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Figure 1: The key idea of our sketch-based image retrieval system is to dynamically re-rank query results by clustering them
using convolutional neural network features learned for image classification. We show a comparison of a state of the art deep
learning method for sketch-based image retrieval (left, the Sketchy features [Sangkloy et al. 2016]), to our approach (right).
We present the top 20 results for two example queries on the Flickr15k dataset to demonstrate the improved quality of our
query results.

ABSTRACT
We present a sketch-based image retrieval system, designed to an-
swer arbitrary queries that may go beyond searching for predefined
object or scene categories. While sketching is fast and intuitive to
formulate visual queries, pure sketch-based image retrieval often re-
turnsmany outliers because it lacks a semantic understanding of the
query. Our key idea is to combine sketch-based queries with inter-
active, semantic re-ranking of query results. We leverage progress
in deep learning and use a feature representation learned for image
classification for re-ranking. This allows us to cluster semantically
similar images, re-rank based on the clusters, and present more
meaningful query results to the user. We report on two large-scale
benchmarks and demonstrate that our re-ranking approach leads
to significant improvements over the state of the art. Finally, a user
study designed to evaluate a practical use case confirms the benefits
of our approach.
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1 INTRODUCTION
We present an image retrieval system to find images based on
simple visual scene descriptions that are given as sketches. We
support sketches that can be more specific than just a scene or
object category, and that are simple enough so they can be provided
by an untrained user. Our approach is not limited to pre-determined
sets of object or scene categories, does not rely on metadata, and
does not require an already available example image. In addition,
we designed our system to support a typical scenario where users
refine their search iteratively to retrieve as many images as possible
that match a desired concept in a limited amount of time. Finally,
users would select the one retrieval result that they like best.

We tackle these challenges using a sketch-based approach. Sketch-
ing is attractive because it allows a user to quickly produce a visual
representation of a desired scene, and sketches can be matched to
images even in the absence of metadata or already available exam-
ple images. Sketch-based image retrieval has been explored widely.
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One approach is to recognize the object category that the user has
drawn, and then retrieve images that contain the desired category.
This approach is limited, however, to pre-existing categories that
have been used to train the system. On the other hand, a hand-
crafted low-level representation of a sketch can be matched with
images in the database directly. Unfortunately, this approach leads
to inconsistent results in practice, often ranking images highly that
do not semantically match the sketch. A more recent approach is to
learn a representation by training a convolutional neural network
using a large training set of sketch-image pairs, such as the Sketchy
database [Sangkloy et al. 2016]. This approach works well on data
that is sufficiently similar to the training set, but often fails on
categories or more fine grained scene descriptions that were not
seen during training, as we show in Figure 1 and in more detail in
our results section.

A key idea of our approach is to address this issue by combining
sketch-based image retrieval using handcrafted low level features
with a re-ranking technique applied to the query results. For re-
ranking we leverage recent progress in deep learning of image
features, which leads to semantically meaningful clusters of sketch-
based query results, and meaningful rankings as shown in Figure 1
on the right. It is interesting to observe that both approaches in Fig-
ure 1 leverage deep convolutional networks. While Sketchy [Sangk-
loy et al. 2016] is specifically trained on sketches, however, our
approach performs re-ranking using a network trained on images
only. Crucially, the Sketchy database is much smaller than the im-
age database that trained the network we use. We believe that this
is the main reason why our results are much more robust than the
retrieval using Sketchy. Finally, our system supports an interac-
tive, iterative query process, where the clustering of current query
results is used to refine subsequent queries. This enables users to
quickly find a large number of images that are relevant to their
search.

We evaluate our re-ranking technique using two large-scale
benchmarks for sketch-based image retrieval and show that it pro-
vides significant improvements over the state of the art. We further
conducted an extensive user study, where we evaluate our interac-
tive application in a more practical usage scenario. We show that
our approach leads to significantly improved retrieval performance
over two baseline systems, and it is generally preferred by the users
in our study. In summary, we make the following contributions:

• An interactive, sketch-based image retrieval system that
supports searching for images based on scene descriptions
that are not restricted to a set of pre-existing object or
scene categories.

• A powerful re-ranking technique based on deep learning
features that significantly improves retrieval performance
of the underlying descriptor.

• A user study that evaluates our system and shows how the
combination of sketching and clustering leads to superior
performance compared to two baseline systems restricted
to sketching and clustering only.

2 RELATEDWORK
Sketch-Based Image Retrieval. Our approach is most related to

sketch-based image retrieval (SBIR), where the query is given as

a sketch instead of a photographic image. Most SBIR techniques
work by extracting low-level features from the query, and matching
them with the features of the database images. Matching can be
performed locally, by discretizing images into cells and matching
features in each cell, or globally, using bag-of-words (BoW) tech-
niques. In both cases, a main challenge is the design of appropriate
features. For example, Hu et al. [2010] propose the Gradient Field
HoG (histogram of oriented gradients [Dalal and Triggs 2005])
descriptor (GF-HoG) for sketch-based image retrieval, and they
show improved accuracy over HoG. Eitz et al. [2011] propose a
bag-of-features approach and benchmark different local descriptors.
They observe that SIFT descriptors extracted by sampling keypoints
on Canny edges (SHoG) outperform other methods (Tensor, HoG,
shape context [Belongie et al. 2002], spark descriptor) on their
benchmark. Saavedra et al. [2014] identify keyshapes (arcs, lines,
circles, ellipses) instead of keypoints to extract local descriptors.
Global descriptors are constructed using a bag-of-features approach.
Improvement over SHoG [Eitz et al. 2011], however, is marginal.
Saavedra [2014] also introduces Soft-Histogram of Edge Local Ori-
entations (S-HELO), an extension of HELO [Saavedra and Bustos
2010] (cell-wise Histogram of Edge Local Orientations) that adds
spatial information. Eitz et al. [2012] developed a representation
based on Gabor filters (GALIF) for sketch-based 3D shape retrieval,
which has been used successfully in SBIR methods [Li et al. 2015].

Qiang et al. [2015] introduce a framework based on Product
Quantization with sparse coding to construct an optimized code-
book, using a state-of-the-art local descriptor (GALIF). The key idea
is to reduce information loss by using a large codebook size, and
they show performance improvements on standard benchmarks
over previous BoW techniques. Finally, Li et al. [2014] tackle the
problem of fine-grained SBIRwithin object categories. A deformable
part-based model is learned to encode poses. Graph matching is
performed for retrieval. They outperform both bag-of-feature and
spatial pyramid approaches. Other techniques have explored the
use of additional information that may be extracted from sketches,
or provided by the user, such as saliency [Takahiko and Ryutarou
2014], regions of interest [Liang et al. 2014], symmetry [Cao et al.
2013; Parui and Mittal 2014], or color [Sun et al. 2013].

Achieving interactivity is challengingwith huge image databases.
Yang et al. [2011] address this by proposing a raw contour-based
matching algorithm with an index structure. The idea is based on
Oriented Chamfer Matching (OCM) but with an efficient index
structure for scalability. Zhou et al. [2012] achieve large scale image
retrieval by identifying a main region and a region of interest (RoI)
for each image. The main region is a weighted centroid of image
features and enables scale and translation invariance, and the RoI
is used to identify important objects in complicated scenes.

Our approach is mostly orthogonal to the above techniques since
our main goal is not to develop a novel representation for SBIR.
Instead, we introduce a system that combines an SBIR technique
with on-the-fly clustering to provide users with effective, interac-
tive image retrieval capabilities. Our technique shares similarities
with Sun et al.’s framework [2012]. They use an existing represen-
tation [Yang et al. 2011] for SBIR, and leverage the query results to
estimate the most likely category using a graphical model, which
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may also include metadata such as text labels. In contrast, our ap-
proach is completely unsupervised. Most importantly, our approach
supports users to answer queries that go beyond finding images that
match certain pre-existing labels or categories. Instead, we leverage
powerful clustering based on convolutional neural network (CNN)
features that groups query results in a semantically meaningful,
unsupervised manner. Qian et al. [2016] propose a SBIR system
that also leverages re-ranking. Their approach is based on visual
feature verification in SIFT feature space. In contrast, our method is
much simpler, uses deep learning features instead of hand-crafted
features, and performs better on average.

Convolutional Neural Network Features. Progress in deep learn-
ing using CNNs has led to astonishing advances in many computer
vision tasks recently. As a consequence, features extracted from
networks trained on object recognition or image classification have
largely replaced previous handcrafted features. A survey of this
fast evolving field, however, is outside the scope of this paper. To
provide an example, Razavian et al. [2014] demonstrate that fea-
tures extracted from a deep CNN trained on image classification
work very well as a generic image representation to tackle various
recognition tasks, namely scene recognition, fine grained object
recognition, attribute detection, and image retrieval.

Deep CNNs have also been used for sketch recognition. Sed-
dati et al. [2015] train a network on the TU Berlin dataset [Eitz
et al. 2012], and Sarvadevabhatla [2015] takes features directly
from networks trained on image classification. Both report superior
performance compared to previous work based on hand-crafted
features for sketch classification. Directly using CNN features of
a query sketch for SBIR, however, does not lead to successful re-
sults in our experience. Cross-domain retrieval can be achieved by
training Siamese networks to learn features for two domains simul-
taneously. Wang et al. [2015] use this approach to learn features for
both sketches and line renderings of 3Dmeshes for sketch-based 3D
shape retrieval. Similar approaches were also used to train features
for SBIR [Sangkloy et al. 2016; Yu et al. 2016]. We show that the
state of the art approach by Sankloy et al. [2016] still benefits from
our re-ranking technique.

3 SKETCH-BASED IMAGE RETRIEVAL WITH
DYNAMIC SEMANTIC RE-RANKING

Here we present our interactive SBIR system, called SmartSketcher.
The input to this system is an image collection of up to several
hundred thousand images, typically gathered from Internet images
using a keyword search, thus representing a specific semantic idea
such as “airplane”, “dog”, or “boat”, or any other image dataset.
Using such datasets, SmartSketcher enables the user to retrieve
specific images that he has in mind, for example, “an airliner on
the ground seen from the side, with a tower in the background”. The
user expresses this conception by drawing a rough sketch and the
system presents matching images to the user in real-time. The sys-
tem supports an interactive, iterative workflow, where subsequent
queries are refined based on previous query results. It is designed to
retrieve as many matching images as possible with few interactions
in a short time. The final output is a list of images that matches the
user’s conception.

Semantic cluster c1

s1

f1

i1

sn

fn

in

Initial query results

Semantic cluster c2

Semantically re-ranked query results

Figure 2: Schematic visualization of our re-ranking tech-
nique. Each image ii in the query result has (1) an associated
similarity score si based on its distance to the query sketch
in a low-level representation (grayscale), and (2) a semantic
representation fi (green and red) derived fromdeep learning
on a large image database. The top row shows the retrieval
results using the similarity scores, before re-ranking. The
bottom row shows the semantically re-ranked retrieval re-
sults and the corresponding semantic clusters c1 and c2.

The key component of SmartSketcher is a re-ranking technique
that improves the performance of an arbitrary retrieval system
and enables the user to resolve semantic ambiguities, described
in Section 3.1. We present the overall system with the underly-
ing geometric SBIR method and support for iterative queries in
Section 3.2.

3.1 Dynamic Semantic Re-ranking
Typical SBIR methods query nearest neighbors by computing simi-
larity scores in some low-level feature domain. Most users do not
have the skills to provide precise and detailed input sketches, how-
ever, and ordering query results according to low-level similarity
scores typically includes many undesired images ranked close to
the top. As a consequence, significant user effort is required to
browse through query results and select images that match the
query. Hence a key idea in our system is to reorganize the query
results in a semantically meaningful manner, which we achieve by
re-ranking them using a representation derived from deep learning
on a large image database. Figure 2 shows a schematic visualization
of the proposed re-ranking technique.

Razavian et al. [2014] demonstrate that features extracted from
a deep CNN trained on image classification work very well as a
generic image representation to tackle various recognition tasks.
Inspired by this, we use hidden layer activations of a deep CNN
trained on image classification with the intuition that because the
CNN is trained on image classification, the representation learned
by the network will capture semantic information, which enables a
semantic re-ranking of the query results. Given the results from an
underlying SBIR system, we first compute their semantic features,
which are independent of the query sketch, to group them into
k semantic clusters, or modes, using k-means clustering. If the
results from the initial SBIR contain some correct images, these
will form a dedicated semantic mode. The goal is to re-rank the
results such that the the cluster containing the correct images will
be ranked on top. To achieve this, we rank each cluster based on
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Figure 3: The user interface of SmartSketcher consists of two
windows. The left window shows the grouped retrieval re-
sults and the right window is used to express the query. The
user interacts with the canvas using the Wacom pen. Once
the user collected a matching image, he can optionally ig-
nore the sketch for further retrieval. The results window is
divided into two parts: the top pane shows the clusters and
the bottom pane shows the cluster members. The user can
mark a cluster in the top pane as “undesired”.

the average similarity score of its members. The intuition is that
if the result from the initial SBIR contains enough signal, i.e. the
correct images are scored higher than the noise images on average,
the proposed approach will rank the desired cluster on top. Within
individual clusters, we finally order the images according to the
initial similarity scores. It is clear that this approach only works if
there are enough highly ranked correct images in the initial results,
andwe show in our experiments that this approachworks extremely
well on three different SBIR systems. We also experimented with
re-ranking based on per-cluster average rank instead of average
similarity score, and we find that similarity score outperforms rank
on average.

In addition to the improved ranking, the proposed method allows
us to present different semantic modes in the data to the user. Our
system displays average images and representative images for each
cluster, which enables the user to quickly find the desired mode.
To maintain interactivity, we use a fast k-means implementation
on the GPU [Catanzaro 2013] and only consider the top n results
for clustering. The resulting clusters from the k-means algorithm
are very sensitive to the initialization step. To achieve a more ro-
bust re-ranking, we run k-means 50 times with different random
initializations. We run a fixed number of 20 iterations for each
initialization to maintain interactivity. We then select the initializa-
tion with the smallest error and run k-means with this initialization
until convergence.

3.2 The SmartSketcher Image Retrieval System
In our SmartSketcher image retrieval system we combine SBIR and
dynamic clustering in a unified interactive framework. To make
better use of the power of the CNN features, we leverage them
not only to re-rank and present query results but also to refine
the similarity score computation for subsequent queries. Figure 3
shows the user interface of SmartSketcher.

3.2.1 Low-level Representation. Since our system is designed to
retrieve very specific images, our low-level representation to match

sketches and images consists of a single global feature vector that
encodes both spatial and rotational information. For this purposewe
leverage a representation based on histogram of oriented gradient
(HoG) features. We use a dense SIFT implementation [Vedaldi and
Fulkerson 2008] to extract local features on a regular grid of dense
keypoints and we concatenate these local descriptors to form one
global feature vector. As shown in Section 4 we find that HoG yields
very high precision for small recall values, which is important in our
application, and a quantitative comparison to state of the art deep
learning features [Sangkloy et al. 2016] supports our choice. We
emphasize, however, that other approaches could be used instead,
and the key of our technique is to semantically re-rank the results
from an arbitrary SBIR system, which enables users to answer
complex queries.

3.2.2 Real-Time Retrieval. For image retrieval, the user draws a
query sketch that is matched against all the images in the database.
Let дI denote the global HoG descriptor extracted from image I and
дQ the descriptor extracted from the query sketch Q . We denote
l Ii the local descriptor extracted from image I at keypoint i , i.e.
дI = (l I0 , . . . , l

I
n−1), where n is the number of keypoints on the grid.

The partial similarity between Q and I is computed as the mean
of the dot products between local features at the corresponding
keypoints,

sim(Q, I ) =

n−1∑
i=0

l Ii · l
Q
i

n−1∑
i=0

nz(l
Q
i )

, (1)

where

nz(v) =

{
1, if v , 0
0, otherwise

. (2)

To avoid penalization of sparsity of the query sketch, we normalize
by the number of non-empty local features in the query. Note that
the dot product in the nominator in Equation 1 is not normalized.
Local features in Q are typically sparse and a normalization of l Ii
would penalize images with denser features. Since our system is
interactive and we assume the user to draw sparse strokes, such a
normalization would not be meaningful.

Evaluating Equation 1 produces a ranking of all images in the
dataset. We compute this ranking twice, once for the original query
sketch and once for a normalized version. We normalize the query
by scaling the sketch such that its bounding box covers 0.7 times
the canvas size and translate it to be centered. The final similarity
score for each image I is

s(Q, I ) = max(sim(Q, I ), sim(Q̄, I )), (3)

where Q̄ is the normalized query. With this approach, the user can
precisely define the locations of objects in the image, but does not
have to care about the exact scale and position in case he wants to
retrieve images with just a single object.

3.2.3 Iterative Queries. To support iterative queries, SmartS-
ketcher includes two extensions enabled by the incorporation of
the CNN features. First, we enable the user to mark entire modes in
the query results as “undesired”, that is, to express that a particular
mode does not represent the concept in mind. During subsequent
retrievals, we penalize images that are close to the marked modes
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in CNN feature space. If the number of marked modes exceeds a
certain threshold, we greedily merge a newly marked mode with
its nearest neighbor in the list of marked modes by replacing the
appropriate mode with the average to maintain scalability. Second,
SmartSketcher maintains a list of positive images, that is, the images
that the user already selected as matches for the desired concept.
The user continuously adds images to this list during interactive
search, and our system considers them as targets in subsequent
retrievals. A naive implementation would be to favor images that
are close to at least one positive image. However, this approach
scales linearly to the number of positive images and retrieval be-
comes slow once the user collects more images. Also, the approach
often does not work well since the image content that is salient to
the CNN does not necessarily correspond to the semantic concept
the user has in mind. To overcome these two issues, we cluster the
list of positive images to come up with a model of the concept the
user has in mind in CNN feature space. Subsequent retrievals favor
images that are close to at least one cluster centroid. This approach
scales well and yields superior results.

Wemodify Equation 3 to include these two extensions and obtain
the final similarity score for image I in database D as

s(Q, I )

max
J ∈D

s(Q, J )
+ α max

a∈A
(1 − d(a, I )) + β

∑
b ∈B

d(b, I ), (4)

whereA denotes the set of centroids of the positive images, B is the
set of undesired modes marked by the user, and d is the normalized
L2 distance in CNN feature space, that is,

d(x ,y) =
∥x − y∥2

max
z∈D

∥x − z∥2
. (5)

In our experiments, we set α = 1 and β = max(|B | , 2)−1. The user
interface of SmartSketcher also features an option to ignore the
sketch drawn by the user during retrieval, once the user collected
some positive images. If the user enables this option, the first term
in Equation 4 is omitted for subsequent retrieval.

3.2.4 Implementation Details. In a preprocessing step, we com-
pute our HoG descriptor for each image in the database off-line.
During on-line retrieval, the same descriptor is extracted from the
query sketch and matched against the descriptors of all images in
the database. To achieve real-time performance, we perform match-
ing on the GPU. Before computing the descriptors, we scale the
images in the database to 500 pixel resolution, that is, the larger
size is scaled to 500 pixels. We extract Canny edge maps [Canny
1986] from the resized images, and pad the edge maps with zeros
to fit a resolution of 500x500 pixels. For each edge map, we then
extract a global HoG feature vector. A local feature has 4x4 spatial
bins and 10 orientation bins for gradient directions. Similar to Eitz
et al. [2011], we ignore information about edge direction and only
distinguish 5 orientations from 0 to π . We use a relatively large
local feature size of 128 pixels, that is roughly 25% of the image
size. Local features are extracted on a grid with a stride of 32 pixels
which results in a 11520-dimensional global feature vector for each
image.

For the semantic re-rankingwe use CaffeNet, a deep CNN trained
on the ILSVRC 2012 image classification challenge from the Caffe
deep learning framework [Jia et al. 2014] as feature extraction

Table 1: MAP for different SBIR methods on the Flickr15k
benchmark. Our re-ranking boosts the performance of the
previous state of the art (Sketchy) by about 20%.

method re-ranking parameters MAP
HoG - 0.1506
HoG re-ranked k = 5,n = 500 0.1923
HoG re-ranked k = 30,n = 3000 0.2532
Sketchy - 0.2515
Sketchy re-ranked k = 5,n = 500 0.2699
Sketchy re-ranked k = 30,n = 3000 0.2993
GF-HoG BoW - 0.1222

pipeline. In a preprocessing step, we compute feature vectors for all
database images by propagating them through the trained CNN and
extracting hidden layer activations from the “pool5” layer, which
results in a 9216-dimensional vector for each image. We first scale
the images such that the smaller size is 256 pixels, and crop them
to a square size to fit the input layer of the CNN. Similar to Szabo
et al. [2015], we apply L2 normalization on the feature vectors. We
store the feature vector components as single bytes by scaling and
quantizing to 256 bins to reduce memory requirements. We did not
notice an appreciable difference due to this loss of precision for our
application.

For 500k images, GPU memory footprint is less than 6 GB for the
HoG descriptors and less than 5 GB for the CNN features. Retrieval
with subsequent re-ranking takes less than one second on an Nvidia
TITAN X GPU. One could easily reduce the memory footprint and
decrease retrieval time by using an inverted index or approximate
nearest neighbor methods.

4 RESULTS
To evaluate our re-ranking technique, we report results on two large-
scale SBIR benchmarks (Section 4.1). In addition, we conducted a
user study (Section 4.2) to evalute SmartSketcher, our interactive
application introduced in Section 3.

4.1 Large-scale SBIR Benchmarks
We employ the Flickr15k benchmark [Hu and Collomosse 2013] for
SBIR to compare our re-ranking approach with HoG features, and
the Sketchy features [Sangkloy et al. 2016], a state of the art SBIR
technique based on deep learning. Flickr15k consists of approxi-
mately 15k images and 330 query sketches, and each image-query
pair has a label as either relevant or irrelevant. We use Mean Av-
erage Precision (MAP) as a metric for comparison. To obtain the
MAP score, we compute the average precision (the average fraction
of retrieved images that are relevant, over all retrieval thresholds)
for each of the 330 queries, and then take the mean over all queries.
We follow the approach by Hu et al. [Hu and Collomosse 2013] and
use trec_eval, an implementation from the TRECVID benchmark
for the computation of MAP.

Table 1 shows MAP values for our global descriptor proposed
in Section 3 (HoG) and the re-ranked version with two different
parameter sets, which clearly shows the benefits of re-ranking. We
see that the re-ranking parameters (number of clusters k , number
of clustered images n) have a clear influence on the MAP score, and
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Figure 4: Precision-recall curves for HoG and Sketchy on
Flickr15k, averaged over all queries. Re-ranked HOG pro-
vides better precision at lower recall values (the top 394 re-
trieval results in average, see Figure 5) compared to Sketchy.
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Figure 5: Precision in thefirstm retrieval results forHoGand
Sketchy on Flickr15k, averaged over all queries. Re-ranked
HOG outperforms Sketchy up to almost 400 retrieved im-
ages, which is attractive for interactive applications.

we justify our setting for SmartSketcher (k = 5,n = 500) below.
Interestingly, re-ranking the HoG results even outperforms the
Sketchy features [Sangkloy et al. 2016]. For comparison purposes
we also applied our re-ranking to the Sketchy results, and observe
that our approach also boosts the MAP performance of Sketchy
by about 20%. This may be surprising, since the Sketchy features
were learned by pretraining the Sketchy network on ImageNet for
image classification, similar to the features we use for clustering. It
indicates that fine tuning the cross-domain mapping on a smaller
amount of data (compared to ImageNet) causes the Sketchy net-
work to ignore useful information acquired during pretraining and
to degrade the distinctiveness of the Sketchy features. Lastly, we
include the MAP of GF-HoG reported by Hu et al. [2013] as an
additional reference.

The results in Table 1 reveal that Sketchy clearly outperforms
our HoG descriptor in terms of MAP. We emphasize, however, that
MAP is not necessarily appropriate to measure performance of
SBIR systems because it weights precision equally over all recall
values (fraction of relevant images that are retrieved). For a practical
application it is important to obtain high precision for lower recall
values (the first few hundred relevant results), since users will
typically not browse through thousands of images. Precision beyond
recalling several hundred relevant results is less important.

We illustrate this in Figure 4, where we plot precision-recall
curves for our HoG features and the Sketchy features. We see that
our HoG features yield much higher precision at low recall values.

In practice this means that the firstm results contain more relevant
images when using HoG. This is shown quantitatively in Figure 5
and qualitatively in Figure 6. We refer to the supplemental material
for more qualitative comparisons. On average over all Flickr15k
queries, HoG provides higher precision (more relevant results) than
Sketchy in the firstm = 180 results, as shown in Figure 5. Moreover,
after re-ranking HoG outperforms Sketchy in the first m = 394
results. This can be explained as follows: large datasets are likely to
contain many images with similar edges as in the query sketch, and
HoG does a very good job at ranking such images highly. The draw-
back of our HoG features is their lack of invariance and semantic
information. Hence, there are usually many more relevant images
in the database than can be identified with HoG. In contrast, the
Sketchy features are trained to be invariant to geometric variations
and represent semantic information. Hence, Sketchy works well
for object categories that were seen during training. Sketchy also
manages to rank results highly where object location, pose, or scene
composition do not match with the query sketch, and retrieve many
more relevant results than HoG, which leads to higher precision at
larger recall values compared to HoG. However, Sketchy does not
generalize well to unseen categories.

As a consequence, our HoG descriptor combined with a powerful
re-ranking technique to overcome the lack of semantics is a better
choice for fine-grained image retrieval using a large dataset. In
SmartSketcher we set n = 500 and k = 5, which yields the best
precision for small recalls as shown in Figure 4. This also allows
us to perform clustering in less than one second and provide an
interactive user experience.

We next compare our approach to the recent re-ranking tech-
nique byQian et al. [2016] using the large-scale benchmark that they
introduced. The dataset consists of 362 query sketches, a sketch-
describable image collection of 68,647 labeled images, and a distrac-
tor set of 227,915 images. We evaluate our re-ranking approach on
this dataset and compare to the SBIR system of Qian et al. [2016].
They use an initial SBIR system based on the Edgel Index [Yang
et al. 2011], which serves as input to their re-ranking and query
expansion framework. To compare our re-ranking approach to their
framework, we use the same baseline SBIR system based on the
Edgel Index. Following Qian et al. [2016], we compute precision in
the firstm retrieval results, averaged over all 362 queries,

p(m) =
1
Z

Z∑
t=1

1
m

m∑
i=1

Rt (i), (6)

where Z = 362 and Rt (i) is the binary relevance for query sketch
t and retrieval result i . The comparison in Figure 7 shows that
our re-ranking improves the performance of the underlying Edgel
Index retrieval by a large margin. In addition, our mean average
precision (i.e. the area under the average precision curve) improves
over the best performing method proposed by Qian et al. [2016],
although our approach does not significantly improve the top-1
average precision. We do not currently perform query expansion,
but could likely further improve our results with such a strategy.
We believe our advantage over Qian et al. stems from the semantic
CNN features that are superior to the classical SIFT features in
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Figure 6: Top 20 results for two example queries on the Flickr15k dataset, with (HoG re-ranked) and without re-ranking (HoG)
of query results. The state of the art Sketchy features lead to lower precision for the top few hundred query results (see also
Figure 5). We refer to the supplemental material for more qualitative results.
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Figure 7: Precision in the firstm = 50 retrieval results in the
benchmark by Qian et al. [2016], averaged over all queries.
Ourmean average precision values (shown in the legend) im-
proves over their technique.

their technique. We refer to the supplemental material for a quali-
tative comparison, where we include a visual example of how our
technique can outperform Qian et al.’s.

4.2 User Study
We conducted a formal user study to validate the effectiveness
of SmartSketcher. For this purpose, we designed specific image
retrieval tasks to be solved by a set of users. We implemented
SmartSketcher in C++ as an interactive image retrieval application.
We run the system on a PC running Linux with an Intel(R) Core(TM)
i7-5960X CPU @ 3.00GHz, 64 GB RAM, and an NVIDIA GeForce
GTX TITAN X GPU with 12 GB VRAM. We use a Wacom Cintiq
21UX 2 display as drawing device.

Figure 8: The user interface of Sketcher consists of two win-
dows. The left window shows the retrieval results and the
right window is used to express the query. The user interacts
with the canvas using theWacom pen. The user can load the
Canny edge map of an image from the results list into the
drawing canvas.

We experimentedwith different image datasets downloaded from
Flickr using keyword searches: Airplane (499,970 images), Bicycle
(154,919 images), Car (199,858 images), and High-Rise (500,000 im-
ages). In our user study we used the Airplane and Bicycle dataset
and we trained the users on the Car dataset.

4.2.1 Baseline Systems. To measure performance of SmartS-
ketcher, we developed two reference systems for comparison. The
first baseline system is restricted to sketching only and the second
baseline system works entirely based on clustering.

Sketcher. For the first baseline system called Sketcher we use the
pure geometric sketch-based retrieval (Section 3.2) from SmartS-
ketcher without the additional tools enabled by the CNN feature
representation, that is, the dynamic re-ranking of query results, the
ability to mark modes as undesired, and the clustering of positive
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Figure 9: The user interface of ClassBrowser consists of two
windows. The left window shows the retrieval results and
the right window is used to navigate through the clusters.
The right window is divided into two parts: the top pane
shows all clusters in the current hierarchy level and the bot-
tom pane shows the members of the selected cluster. The
user can select an image in the bottom pane to perform re-
trieval. In addition, the user can also use images from the
results window as query.

images with the option to ignore the sketch entirely (Section 3.2).
In addition, Sketcher enables the user to load the Canny edge map
of an arbitrary image from the results list into the drawing canvas.
The user can modify the edge map by erasing or adding strokes and
use it to find further similar images. Note that we do not provide
this feature in SmartSketcher to keep the user interface simple, even
though it would be straightforward to include it. Figure 8 shows
the user interface of Sketcher.

ClassBrowser. To investigate how useful sketching is for image re-
trieval, we developed a second baseline system called ClassBrowser
that works entirely based on clustering and without sketching. For
this purpose, we use the CNN features from CaffeNet to build a
cluster hierarchy of the data in a pre-process. We construct a binary
tree for each dataset by clustering the data in a top-down fashion
using k-means with k = 2. We repeatedly split the nodes in the
tree until there are less than 100 images left in a node. For image
retrieval, the user browses the tree starting at the root. The user
interface has a “coarser” and a “finer” button to browse through
the levels of the tree. The ClassBrowser interface always shows
all the nodes for a given hierarchy level, thus the user can easily
switch between branches in the tree at any time. We visualize the
tree nodes using an average image and four representatives, similar
to the visualization in SmartSketcher. Once the user spots an image
that represents the desired concept, he can use the image as query
and the system will present results based on an L2 nearest neighbor
search in CNN feature space. Figure 9 shows the user interface of
ClassBrowser.

4.2.2 Participants and Tasks. We invited twenty people to par-
ticipate in our study: nine women and eleven men, aged 22-37, eight
with some background in computer vision or computer graphics,
and nine without any computer science background at all. Nine
participants specified their drawing skills to be bad, ten moderate
and one good.

A task consists of a textual description of the content of an
image as shown in Table 2. In addition, we also display an example

Table 2: Tasks for user study. Water plane image courtesy
of Flickr user Tiberiu Ana, airport scene image courtesy of
Flickr user m-takagi, space shuttle image courtesy of Flickr
user zoxcleb, and tandem bicycle image courtesy of Flickr
user bert_m_b.

Task 1
Water plane, right side view: Find images of a
water plane, seen from the right hand side.

Task 2
Airport scene: Find images of an airliner on the
ground, with a tower-like building in the back-
ground. The building should be located in the
center of the image.

Task 3
Airplane with space shuttle: Find images of an
airplane transporting a space shuttle piggyback.

Task 4
Child on bicycle with helmet, frontal view: Find
images of a child with helmet on a bicycle, seen
from frontal view.

Task 5
Tandem bicycle: Find images of a tandem bi-
cycle. That is, a bicycle built for two persons.

image that matches the requested description. We then asked the
users to find as many images as possible that match the requested
description. The participants had three minutes available to solve
a single task with one system. As soon as a user started a task, its
description would disappear and users had to rely on their mental
image of the task while solving it. We show the test set of five tasks
to be completed by the participants in Table 2, three on the Airplane
dataset and two on the Bicycle dataset.

4.2.3 Procedure. Each participant completed all five test tasks
with all three systems. To avoid ordering, first-order carryover,
and learning effects, both the system orders and task orders were
randomized and balanced.

For each system, each participant was first given an introduction
to the user interface of the system, followed by a four minutes
tutorial video that demonstrates solving an example task using the
particular retrieval system. Next, the participants were given time
to practice with the system using example tasks that we prepared
on the Car dataset. They were given time until they felt familiar
with the system. Such a training phase typically took between five
and ten minutes, depending on the particular system. Finally, the
participants solved all five tasks in the test set using the particular
retrieval system. All systems allow the user to repeatedly query the
database, and harvest desired images from each query result. After
a short break, the procedure started anew with the next system.

After the experiment, we asked the participants to complete a
short questionnaire. A typical session took about three hours: 90
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Table 3: Testing the null hypothesis that the median num-
ber of retrieved images with system x is lower or equal than
with systemy.We report p-values of right-tailed two-sample
Wilcoxon signed rank tests. Red values indicate rejection of
the null hypothesis at the 5% significance level. The alter-
nate hypothesis states that system x retrieves more images
than system y.

x = SS, x = SS, x = S, x = CB,
Task y = S y = CB y = CB y = S
1 0.001 0.002 0.406 0.612
2 0.001 0.000 0.000 1.000
3 0.000 0.000 0.020 0.982
4 0.002 0.000 0.079 0.926
5 0.007 0.000 0.004 0.997

minutes for introductions, training, and breaks, and 90 minutes for
the actual measurement. During the experiment we recorded all
user interactions, user drawings, and the lists of collected images.

4.2.4 Experimental Results. We include all results from our user
study in the supplemental material, and we provide a statistical anal-
ysis of the results here. Figure 10 shows the number of images found
by the participants with all three systems for each task. Although
the variance between different users is high, participants find more
matching images with SmartSketcher on average. In Table 3 we test
whether the increase in retrieved images with the SmartSketcher
system compared to the others is statistically significant. The table
shows the p-values of a paired, right-tailed two-sample Wilcoxon
signed rank test on the number of retrieved images for pairs of
retrieval systems. We do not use a paired t-test but rely on the
Wilcoxon signed rank test instead to avoid the assumption that the
random variable (number of retrieved images) follows a normal
distribution. The test examines the null hypothesis that participants
do not find more images with system x in comparison to system y
with statistical significance, or more precisely, that the data in x −y
comes from a distribution with median not greater than zero. The
resulting p-values refute the null hypothesis and show that our
system (SS) outperforms both baselines (S and CB) on all tasks with
statistical significance at the 5% significance level. In addition, the
comparison of the two baseline systems shows that users find more
images with Sketcher for task 2, 3, and 5, whereas the difference is
not statistically significant for task 1 and 4.

Table 4: Testing the null hypothesis that system x is ranked
worse or equal than system y. We report p-values of right-
tailed two-sample Wilcoxon signed rank tests on the nor-
malized system ranks for pairs of retrieval systems. Red val-
ues indicate rejection of the null hypothesis at the 5% signif-
icance level. The alternate hypothesis states that system x is
ranked better (higher) than system y.

x = SS,y = S, x = SS,y = CB, x = S,y = CB,
p-value 0.000 0.000 0.001

Next, we evaluate the ranking of the systems across all tasks.
For this, we normalize the number of images found by a user over

all systems. Let nXi, j denote the number of retrieved images for
participant i with system X on task j, where X ∈ {S,CB, SS}. The
normalized number of images found by participant i with system X
on task j is defined as

n̄Xi, j =
nXi, j

max
Y ∈{S,CB,SS}

nYi, j
. (7)

To summarize the overall performance of the three retrieval systems,
we define a rank rXi for system X and participant i by summing the
normalized number of images for system X over tasks j,

rXi =
5∑
j=1

n̄Xi, j , (8)

such that rXi ∈ [0, 5] and a value of 5 indicates that system X per-
formed best in all 5 tasks for participant i . Figure 11 shows the
system ranks for each participant. Wilcoxon signed rank tests for
pairs of retrieval systems show that the system rank for SmartS-
ketcher is significantly higher than for the two baseline systems (see
Table 4). Moreover, Sketcher is ranked higher than ClassBrowser
with statistical significance.

Table 5: Testing the null hypothesis that the median time
without finding a single image in system x is higher or
equal than in systemy. We report p-values of left-tailed two-
sampleWilcoxon signed rank test. Red values indicate rejec-
tion of the null hypothesis at the 5% significance level. The
alternate hypothesis states that the median time in system
x is lower than system y.

x = S, x = SS, x = S, x = SS,
Task y = CB y = CB y = SS y = S
1 0.000 0.003 0.412 0.603
2 0.000 0.014 0.023 0.979
3 0.000 0.000 0.588 0.428
4 0.000 0.000 0.693 0.320
5 0.000 0.000 0.245 0.767

During the user study, we measured how much time the par-
ticipants spent to find a first matching image. Table 5 shows for
pairs of retrieval systems whether the times spent without finding
a single image is significantly lower for the first than for the second
system. We report the p-values of a paired, left-tailed two-sample
Wilcoxon signed rank tests, which examine the null hypothesis that
the data in x − y comes from a distribution with median greater or
equal to zero. That is, it tests whether participants spend less time
to find the first image with system x in comparison to system y
with statistical significance. The resulting p-values show that users
spend significantly less time to find a first matching image using
the systems with sketching for all five tasks at the 5% significance
level. The comparison of Sketcher and SmartSketcher shows that
the differences are not statistically significant, with the exception
of task 2, where the participants were significantly faster using
Sketcher. We attribute this to the fact that the user has to browse
through the clusters in SmartSketcher, which can be time consum-
ing if there are only few matching images in the top n results, since
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Figure 10: Number of images retrieved with each system (S: Sketcher, CB: ClassBrowser, SS: SmartSketcher) for all five tasks.
The red lines show themedian number of images, the black lines themininum andmaximum, and the blue boxes the variance.
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Figure 11: System ranks for all twenty participants P1 to P20.

the matching images end up distributed in different clusters and
the system does not detect the desired mode in these cases.

In Figure 12 we plot the average number of retrieved images
over time for all tasks. SmartSketcher is very effective in finding
more matching images, once a few positive samples are given, and
it consistently outperforms both baseline systems. An interesting
case is task 2: for this task, SmartSketcher does not detect the re-
quested mode at first. In the first place SmartSketcher proposes
images of airplanes on the ground without tower in the background.
Only after the user marks the proposed mode as “undesired”, the
system proposes correct images and retrieval becomes effective. We
attribute this to the fact that the CNN features learned to ignore
the background of such images during training on object classifica-
tion. However, the background information is nevertheless encoded
in CNN feature space and the user can quickly guide the system
towards the correct mode in an “unsharp masking” manner. This
example shows that interactivity is key for a robust retrieval system.

In a post questionnaire the participants were asked to specify
which system they liked most and least and to explain their answers.
Figure 13 shows that users prefer sketching for image retrieval over
ClassBrowser in general. In addition, by far most participants pre-
ferred SmartSketcher over Sketcher: Seven participants specified
that the additional option to mark clusters as “undesired” is very
effective. Six participants found the fact that SmartSketcher uses
already selected images to refine the query to be effective. Eight
participants indicated that they found more images in general, us-
ing SmartSketcher. Three participants liked the option to ignore
the query sketch for subsequent retrievals. Two participants (P16
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Figure 13: User preference and dislike.

and P17) preferred Sketcher over SmartSketcher for the following
reasons: P16 missed the feature to load Canny edges of an arbitrary
image into the drawing canvas, which is only available in Sketcher.
He used this option to find a first image by modifying the edge map
of an almost matching image. As shown in Figure 11 this participant
indeed found more matching images using Sketcher on average.
P17 found SmartSketcher too complicated but mentioned that he
would prefer it over Sketcher if there was no time pressure. Inter-
estingly, the participant found more images using SmartSketcher
on average (see Figure 11). Sixteen users did not like ClassBrowser
at all. Fifteen of them specified that it is hard to navigate through
the classes and that the grouping is not always meaningful. Five
participants mentioned they found images only by chance. Four
participants found it arduous to use the system, since one has to
look through so many images. Four participants disliked Sketcher,
all of them mentioned that they have very poor drawing skills and
since drawing is the only means to interact with the system they
found it hard to use.

5 CONCLUSIONS
We presented an interactive image retrieval system that combines
sketching and semantic clustering to re-rank query results and
iteratively refine queries. An evaluation on two large-scale bench-
marks proves the effectiveness of the proposed technique on three
different SBIR systems. In an extensive user study we show that our
system is significantly more effective than two baseline systems
using sketching or clustering only. Sketching allows users to find
initial matches to their queries more quickly than browsing a hierar-
chically clustered image database, and clustering query results helps
to find more matching images faster than in a system purely based
on sketching. The success of our clustering approach stems from
the use of semantic features that we extract from a CNN trained on
image classification, which leads to robust, semantically meaningful
groupings of query results. This is especially useful in cross-domain
settings such as SBIR, where enough training data is available only
in one domain. We justify the use of a low-level feature representa-
tion for initial sketch-to-image matching by showing that it leads to
higher precision in the first several hundred query results compared
to a state of the art, deep learning based approach. For future work,
this raises the question how effective cross-domain representations
can be learned without suffering from potential imbalances in the
available training data in different domains.
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