization of the memory. 2D and 3D device arrays support such memory
reorganizations. In the following, the process for using device arrays is explained
in a simplified manner using the Laplacian computation as an example. Now, the
neighbors for each vertex are stored using compressed sparse row representation
(CSR), refer Figure 7a. In each iteration, all threads of a warp access the neighbor
with the same neighbor count. This leads to an inefficient access pattern since the
array is sorted by vertex and not by neighbor count. Moreover, the first thread of
any warp except the first warp accesses a completely random address. For these
memory transactions to be fully coalesced two things need to be fulfilled. (1) The
first thread of any warps needs to access the first element of a 128 byte segment.
(2) All following threads need to access consecutive elements. For this purpose we
store the neighbors in a 2D array as shown in Figure 7b. The vertices are stored
into columns where column i stores the neighbors for vertex i. Therefore each
row stores the neighbors with the same neighbor count. This representation thus
fulfills the second requirement for full coalescing since the 2D array is stored to
memory by rows. Next, we add a pitch at the end of each row to ensure that
the first entry for the next row begins at an index that is a multiple of 32, see
Figure 7c. This thus satisfies our first criterion for full coalescing. Note however,
that 2D device arrays are not sufficient to fully coalesce this access in our case.
3D arrays are needed where the third dimension is the block count. Each slice
then represents one block.

Using device arrays in conjunction with previous optimizations yields, in
general, a multiplicative gain of 4× in comparison with our baseline version.
We tried other optimization techniques such as using vector types. However, the
performance gains for those techniques is not significant and we omit them from
our discussion.



(a) A rectangular mesh (b) Kaa the virtual lab snake

Multiprocessors 13
Cores/MP 192

CUDA Cores 2496
Threads per MP (max) 2048
Blocks per MP (max) 16

Threads per block (max) 1024
Global memory 4800 MB

Shared memory per MP 48 KB
Registers per MP (32 bit) 64K

(c) GPU platform

Fig. 8: Test data and GPU platform details

Compute Utilization Memory Utilization

Laplacian Face grad. Vertex grad.

100

0

75

25

50

U
ti

li
za

ti
o

n
(i

n
 %

)

21%

65%

21%

85%

18%

75%

(a) Fusion 1

18%

65%

Single Kernel

(b) Fusion 3

30%

55%

Single Kernel

(c) Shared memory

42%
56%

Single Kernel

(d) Device arrays

Fig. 9: Compute and memory unit usage for various optimization steps

5 Results and Performance analysis

In this section we provide an in-depth performance analysis of our implementation
with various optimizations. We use an Intel Xeon E5620 processor platform with
4(×2) cores @2.4 GHz for a naive, multicore reference CPU implementation.1

Our GPU optimized implementations run on an NVIDIA Tesla K20c platform
@704MHz (core) and @2.6GHz (memory), see Figure 8c for hardware details.
For evaluations we use a set of 50 highly regularrectangular meshes ranging
in resolution from 20K to 1M vertices, see Figure 8a. We also use a virtual
lab snake (Kaa) with arbitrary surface geometry as shown Figure 8b. Kaa has
47867 vertices and 94088 triangular faces and a high irregularity in connectivity
(neighborhood variance of 3.6 vertices). We also use NVIDIA’s graphical profiling
tool that offers a collection of different metrics to analyze GPU-accelerated
applications.

Performance Evaluation. We first present utilization metrics profiled for our
different optimization steps using our rectangular mesh with 1M vertices over
individual kernel executions. Ideally one would expect 100% utilization for both
compute units and memory bandwidth, but a benchmark of 60% simultaneous
utilization is often considered very good in practice.

Figure 9a depicts utilization metrics with a barchart for the three main
computing kernels for our optimizations in Fusion 1. An average compute unit
utilization of around 20% implies that the GPU cores spend most of their time
waiting for the data to arrive. Figures 9b, 9c, and 9d show that we progressively
improve the compute unit utilization with each additional optimization step. For

1 Our CPU implementation is not explicitly optimized for the said platform.



79.9%

25

50

75

100

0

72.9%

Theoretical

Achieved

O
cc

u
p
an

cy
(i

n
 %

)

Compute

(a) Occupancy
F

ra
ct

io
n

 o
f

to
ta

l 
st

al
l 

re
as

o
n

0%

40%

30%

20%

10%

Memory throttle

Pipeline busy

Synchronization

Memory dependency

Execution fetch

Instruction fetch

Not selected

Other
1 8

8

7

6

5

4

3

2

1

2 3 4 5 6 7

(b) Stall profile

512256 768 1024
Min

Max

R
el

at
iv

e 
sp

ee
d

Vertices
19600
160000
298116
438244

Block size

(c) Block-size vs. speed

Fig. 10: Various performance profiles: (a) Occupancy metrics for the Fusion 2
step with the best launch configuration, (b) relative stall profile for the final,
most optimized implementation, and (c) impact of the block-size in the launch
profile on performance

our final optimized implementation (Figure 9d) we have achieved a considerable
improvement at 42% compute unit utilization while compromising marginally
on the memory bandwidth utilization at 56%. Importantly, using device arrays
increased global load efficiency from 34.6% to 88.9% (not shown in the charts)
and decreased global load transactions by over 60% (not shown). Thus, for a data
intensive application with relatively limited computational operations, this is a
very good trade-off in terms of utilization of the compute and the memory units.

Next, we present an examination of the occupancy metrics. Figure 10a shows
the theoretical and achieved occupancies for the best launch configuration for our
Fusion 2 implementation. A considerably low theoretical occupancy (79.9%) in
this case is compounded with even lower achieved occupancy (72.9%). This simply
means that increasing occupancy with a different configuration does not increase
performance and indicates that Fusion 2 has latency issues. Some of these issues
are resolved with shared memory and especially device array. Our final optimized
implementation has theoretical occupancy of 98.4% and achieved occupancy of
81.5% for single-precision and 78.2% for double-precision operations.

We also examine the system latencies for our final optimized implementation
with single-precision operations. Figure 10b shows the breakdown of stall reasons
averaged over an entire kernel execution. The largest share for warp latencies
are due to execution dependencies (34.7%) and memory dependencies (17.3%).
Memory dependencies are addressed by improving data access patterns. At this
point the only inefficient global memory accesses are those to the function value
arrays. There are a few common techniques to deal with irregular patterns such as
use of: (a) L1 Cache, (b) texture memory, and (c) increased use of shared memory.
We tried these options with insignificant or no performance gains. Also, execution
dependencies can be mitigated with the use of instruction-level parallelism (IPL).
In our case this doesn’t work either due to: (a) shared memory overuse, (b)
register overuse, or (c) thread overburden. Thus the stall profile show that any
further gains in performance may only be achieved with severely diminishing
returns on significant programming efforts.

For optimal performance we need to choose a suitable launch configuration,
which we found in an empirical manner. Figure 10c shows plots for relative speeds



Name Speed up factor Techniques used

R1: 19,600 R2: 1,000,000 Kaa

Baseline 101 128 98 -

Fusion 1 151 (1.5) 189 (1.47) 122 (1.25) Kernel Fusion

Fusion 2 148 (0.98) 173 (0.92) 125 (1.02) Kernel Fusion, Partitioning

Fusion 3 160 (1.08) 182 (1.05) 132 (1.06) Kernel Fusion, Double-Buffer

Shared 234 (1.47) 293 (1.61) 201 (1.52) Shared Memory, Atomic Operations

Device 366 (1.56) 506 (1.73) 275 (1.37) Device Array (2D and 3D)

Vector 379 (1.04) 535 (1.06) 317 (1.15) Vector Type

Double 269 (0.71) 357 (0.67) 224 (0.71) Double-Precision

Fig. 11: Speed up factor for each optimization with
respect to a naive multicore CPU and with respect
to the previous optimization (in brackets). R1 and
R2 are rectangular meshes of specified resolutions

Single precision
Double precision

100,000 1,000,000

C
o
m

p
u
ta

ti
o
n
al

 t
im

e
(i

n
 m

s)

4.5

4.0

3.5

3.0

2.5

Number of vertices (log-scale)

Fig. 12: Performance compar-
ison of single and double-
precision. Time per iteration
per 1000 vertices of the mesh

versus block-size for a given mesh resolution. The block-size is the most important
factor in determining a launch configuration and for most of the resolutions a
block-size of 512 or 672 gave best performance. We found that choosing a target
block-size of 512 with an assumption of 20% halo faces yields near optimal launch
configuration (i.e., atleast 99% of the best configuration performance), in general.

Speedups. Finally, we summarize the performance gains for our various optimiza-
tions in Figure 11. We also plot the speed of our final optimization in absolute
time in Figure 12 for the single and double-precision implementations for a
rectangular mesh with different resolutions.

6 Conclusions

We have described an optimized GPU implementation for solving non-linear
reaction-diffusion (RD) PDEs, which play a crucial role in biological pattern
formation, on triangulated meshes in 3D. Optimized tools like our approach
will be useful for biologists who study RD models in realistic scenarios with 3D
geometries, since they allow them to explore the parameter space of these systems
more efficiently. Our works shows that with careful optimizations that take into
account parallelism, locality, and recomputation, we can gain a significant speedup
over a naive GPU implementation. Therefore, we believe it would be fruitful
to allow programmers to explore these degrees of freedom more easily, without
resorting to low-level CUDA implementation as we did. Unfortunately, current
domain-specific languages for mesh based PDEs do not support this type of
optimization. While the Halide language [12] successfully allows the programmer
to optimize parallel code execution at an abstract level, and separately from
algorithm specification, this approach is tightly connected to the rectangular
topology of images (or higher dimensional regular grids). In particular, it exploits
the possibility to specify the order in which the dimensions of the grid should
be traversed, and whether they should be traversed sequentially or in parallel.
It is an interesting challenge for future work to generalize these concepts to
arbitrary meshes, such that they can easily be exploited by a programmer for
code optimization by providing high-level specifications.



References

1. Tracking bifurcating solutions of a model biological pattern generator. {IMPACT}
of Computing in Science and Engineering 2(4), 355 – 371 (1990)

2. A framework approach for developing parallel adaptive multiphysics applications.
Finite Elements in Analysis and Design 40(12), 1599 – 1617 (2004), the Fifteenth
Annual Robert J. Melosh Competition

3. Balay, S., Gropp, W., McInnes, L., Smith, B.: Efficient management of parallelism in
object-oriented numerical software libraries. In: Arge, E., Bruaset, A., Langtangen,
H. (eds.) Modern Software Tools for Scientific Computing, pp. 163–202. Birkhäuser
Boston (1997)

4. Brandvik, T., Pullan, G.: Sblock: A framework for efficient stencil-based pde solvers
on multi-core platforms. In: Proceedings of the 2010 10th IEEE International
Conference on Computer and Information Technology. pp. 1181–1188. CIT ’10,
IEEE Computer Society, Washington, DC, USA (2010)

5. DeVito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Barrientos, M.,
Elsen, E., Ham, F., Aiken, A., Duraisamy, K., Darve, E., Alonso, J., Hanrahan, P.:
Liszt: A domain specific language for building portable mesh-based pde solvers. In:
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 9:1–9:12. SC ’11, ACM, New York, NY,
USA (2011)

6. Giles, M.B., Mudalige, G.R., Sharif, Z., Markall, G., Kelly, P.H.: Performance
analysis of the op2 framework on many-core architectures. SIGMETRICS Perform.
Eval. Rev. 38(4), 9–15 (Mar 2011)

7. Karypis, G.: Metis - serial graph partitioning and fill-reducing matrix ordering
(march 2013), http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

8. Kondo, S., Arai, R.: A reaction-diffusion wave on the skin of the marine angelfish
pomacanthus. Nature 678(376), 765 – 768 (1995)

9. Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding
biological pattern formation. Science 329(5999), 1616–1620 (2010)

10. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry
operators for triangulated 2-manifolds. In: Visualization and mathematics III, pp.
35–57. Springer (2003)

11. Murray, J., Myerscough, M.: Pigmentation pattern formation on snakes. Journal of
Theoretical Biology 149(3), 339 – 360 (1991)

12. Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., Durand, F.:
Decoupling algorithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph. 31(4), 32:1–32:12 (Jul 2012)

13. Reuter, M., Biasotti, S., Giorgi, D., Patan, G., Spagnuolo, M.: Discrete laplace-
beltrami operators for shape analysis and segmentation. Computers and Graphics
33(3), 381 – 390 (2009), {IEEE} International Conference on Shape Modelling and
Applications 2009

14. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of
the Royal Society of London B: Biological Sciences 237(641), 37–72 (1952)


