Proof Must Have

- Statement of what is to be proven.
- "Proof:" to indicate where the proof starts
- Clear indication of flow
- Clear indication of reason for each step
- Careful notation, completeness and order
- Clear indication of the conclusion

Number Theory - Ch 3 Definitions

- \(\mathbb{Z} \) --- integers
- \(\mathbb{Q} \) - rational numbers (quotients of integers)
 - \(r \in \mathbb{Q} \iff \exists a, b \in \mathbb{Z}, (r = a/b) \land (b \neq 0) \)
- Irrational = not rational
- \(\mathbb{R} \) --- real numbers
- superscript of + --- positive portion only
- superscript of - --- negative portion only
- other superscripts: \(\mathbb{Z}^{\text{even}}, \mathbb{Z}^{\text{odd}}, \mathbb{Q}^{>5} \)

- "closure" of these sets for an operation
Integer Definitions

- **even integer**
 \[n \in \mathbb{Z}^{even} \iff \exists k \in \mathbb{Z} \ n = 2k \]

- **odd integer**
 \[n \in \mathbb{Z}^{odd} \iff \exists k \in \mathbb{Z} \ n = 2k+1 \]

- **prime integer (\(\mathbb{Z}^{\geq 1} \))**
 \[n \in \mathbb{Z}^{prime} \iff \forall r,s \in \mathbb{Z}^+, \ (n=r\times s) \rightarrow (r=1) \vee (s=1) \]

- **composite integer (\(\mathbb{Z}^{>1} \))**
 \[n \in \mathbb{Z}^{composite} \iff \exists r,s \in \mathbb{Z}^+, \ n=r\times s \quad (r \neq 1) \wedge (s \neq 1) \]

Constructive Proof of Existence

If we want to prove:

- \(\exists n \in \mathbb{Z}^{even}, \exists p,q, r,s \in \mathbb{Z}^{prime} \ n = p+q \land n = r+s \land p \neq r \land p \neq s \land q \neq r \land q \neq s \)

 - let \(n=10 \)
 - \(n \in \mathbb{Z}^{even} \) by definition of even

 - Let \(p = 5 \) and the \(q = 5 \)
 - \(p,q \in \mathbb{Z}^{prime} \) by definition of prime
 - \(10 = 5+5 \)

 - Let \(r = 3 \) and \(s = 7 \)
 - \(r,s \in \mathbb{Z}^{prime} \) by definition of prime
 - \(10 = 3+7 \)

 - and all of the inequalities hold
Methods of Proving
Universally Quantified Statements

• Method of Exhaustion
 – prove for each and every member of the domain
 – $\forall r \in \mathbb{Z}^+ \text{ where } 23 < r < 29 \rightarrow \exists p, q \in \mathbb{Z}^+ (r = p \cdot q \land (p \leq q))$

• Generalizing from the "generic particular"
 – suppose x is a particular but arbitrarily chosen element of the domain
 – show that x satisfies the property
 – i.e. $\forall r \in \mathbb{Z}, \ r \in \mathbb{Z}^{\text{even}} \rightarrow r^2 \in \mathbb{Z}^{\text{even}}$

Examples of Generalizing from the "Generic Particular"

• For any pair of integers where the first of them is even, the product of those integers is also even.
 – $\forall m, n \in \mathbb{Z}, \ m \in \mathbb{Z}^{\text{even}} \rightarrow m \cdot n \in \mathbb{Z}^{\text{even}}$

• The product of any two odd integers is also odd.
 – $\forall m, n \in \mathbb{Z}^{\text{odd}}, \ m \cdot n \in \mathbb{Z}^{\text{odd}}$

• The product of any two rationals is also rational.
 – $\forall m, n \in \mathbb{Q}, \ m \cdot n \in \mathbb{Q}$
Disproof by Counter Example

- \(\forall r^2 \in \mathbb{Z}^+ \rightarrow r \in \mathbb{Z}^+ \)
- Counter Example: \(r^2 = 9 \land r = -3 \)
 - \(r^2 \in \mathbb{Z}^+ \) since \(9 \in \mathbb{Z}^+ \) so the antecedent is true
 - but \(r \notin \mathbb{Z}^+ \) since \(-3 \notin \mathbb{Z}^+ \) so the consequent is false
 - this means the implication is false for \(r = -3 \) so this is a valid counter example
- When a counter example is given you must always justify that it is a valid counter example by showing the algebra (or other interpretation needed) to support your claim

Division definitions

- \(d \mid n \leftrightarrow \exists k \in \mathbb{Z}, n = d \times k \)
- \(n \) is divisible by \(d \)
- \(n \) is a multiple of \(d \)
- \(d \) is a divisor of \(n \)
- \(d \) divides \(n \)

- standard factored form
 - \(n = p_1^{e_1} \times p_2^{e_2} \times p_3^{e_3} \times \ldots \times p_k^{e_k} \)
Proof by Contrapositive

For all positive integers, if \(n \) does not divide a number to which \(d \) is a factor, then \(n \) can not divide \(d \).

\[\forall n, d, c \in \mathbb{Z}^+, \ n \nmid dc \rightarrow n \nmid d \]
Proof by Contrapositive

For all positive integers, if \(n \) does not divide a number to which \(d \) is a factor, then \(n \) can not divide \(d \).

\[\forall n, d, c \in \mathbb{Z}^+, \ n \nmid dc \rightarrow n \nmid d \]
\[\forall n, d, c \in \mathbb{Z}^+, \ n \mid d \rightarrow n \mid dc \]

proof:

more integer definitions

- div and mod operators
 - \(n \div d \) --- integer quotient for \(\frac{n}{d} \)
 - \(n \mod d \) --- integer remainder for \(\frac{n}{d} \)
 - \((n \div d = q) \land (n \mod d = r) \iff n = d \cdot q + r\)
 where \(n \in \mathbb{Z}^{\geq 0}, \ d \in \mathbb{Z}^+, \ r \in \mathbb{Z}, \ q \in \mathbb{Z}, \ 0 \leq r < d \)

- relating “mod” to “divides”
 - \(d \mid n \iff 0 = n \mod d \)
 - \(0 \equiv_d n \)

- equivalence in a mod
 - \(x \equiv_d y \iff d|\,(x-y) \quad \text{[note: their remainders are equal]} \)
 - sometimes written as \(x \equiv_y \mod d \) meaning \(x \equiv y \mod d \)
Quotient Remainder Theorem

\(\forall n \in \mathbb{Z} \setminus \forall d \in \mathbb{Z}^+ \exists q, r \in \mathbb{Z} \)

\[(n = dq + r) \land (0 \leq r < d) \]

Proving definition of equiv in a mod by using the quotient remainder theorem

Prove that if \([m \equiv_d n]\), then \([d|n-m]\)

where \(m, n \in \mathbb{Z}\) and \(d \in \mathbb{Z}^+\)

Proofs using this definition

• \(\forall m \in \mathbb{Z}^+ \setminus \forall a, b \in \mathbb{Z} \)

\[a \equiv_m b \iff \exists k \in \mathbb{Z} \setminus a = b + km \]

• \(\forall m \in \mathbb{Z}^+ \setminus \forall a, b, c, d \in \mathbb{Z} \)

\[a \equiv_m b \land c \equiv_m d \rightarrow a + c \equiv_m b + d \]
Floor and Ceiling Definitions

• n is the floor of x where $x \in \mathbb{R} \land n \in \mathbb{Z}$
 \[\lfloor x \rfloor = n \iff n \leq x < n+1 \]
• n is the ceiling of x where $x \in \mathbb{R} \land n \in \mathbb{Z}$
 \[\lceil x \rceil = n \iff n-1 < x \leq n \]

Floor/Ceiling Proofs

• $\forall x, y \in \mathbb{R} \ [x+y] = [x] + [y]$

• $\forall x \in \mathbb{R} \ \forall y \in \mathbb{Z} \ [x+y] = [x] + y$
Proof by Division into Cases

• The floor of \(\frac{n}{2} \) is either
 a) \(\frac{n}{2} \) when \(n \) is even
 or b) \(\frac{n-1}{2} \) when \(n \) is odd

• \(\forall n \in \mathbb{Z} \ 3 \mid n \rightarrow n^2 \equiv_3 1 \)

Prime Factored Form

\[n = p_1^{e_1} \cdot p_2^{e_2} \cdot p_3^{e_3} \cdot \ldots \cdot p_k^{e_k} \]

• Unique Factorization Theorem (Theorem 3.3.3)
 – given any integer \(n > 1 \)
 – \(\exists k \in \mathbb{Z}, \exists p_1, p_2, \ldots, p_k \in \mathbb{Z}_{\text{prime}}, \exists e_1, e_2, \ldots, e_k \in \mathbb{Z}^+ \)
 where the \(p \)’s are distinct and any other expression of \(n \) is identical to this except maybe in the order of the factors

• Standard Factored Form
 – \(p_i < p_{i+1} \)
 • \(\exists m \in \mathbb{Z}, 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot m = 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \)
 – Does \(17 \mid m \) ??
Steps Toward Proving the Unique Factorization Theorem

• Every integer greater than or equal to 2 has at least one prime that divides it

• For all integers greater than 1, if \(a \mid b \), then \(a \mid (b+1) \)

• There are an infinite number of primes

Using the Unique Factorization Theorem

• Prove that the \(\sqrt{3} \notin \mathbb{Q} \)

• Prove:
 \[
 \forall a \in \mathbb{Z}^+ \forall q \in \mathbb{Z}_{\text{prime}} \quad q \mid a^2 \rightarrow q \mid a
 \]
Summary of Proof Methods

• Constructive Proof of Existence
• Proof by Exhaustion
• Proof by Generalizing from the Generic Particular
• Proof by Contraposition
• Proof by Contradiction
• Proof by Division into Cases

Errors in Proofs

• Arguing from example for universal proof.
• Misuse of Variables
• Jumping to the Conclusion (missing steps)
• Begging the Question
• Using "if" about something that is known