CMSC 631 – Program Analysis and Understanding
Fall 2007

Lambda Calculus

Motivation

• Commonly-used programming languages are large and complex
 ■ ANSI C99 standard: 538 pages
 ■ ANSI C++ standard: 714 pages
 ■ Java language specification 2.0: 505 pages

• Not good vehicles for understanding language features or explaining program analysis
Goal

• Develop a “core language” that has
 ■ The essential features
 ■ No overlapping constructs
 ■ And none of the cruft
 – Extra features of full language can be defined in terms of the core language (“syntactic sugar”)

• Lambda calculus
 ■ Standard core language for single-threaded procedural programming
 ■ Often with added features (e.g., state); we’ll see that later

Lambda Calculus is Practical!

• An 8-bit microcontroller (Zilog Z8 encore board w/4KB SRAM) computing 1 + 1 using Church numerals in the Lambda calculus
Origins of Lambda Calculus

- Invented in 1936 by Alonzo Church (1903-1995)
 - Princeton Mathematician
 - Lectures of lambda calculus published in 1941
- Also known for
 - Church’s Thesis
 - All effective computation is expressed by recursive (decidable) functions, i.e., in the lambda calculus
 - Church’s Theorem
 - First order logic is undecidable

Lambda Calculus

- Syntax:
 - \(e ::= x \) variable
 - \(\lambda x \cdot e \) function abstraction
 - \(e \cdot e \) function application

- Only constructs in pure lambda calculus
 - Functions take functions as arguments and return functions as results
 - I.e., the lambda calculus supports higher-order functions
Semantics

- To evaluate \((\lambda x. e_1) \ e_2\)
 - Bind \(x\) to \(e_2\)
 - Evaluate \(e_1\)
 - Return the result of the evaluation

- This is called “beta reduction”
 - \((\lambda x. e_1) \ e_2 \rightarrow_\beta e_1[e_2/x]\)
 - \((\lambda x. e_1) \ e_2\) is called a redex
 - We’ll usually omit the beta

Three Conveniences

- Syntactic sugar for local declarations
 - \(let \ x = e_1 \ in \ e_2\) is short for \((\lambda x. e_2) \ e_1\)

- Scope of \(\lambda\) extends as far to the right as possible
 - \(\lambda x. \lambda y. x \ y\) is \(\lambda x. (\lambda y. (x \ y))\)

- Function application is left associative
 - \(x \ y \ z\) is \((x \ y) \ z\)
Scoping and Parameter Passing

• Beta reduction is not yet precise
 ■ \((\lambda x.e1) e2 \rightarrow e1[e2/x]\)
 ■ what if there are multiple \(x\)’s?

• Example:
 ■ let \(x = a\) in
 ■ let \(y = \lambda z.x\) in
 ■ let \(x = b\) in \(y x\)
 ■ which \(x\)’s are bound to \(a\), and which to \(b\)?

Static (Lexical) Scope

• Just like most languages, a variable refers to the closest definition

• Make this precise using variable renaming
 ■ The term
 – let \(x = a\) in let \(y = \lambda z.x\) in let \(x = b\) in \(y x\)
 ■ is “the same” as
 – let \(x = a\) in let \(y = \lambda z.x\) in let \(w = b\) in \(y w\)
 ■ Variable names don’t matter
Free and Bound Variables

• The set of free variables of a term is

 - \(\text{FV}(x) = \{x\} \)
 - \(\text{FV}(\lambda x.e) = \text{FV}(e) - \{x\} \)
 - \(\text{FV}(e_1 e_2) = \text{FV}(e_1) \cup \text{FV}(e_2) \)

• A term \(e \) is closed if \(\text{FV}(e) = \emptyset \)

• A variable that is not free is bound

Alpha Conversion

• Terms are equivalent up to renaming of bound variables

 - \(\lambda x.e = \lambda y.(e[y/x]) \) if \(y \notin \text{FV}(e) \)

• This is often called alpha conversion, and we will use it implicitly whenever we need to avoid capturing variables when we perform substitution
Substitution

• Formal definition:
 - \(x[e/x] = e \)
 - \(z[e/x] = z \) if \(z \neq x \)
 - \((e_1 e_2)[e/x] = (e_1[e/x] e_2[e/x]) \)
 - \((\lambda z. e_1)[e/x] = \lambda z. (e_1[e/x]) \) if \(z \neq x \) and \(z \notin \text{FV}(e) \)

• Example:
 - \((\lambda x. y \ x) \ x =_\alpha (\lambda w. y \ w) \ x \rightarrow_\beta y \ x \)
 - (We won’t write alpha conversion explicitly in general)

A Note on Substitutions

• People write substitution many different ways
 - \(e_1[e_2/x] \)
 - \(e_1[x+e_2] \)
 - \([x/e_2]e_1 \)
 - and more...

• But they all mean the same thing
 - The variable is being substituted with the term
Multi-Argument Functions

- We can’t (yet) write multi argument functions
 - E.g., a function of two arguments \(\lambda(x, y).e \)
- Trick: Take arguments one at a time
 - \(\lambda x. \lambda y. e \)
 - This is a function that, given argument \(x \), returns a function that, given argument \(y \), returns \(e \)
 - \((\lambda x. \lambda y. e) \ a \ b \rightarrow (\lambda y. e[a\ x]) \ b \rightarrow e[a\ x][b\ y] \)
- This is often called Currying and can be used to represent functions with any # of arguments

Booleans

- \(\text{true} = \lambda x. \lambda y. x \)
- \(\text{false} = \lambda x. \lambda y. y \)
- if \(a \) then \(b \) else \(c \) = \(a \ b \ c \)

- Example:
 - if \(\text{true} \) then \(b \) else \(c \) \(\rightarrow (\lambda x. \lambda y. x) \ b \ c \rightarrow (\lambda y. b) \ c \rightarrow b \)
 - if \(\text{false} \) then \(b \) else \(c \) \(\rightarrow (\lambda x. \lambda y. y) \ b \ c \rightarrow (\lambda y. y) \ c \rightarrow c \)
Combinators

• Any closed term is also called a combinator
 ■ So true and false are both combinators

• Other popular combinators
 ■ I = \(\lambda x.x \)
 ■ K = \(\lambda x.\lambda y.x \)
 ■ S = \(\lambda x.\lambda y.\lambda z.x \; z \; (y \; z) \)
 ■ Can also define calculi in terms of combinators
 – E.g., the SKI calculus
 – Turns out the SKI calculus is also Turing complete

Pairs

• \((a, b) = \lambda x.\text{if } x \text{ then } a \text{ else } b\)
• \(\text{fst} = \lambda p.p \; \text{true}\)
• \(\text{snd} = \lambda p.p \; \text{false}\)

• Then
 ■ \(\text{fst} \; (a, \; b) \rightarrow^* a\)
 ■ \(\text{snd} \; (a, \; b) \rightarrow^* b\)
Natural Numbers (Church)

- $0 = \lambda f.\lambda x. x$
- $1 = \lambda f.\lambda x. f \times$
- $2 = \lambda f.\lambda x. f(f \times)$
- i.e., $n = \lambda f.\lambda x. \text{<apply f n times to x>}$

- $\text{succ} = \lambda n.\lambda f.\lambda x. (n f \times)$
- $\text{iszero} = \lambda n. n (\lambda x. \text{false}) \text{ true}$

Natural Numbers (Scott)

- $0 = \lambda x.\lambda y. x$
- $1 = \lambda x.\lambda y. y \times$
- $2 = \lambda x.\lambda y. y \times$
- I.e., $n = \lambda x.\lambda y. y (n-\times)$

- $\text{succ} = \lambda n.\lambda x.\lambda y. y \times n$
- $\text{pred} = \lambda n. n 0 (\lambda x. x)$
- $\text{iszero} = \lambda n. n \text{ true (} \lambda x. \text{false)}$
A Nondeterministic Small-Step Semantics

\[(\lambda x. e_1) e_2 \rightarrow e_1[e_2\backslash x]\]

\[e \rightarrow e'\]

\[e_1 \rightarrow e_1'\]

\[e_1 e_2 \rightarrow e_1'e_2\]

\[e_2 \rightarrow e_2'\]

\[e_1 e_2 \rightarrow e_1 e_2'\]

Why are these semantics non-deterministic?

Example

- We can apply reduction anywhere in a term
 - \[(\lambda x. (\lambda y. y) x ((\lambda z. w) x)) \rightarrow \lambda x. ((\lambda z. w) x) \rightarrow \lambda x. w\]
 - \[(\lambda x. (\lambda y. y) x ((\lambda z. w) x)) \rightarrow \lambda x. ((\lambda z. w) x) \rightarrow (\lambda y. y x (w)) \rightarrow \lambda x. x w\]

- Does the order of evaluation matter?
The Church-Rosser Theorem

- Lemma (The Diamond Property):
 - If \(a \rightarrow b \) and \(a \rightarrow c \), there exists \(d \) such that \(b \rightarrow^* d \) and \(c \rightarrow^* d \)

- Church Rosser Theorem:
 - If \(a \rightarrow^* b \) and \(a \rightarrow^* c \), there exists \(d \) such that \(b \rightarrow^* d \) and \(c \rightarrow^* d \)

- Proof: By diamond property

- Church-Rosser is also called confluence

Proof

\[\ldots \]
Normal Form

• A term is in normal form if it cannot be reduced
 • Examples: $\lambda x.x$, $\lambda x.\lambda y.z$
 • Some normal forms referred to as values: the “legal” end results of programs

• By Church Rosser Theorem, every term reduces to at most one normal form

• Notice that for our application rule, the argument need not be a normal form

Beta-Equivalence

• Let \equiv_{β} be the reflexive, symmetric, and transitive closure of \rightarrow
 • Usually we think only of reduction; adding symmetry extends this to equivalence
 • E.g., $(\lambda x.x) y \rightarrow y \leftarrow (\lambda z.\lambda w.z) y y$, so all three are beta equivalent

• If $a =_{\beta} b$, then $\exists c$ such that $a \rightarrow^* c$ and $b \rightarrow^* c$
 • Proof: Consequence of Church-Rosser Theorem

• In particular, if $a =_{\beta} b$ and both are normal forms, then they are equal
Not Every Term Has a Normal Form

- Consider
 - \(\Delta = \lambda x.x \)
 - Then \(\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots \)

- In general, self application leads to loops
 - ...which is good if we want recursion

Type systems and normalization

- It is possible to use types to distinguish “well-behaved” lambda calculus expressions from the others
- Often, type systems can be used to establish that all well-typed expressions have a normal form
 - if \(e : t \) then \(e \rightarrow^* v \)
 - If an expression \(e \) has a type \(t \), then \(e \) reduces to a normal form \(v \) (\(v \) is a value; irreducible)
- This kind of property of a type system is called “strong normalization.” More on type systems later.
A Fixpoint Combinator

- Also called a paradoxical combinator

 \[Y = \lambda f. (\lambda x. f(x)) (\lambda x. f(x)) \]

 Note: There are many versions of this combinator

- Then \(YF = \beta F (YF) \) for any \(F \)

 \[YF = (\lambda f. (\lambda x. f(x)) (\lambda x. f(x))) F \]

 \[\rightarrow (\lambda x. F(x)) (\lambda x. F(x)) \]

 \[\rightarrow F((\lambda x. F(x)) (\lambda x. F(x))) \]

 \[\leftarrow F(YF) \]

Example

- Fact \(n = \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact}(n-1) \)

- Let \(G = \lambda f. \text{<body of factorial>} \)

 I.e., \(G = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact}(n-1) \)

- \(YG1 = \beta G(YG)1 \)

 \[= _\beta (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact}(n-1)) (YG)1 \]

 \[= _\beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times ((YG)0) \]

 \[= _\beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times (G(YG)0) \]

 \[= _\beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact}(n-1)) (YG)0 \]

 \[= _\beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times (\text{if } 0 = 0 \text{ then } 1 \text{ else } 0 \times ((YG)0)) \]

 \[= _\beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times (YG)0 \]

 \[= _\beta 1 \times 1 = 1 \]
In Other Words

- The Y combinator “unrolls” or “unfolds” its argument an infinite number of times
 - \(Y \ G = G \ (Y \ G) = G \ (G \ (Y \ G)) = G \ (G \ (G \ (Y \ G))) = \ldots \)
 - \(G \) needs to have a “base case” to ensure termination
 - Sufficient to encode arbitrary recursion

- But, only works because we’re call-by-name
 - Different combinator(s) for call-by-value
 - \(Z = \lambda f. (\lambda x. f \ (\lambda y. x \ x \ y)) \ (\lambda x. f \ (\lambda y. x \ x \ y)) \)
 - Why is this a fixed-point combinator? How does its difference from \(Y \) make it work for call-by-value?

Encodings

- Encodings are fun; they show language expressiveness

- In practice, we usually add constructs as primitives
 - Much more efficient
 - Much easier to perform program analysis on and avoid silly mistakes with
 - E.g., our encodings of true and 0 are exactly the same, but we may want to forbid mixing booleans and integers
Lazy vs. Eager Evaluation

• Our non-deterministic reduction rule is fine for theory, but awkward to implement

• Two deterministic strategies:
 ▪ Lazy: Given \((\lambda x. e_1) \ e_2\), do not evaluate \(e_2\) if \(x\) does not “need” \(e_1\)
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order (with slightly different meanings)
 ▪ Eager: Given \((\lambda x. e_1) \ e_2\), always evaluate \(e_2\) fully before applying the function
 - Also called call-by-value

Lazy (Big-Step) Operational Semantics

\[
\begin{align*}
(\lambda x. e_1) & \rightarrow^l (\lambda x. e_1) \\
 e_1 & \rightarrow^l \lambda x. e \ e[\ e_2\ x\] \rightarrow^l e' \ \\
 e_1 \ e_2 & \rightarrow^l e'
\end{align*}
\]

• The rules are deterministic
• The rules do not reduce under \(\lambda\)
• The rules are normalizing:
 ▪ If \(a\) is closed and there is a normal form \(b\) such that \(a \rightarrow^* b\), then \(a \rightarrow^l d\) for some \(d\)
Eager (Big-Step) Operational Semantics

\[(\lambda x. e_1) \rightarrow^e (\lambda x. e_1)\]

\[e_1 \rightarrow^e \lambda x. e \quad e_2 \rightarrow^e e' \quad e[e'\Delta] \rightarrow^e e''\]

- This semantics is also deterministic and does not reduce under \(\lambda\)
- But it is not normalizing
 - Example: let \(x = \Delta \Delta\) in \((\lambda y. y)\)

Lazy vs. Eager in Practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with “infinite” objects
 - Main example: Haskell

- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side effects
 - Main examples: Most languages (C, Java, ML, etc.)
Functional Programming

- The \(\lambda \) calculus is a prototypical functional programming language:
 - Lots of higher-order functions
 - No side-effects

- In practice, many functional programming languages are “impure” and permit side-effects
 - But you’re supposed to avoid using them

Influence of Functional Programming

- Functional ideas in many other languages
 - Garbage collection was first designed with Lisp; most languages often rely on a GC today
 - Generics in Java/C++ came from polymorphism in ML and from type classes in Haskell
 - Higher-order functions and closures (used widely in Ruby; proposed extension to Java) are pervasive in all functional languages
 - Many data abstraction principles of OO came from ML’s module system
 - …
Call-by-Name Example

OCaml

```ocaml
let cond p x y = if p then x else y
let rec loop () = loop ()
let z = cond true 42 (loop ()),
```

infinite loop at call

Haskell

```haskell
cond p x y = if p then x else y
loop () = loop ()
z = cond True 42 (loop ()),
```

3rd argument never used by cond, so never invoked

Two Cool Things to Do with CBN

- Build control structures with functions

  ```
  cond p x y = if p then x else y
  ```

- “Infinite” data structures

  ```
  integers n = n:(integers (n+1))
take 10 (integers 0) (* infinite loop in cbv *)
  ```