Indexing (B-tree, R-tree)

Lee, Jae-Yong
October 10, 2002

Why indexing?
• When data is too large to fit in memory, then the number of disk accesses is important.
• A disk access is expensive and worth about 200,000 instructions.
• To minimize disk accesses

m-way search tree
• A generalization of binary search tree
• Each node has at most m child-pointers
• If k<=m is the number of children, then the node has exactly k-1 keys.
• The tree is ordered in keys.

B tree (Definition)
• B-tree of order 2d is an (2d+1)-way search tree such that:
 – all leaf nodes are on the same level.
 – completely balanced.
 – All non-leaf nodes (except root node) have at most 2d keys and 2d+1 pointers and at least d keys and d+1 pointers.
 – The root has at least one key and 2 child pointers.
Example (B-tree)

Height of B-tree

- What is the maximum height of a B-tree with n keys?
- The maximum height of a B-tree will give an upper bound on the number of disk access.
- The minimum number of keys in a B-tree of order 2d and depth h:
 \[1 + 2d + 2d(d+1) + 2d(d+1)^2 + \cdots + 2d(d+1)^{h-1} = 1 + \sum_{i=1}^{h} 2d(d+1)^{i-1} \]
- The maximum height of a B-tree with n keys:
 \[\log_{2d} \frac{n}{2d} = O(\log_d n) \]

Search (Find)

- B-tree is always completely balanced.
- The length of retrieval path is at most the height of the B-tree.
- The cost of a search is \(O(\log n) \).

Example (Find 70)

Insert

- First, a find proceeds from the root to locate the proper leaf node for insertion.
 \(=\) \(O(\log_d n) \)
- If the leaf node is already full, split it.
 Otherwise, done.

Splitting a node

- 2d+1 keys are split to 2 new nodes.
- One node has the smallest d keys and the other has the largest d keys.
- A separator key is promoted to the parent node.
- If the parent node is already full, the parent node is split too.
Splitting a node (cont.)

- In the worst case, splitting propagates to the root node and the tree increases in the height by one level.

Example (Splitting, Insert 67)

Example (cont.)

Insert cost

- Find operation: \(O(\log_d n) \)
- Splitting: \(O(\log_d n) \)
- Total cost is at most doubled as a find.
- Usually, nodes in the path reside in memory after the find operation.

Delete

- First, a find operation to locate the node
- The key can be found in either a leaf or a nonleaf
- In Insert, the key is always inserted to a leaf node
- Nonleaf case
 - Find an adjacent key in a subtree of the deleted key (found in a left-most leaf node of the right subtree)
 - Move it to the deleted position
 - Process in the leaf node

Underflow during delete

- Underflow
 - Less than \(d \) keys occupy the node (\(d-1 \) keys)
 - Need to redistribute the keys to a neighbor node (including their parent key)
- Redistribution
 - Evenly divide keys between two neighbors
 - Need at least \(2d+1 \) (\(d+d+1 \)) keys to redistribute
 - What if the neighbor node does not have enough keys (has just \(d \) nodes) -> concatenation
Redistribution (Delete 6)

Underflow during delete (cont.)

- Concatenation
 - Inverse of Splitting
 - Keys in two neighbor nodes and a separator key in the parent node
 - The merged node has 2d keys (full).
 - The parent node may be concatenated.
 - May be propagated all the way to the root node
 - Decreasing the height of the B-tree

Concatenation (delete 3)

Delete cost

- Same as Insert operation

Running time

- Running time of each operation is directly related to the height of the tree
- The height of a B-tree depends on:
 - the number of keys in the tree
 - the branching factor (2d + 1)
 - Practical limit on a size of node
 - Usually a block size/page size
 - the storage utilization
 - B* tree at least 2/3 of a node is full

Sequential processing in a B-tree

- Preorder tree walk
- Stacks the nodes along a path from the root
- Require space for at least the height
- B-tree does not do well in a sequential processing
- B+ tree
B+ tree

- Independent index and sequence sets
- Sequence set(leaves)
 - all actual keys reside in the leaves.
 - leaf nodes are linked for a sequential processing
- Index set(non-leaves)
 - Just a roadmap to reach a leaf node
 - Not necessarily actual keys
- Better sequential processing

B* tree

- Each node is at least 2/3 full.
- Increasing storage utilization
 - speeding up search operations
- Split
 - Redistribution
 - Delay the split until two siblings are full
 - Reduce the number of splits
 - 2 nodes are divided into 3 nodes

Spatial Objects

- Data objects of non-zero size in multi-dimensional spaces
 - ex) a country in a map
- Queries are also spatial
 - ex) Find all objects in an area

Example(B+ tree)

R-Tree(Motivation)

- Classical indexing (like B-Trees) are not suitable for multidimensional spatial searching

Nodes in R-tree

- Leaf node
 - has entries of the form (l, tuple-identifier)
 - tuple-identifier: a reference to an object in DB
 - \(l = (l_1, l_2, \ldots, l_n) \): an n-dimensional bounding box
- Nonleaf node
 - has entries of the form (l, child-pointer)
 - child-pointer
 - l: covers all rectangles in the lower node’s entries
R-tree

- M is the max number of entries in a node.
- $m \leq \frac{M}{2}$ is the min number of entries
- m is not fixed and varies for performance tuning.

R-tree (Definition)

- Every node contains between m and M entries (except the root).
- The root has at least two children.
- All leaves appear on the same level — completely balanced.
- I is a rectangle that contains all objects in lower levels.

Example

An Example

R-tree

- Nonleaf nodes serve as a set of indices.
 - B+ tree
- Bounding boxes in a same level are not disjoint.
 - A level in B-tree consists of disjoint intervals.
- Each entry in a node represents an area in space.
Search

- Bounding boxes in each level may be overlapped.
 - More than one subtrees under a node may need to be searched
 - No good worst case performance
 - Need some techniques to minimize searches
 - Reduce dead-space
 - Update algorithms maintains “good” trees.

Search (cont.)

- Query: Search rectangle S
- Search all children if their bounding boxes overlap with S.
- All leaf nodes have a tuple identifier
- The cost depends on the structure of the tree
 - Need to minimize the area of MBR of nodes

Example (Search)

Insert

- Like the B-tree, sometimes it is necessary to split a node
- Since the decision whether to visit a node depends on whether its covering rectangle overlaps the search area, areas of two new nodes should be minimized
 - All approaches of optimizing the retrieval performance have to be applied during Insert operation

Insert (cont.)

- Similar to B-tree in handling split and simple insertions
- ChooseLeaf: selects a leaf node L in which to place the new entry
- The algorithm tries to find the region whose rectangle needs least enlargement to include the new entry

Delete

- Like in B-Tree
 - But find a leaf to be deleted (like B+ tree)
- Sometimes you need to condense a tree due to the elimination of one node
Delete (Condense)

- Underflow in the node after a deletion
- An underflow may be propagated.
- If underflow in the node, N,
 - Delete the index entry of parent node, P
 - Add N to the set of eliminated nodes, Q
 - When the propagation is done, reinsert all entries of nodes in Q
 - Need to reinsert a proper level in the tree

Node splitting algorithm

- “Good” split can reduce the number of nodes during subsequent searches
 - Exhaustive algorithm
 - Quadratic algorithm (Heuristic)
 - Linear algorithm (Heuristic)

Exhaustive method

- Generate all possible groupings (\(2^M\) possibilities)
- M is typically 50
- Too expensive

Quadratic method

- Picks 2 of the \(M+1\) entries to be seeds of the 2 new groups \(\sim O(dM^2)\)
 - The pair that would waste the most area if both were put in the same group
- Then assign to groups one entry at a time
- At each step the area expansion required to add each remaining entry to group is calculated, and the entry assigned is the one showing the greatest difference between the 2 groups \(\sim O(dM^2)\)

Linear method

- Different seed picking \(\sim O(dM)\)
 - Find the entry whose rectangle has the highest low side, and the one with the lowest high side. Record the separations for each dimension
 - Normalize the separations by dividing by the width of the entire set
 - Choose the pair with the greatest separation along any dimension.
- Assign each entry to a group \(\sim O(dM)\)
 - Pick any entry and then assign the group which requires less expansion
Performance Test

• evaluate m (minimum number of entries) as a function of M (maximum number) and the heuristics
• The linear node-split algorithm proved to be as good as more expensive techniques
 – faster and the slightly worse quality of the splits did not affect search performance noticeably

Problems in R-tree

• Just try to minimize the area of each enclosing rectangle in the index nodes.
• What can we consider to produce “good” trees?
 – R* tree
• What if the query is not a rectangle?
 – SS tree, SR tree

R* tree

• Optimization Criteria:
 – (O1) Area covered by an index MBR
 – (O2) Overlap between directory MBR
 – (O3) Margin of a directory rectangle
 • Next slide.
 – (O4) Storage utilization
• Sometimes it is impossible to optimize all the above criteria at the same time

Overlap & Margin

• (O2) Overlap between directory MBR
 – Sum of overlapped areas of all pairs of entries in the MBR
• (O3) Margin of a directory rectangle
 – Margin : sum of lengths of the edges in MBR
 – Minimizing the margin of Rectangle
 • Rectangle can be more quadratic. Quadratic object can be packed easier. => smaller MBR

R*-tree (cont.)

• ChooseSubtree
 – Leaf node:
 • Least overlap enlargement
 • Least area enlargement(R-tree)
 • Smaller area
 – Nonleaf node
 • Least area enlargement(R-tree)
 • Smaller area

Split

• SplitNode
 – Choose the axis to split
 – Choose 2 groups along the chosen axis
• ChooseSplitAxis
 – Along each axis, sort rectangles and break them into 2 groups(M-2m+2 ways)
 – Compute the sum S of all margin-values of each pair of groups. Choose the one that minimizes S
• ChooseSplitIndex
 – Along the chosen axis, choose the grouping that gives the minimum overlap-value
Forced Reinsert

- The structure of tree is non-deterministic
- Dynamic reorganization.
- Defer splits, by forced-reinsert
 - Instead splitting, temporarily delete some entries, shrink overflowing MBR, and reinsert those entries
- Which ones to re-insert? (next slide)
- How many? 30% (by experiments)

Forced Reinsert (Details)

- Calculate centers of MBRs of all entries in the overflowed node and the center of MBR of the node
- Remove p farthest entries from the node
- Then reinsert the entries
- If at least one entry is inserted into different node, no splitting the overflowed node.
 - But may cause other nodes to be overflowed

SS & SR-tree

- An index structure for high-dimensional nearest neighbor queries
- The similarity queries on feature vectors which is widely used for performing content-based retrieval of images