CMSC424: Normalization

Instructor: Amol Deshpande
amol@cs.umd.edu

Databases

- Data Models
 - Conceptual representation of the data
- Data Retrieval
 - How to ask questions of the database
 - How to answer those questions
- Data Storage
 - How/where to store data, how to access it
- Data Integrity
 - Manage crashes, concurrency
 - Manage semantic inconsistencies
Relational Database Design

- Where did we come up with the schema that we used?
 - E.g. why not store the actor names with movies?

- If from an E-R diagram, then:
 - Did we make the right decisions with the E-R diagram?

- Goals:
 - Formal definition of what it means to be a “good” schema.
 - How to achieve it.

Movies Database Schema

Movie(title, year, length, inColor, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

Changed to:

Movie(title, year, length, inColor, studioName, producerC#, starName)
<StarsIn merged into above>
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

Is this a good schema ???
Movie Database

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>inColor</th>
<th>StudioName</th>
<th>prodC#</th>
<th>StarName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Hamill</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Fisher</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>H. Ford</td>
</tr>
<tr>
<td>King Kong</td>
<td>2005</td>
<td>187</td>
<td>Yes</td>
<td>Universal</td>
<td>150</td>
<td>Watts</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>no</td>
<td>RKO</td>
<td>20</td>
<td>Fay</td>
</tr>
</tbody>
</table>

Issues:

1. **Redundancy** → higher storage, inconsistencies (“anomalies”)
 - update anomalies, insertion anomalies
2. **Need nulls**
 - Unable to represent some information without using nulls

 How to store movies w/o actors (pre-productions etc) ?

Movie Database

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>inColor</th>
<th>StudioName</th>
<th>prodC#</th>
<th>starNames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>{Hamill, Fisher, H. Ford}</td>
</tr>
<tr>
<td>King Kong</td>
<td>2005</td>
<td>187</td>
<td>Yes</td>
<td>Universal</td>
<td>150</td>
<td>Watts</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>no</td>
<td>RKO</td>
<td>20</td>
<td>Fay</td>
</tr>
</tbody>
</table>

Issues:

3. **Avoid sets**
 - Hard to represent
 - Hard to query
Smaller schemas always good ????

Split Studio\((\text{name}, \text{address}, \text{presC#}) \) into:

<table>
<thead>
<tr>
<th>Studio1 (\text{name}, \text{presC#})</th>
<th>Studio2(\text{name}, \text{address})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{Name}</td>
<td>\text{Name}</td>
</tr>
<tr>
<td>Fox</td>
<td>Fox</td>
</tr>
<tr>
<td>Studio2</td>
<td>Studio2</td>
</tr>
<tr>
<td>Universal</td>
<td>Universal</td>
</tr>
</tbody>
</table>

	\text{Address}
	Fox
	Address1
	Studio2
	Address1
	Universal
	Address2

This process is also called “decomposition”

Issues:

4. Requires more joins (w/o any obvious benefits)
5. Hard to check for some dependencies

What if the “address” is actually the presC#'s address?

No easy way to ensure that constraint (w/o a join).

Smaller schemas always good ????

Decompose StarsIn\((\text{movieTitle}, \text{movieYear}, \text{starName}) \) into:

<table>
<thead>
<tr>
<th>StarsIn1(\text{movieTitle}, \text{movieYear})</th>
<th>StarsIn2(\text{movieTitle}, \text{starName})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{movieTitle}</td>
<td>\text{movieTitle}</td>
</tr>
<tr>
<td>Star wars</td>
<td>Star Wars</td>
</tr>
<tr>
<td>King Kong</td>
<td>King Kong</td>
</tr>
<tr>
<td>King Kong</td>
<td>King Kong</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{movieYear}</td>
<td>\text{starName}</td>
</tr>
<tr>
<td>1977</td>
<td>Hamill</td>
</tr>
<tr>
<td>1933</td>
<td>Watts</td>
</tr>
<tr>
<td>2005</td>
<td>Faye</td>
</tr>
</tbody>
</table>

Issues:

6. “joining” them back results in more tuples than what we started with

\(\text{(King Kong, 1933, Watts)} \) & \(\text{(King Kong, 2005, Faye)} \)

This is a “lossy” decomposition

We lost some constraints/information

The previous example was a “lossless” decomposition.
Desired data

- No sets
- Correct and faithful to the original design
 - Avoid lossy decompositions
- As little redundancy as possible
 - To avoid potential anomalies
- No “inability to represent information”
 - Nulls shouldn’t be required to store information
- Dependency preservation
 - Should be possible to check for constraints

Not always possible. We sometimes relax these for: simpler schemas, and fewer joins during queries.

Approach

1. We will encode and list all our knowledge about the schema
 - Functional dependencies (FDs)
 SSN \(\rightarrow\) name (means: SSN “implies” length)
 - If two tuples have the same “SSN”, they must have the same “name”
 movietitle \(\rightarrow\) length ??? Not true.
 - But, (movietitle, movieYear) \(\rightarrow\) length --- True.
2. We will define a set of rules that the schema must follow to be considered good
 - “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, ...
 - A normal form specifies constraints on the schemas and FDs
3. If not in a “normal form”, we modify the schema
Functional Dependencies

- Let R be a relation schema and
 $\alpha \subseteq R$ and $\beta \subseteq R$
- The functional dependency $\alpha \rightarrow \beta$
 holds on R iff for any legal relations $r(R)$, whenever two tuples t_1 and t_2 of r have same values for α, they have same values for β.
 $t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta]$
- Example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

- On this instance, $A \rightarrow B$ does NOT hold, but $B \rightarrow A$ does hold.

Functional Dependencies

Difference between holding on an instance and holding on all legal relation

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>inColor</th>
<th>StudioName</th>
<th>prodC#</th>
<th>StarName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Hamill</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Fisher</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>H. Ford</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>no</td>
<td>RKO</td>
<td>20</td>
<td>Fay</td>
</tr>
</tbody>
</table>

$Title \rightarrow Year$ holds on this instance

Is this a true functional dependency? No.

Two movies in different years can have the same name.

Can’t draw conclusions based on a single instance

Need to use domain knowledge to decide which FDs hold
Functional Dependencies

- Functional dependencies and keys
 - A key constraint is a specific form of a FD.
 - E.g. if A is a superkey for R, then: $A \rightarrow R$
 - Similarly for candidate keys and primary keys.

- Deriving FDs
 - A set of FDs may imply other FDs
 - e.g. If $A \rightarrow B$, and $B \rightarrow C$, then clearly $A \rightarrow C$
 - We will see a formal method for inferring this later

Definitions

1. A relation instance r satisfies a set of functional dependencies, F, if the FDs hold on the relation

2. F holds on a relation schema R if no legal (allowable) relation instance of R violates it

3. A functional dependency, $A \rightarrow B$, is called trivial if:
 - B is a subset of A
 - e.g. Movieyear, length \rightarrow length

4. Given a set of functional dependencies, F, its closure, F^*, is all the FDs that are implied by FDs in F.
Approach

1. We will encode and list all our knowledge about the schema
 - Functional dependencies (FDs)
 - Also:
 - Multi-valued dependencies (briefly discuss later)
 - Join dependencies etc...

2. We will define a set of rules that the schema must follow to be considered good
 - “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, ...
 - A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema

BCNF: Boyce-Codd Normal Form

- A relation schema R is “in BCNF” if:
 - Every functional dependency $A \rightarrow B$ that holds on it is EITHER:
 1. Trivial OR
 2. A is a superkey of R

- **Why is BCNF good?**
 - Guarantees that there can be no redundancy because of a functional dependency
 - Consider a relation $r(A, B, C, D)$ with functional dependency $A \rightarrow B$ and two tuples: $(a1, b1, c1, d1)$, and $(a1, b1, c2, d2)$
 - $b1$ is repeated because of the functional dependency
 - BUT this relation is not in BCNF
 - $A \rightarrow B$ is neither trivial nor is A a superkey for the relation
Why does redundancy arise?

Given a FD, $A \rightarrow B$, if A is repeated $(B - A)$ has to be repeated
1. If rule 1 is satisfied, $(B - A)$ is empty, so not a problem.
2. If rule 2 is satisfied, then A can’t be repeated, so this doesn’t happen either

Hence no redundancy because of FDs

Redundancy may exist because of other types of dependencies
- Higher normal forms used for that (specifically, 4NF)
- Data may naturally have duplicated/redundant data
 - We can’t control that unless a FD or some other dependency is defined

Approach

1. We will encode and list all our knowledge about the schema
 - Functional dependencies (FDs); Multi-valued dependencies; Join dependencies etc...
2. We will define a set of rules that the schema must follow to be considered good
 - “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, ...
 - A normal form specifies constraints on the schemas and FDs
3. If not in a “normal form”, we modify the schema
 - Through lossless decomposition (splitting)
 - Or direct construction using the dependencies information
BCNF

- What if the schema is not in BCNF?
 - Decompose (split) the schema into two pieces.

- From the previous example: split the schema into:
 - $r_1(A, B)$, $r_2(A, C, D)$
 - The first schema is in BCNF, the second one may not be (and may require further decomposition)
 - No repetition now: r_1 contains $(a1, b1)$, but $b1$ will not be repeated

- Careful: you want the decomposition to be lossless
 - No information should be lost
 - The above decomposition is lossless
 - We will define this more formally later

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
 - BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem
1. Closure

- Given a set of functional dependencies, F, its closure, F^+, is all FDs that are implied by FDs in F.
 - e.g. If $A \rightarrow B$, and $B \rightarrow C$, then clearly $A \rightarrow C$

- We can find F^+ by applying Armstrong’s Axioms:
 - if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ (reflexivity)
 - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ (augmentation)
 - if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ (transitivity)

- These rules are
 - sound (generate only functional dependencies that actually hold)
 - complete (generate all functional dependencies that hold)

Additional rules

- If $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta \gamma$ (union)
- If $\alpha \rightarrow \beta \gamma$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$ (decomposition)
- If $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$ (pseudotransitivity)

- The above rules can be inferred from Armstrong’s axioms.
Example

- \(R = \{A, B, C, G, H, I\} \)
- \(F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\} \)
- Some members of \(F^+ \):
 - \(A \rightarrow H \)
 - by transitivity from \(A \rightarrow B \) and \(B \rightarrow H \)
 - \(AG \rightarrow I \)
 - by augmenting \(A \rightarrow C \) with \(G \), to get \(AG \rightarrow CG \)
 and then transitivity with \(CG \rightarrow I \)
 - \(CG \rightarrow HI \)
 - by augmenting \(CG \rightarrow I \) to infer \(CG \rightarrow CGI \),
 and augmenting of \(CG \rightarrow H \) to infer \(CGI \rightarrow HI \),
 and then transitivity

2. Closure of an attribute set

- Given a set of attributes \(A \) and a set of FDs \(F \), closure of \(A \) under \(F \) is the set of all attributes implied by \(A \)
- In other words, the largest \(B \) such that: \(A \rightarrow B \)
- Redefining super keys:
 - The closure of a super key is the entire relation schema
- Redefining candidate keys:
 1. It is a super key
 2. No subset of it is a super key
Computing the closure for A

- Simple algorithm
 1. Start with $B = A$.
 2. Go over all functional dependencies, $\beta \rightarrow \gamma$, in F^+
 3. If $\beta \subseteq B$, then
 Add γ to B
 4. Repeat till B changes

Example

- $R = \{ A, B, C, G, H, I \}$
- $F = \{ A \rightarrow B$
 $A \rightarrow C$
 $CG \rightarrow H$
 $CG \rightarrow I$
 $B \rightarrow H \}$

- $(AG)^+$?
 1. result = AG
 2. result = ABCG \((A \rightarrow C \text{ and } A \rightarrow B) \)
 3. result = ABCGH \((CG \rightarrow H \text{ and } CG \subseteq AGBC) \)
 4. result = ABCGHI \((CG \rightarrow I \text{ and } CG \subseteq AGBCH) \)

- Is (AG) a candidate key?
 1. It is a super key.
 2. $(A^+) = BC$, $(G^+) = G.$

YES.
Uses of attribute set closures

- Determining superkeys and candidate keys

- Determining if $A \rightarrow B$ is a valid FD
 - Check if A^+ contains B

- Can be used to compute F^+

3. Extraneous Attributes

- Consider F, and a functional dependency, $A \rightarrow B$.

- “Extraneous”: Are there any attributes in A or B that can be safely removed?
 Without changing the constraints implied by $F

- Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - C is extraneous in $AB \rightarrow CD$ since $AB \rightarrow C$ can be inferred even after deleting C
 - i.e., given: $A \rightarrow C$, and $AB \rightarrow D$, we can use Armstrong Axioms to infer $AB \rightarrow CD$
4. Canonical Cover

- A **canonical cover** for F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_c, and
 - F_c logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique

- In some (vague) sense, it is a *minimal* version of F

- Read up algorithms to compute F_c

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem
Loss-less Decompositions

- Definition: A decomposition of R into (R_1, R_2) is called lossless if, for all legal instance of $r(R)$:
 \[r = \prod_{R_1} (r) \bowtie \prod_{R_2} (r) \]

- In other words, projecting on R_1 and R_2, and joining back, results in the relation you started with.

- Rule: A decomposition of R into (R_1, R_2) is lossless, iff:
 \[R_1 \cap R_2 \rightarrow R_1 \quad \text{or} \quad R_1 \cap R_2 \rightarrow R_2 \]
in F^+.

Dependency-preserving Decompositions

Is it easy to check if the dependencies in F hold?

Okay as long as the dependencies can be checked in the same table.

Consider $R = (A, B, C)$, and $F = \{A \rightarrow B, B \rightarrow C\}$

1. Decompose into $R_1 = (A, B)$, and $R_2 = (A, C)$
 - Lossless? Yes.
 - But, makes it hard to check for $B \rightarrow C$
 - The data is in multiple tables.

2. On the other hand, $R_1 = (A, B)$, and $R_2 = (B, C)$,
 - is both lossless and dependency-preserving
 - Really? What about $A \rightarrow C$?
 - If we can check $A \rightarrow B$, and $B \rightarrow C$, $A \rightarrow C$ is implied.
Definition:
- Consider decomposition of R into $R_1, ..., R_n$.
- Let F_i be the set of dependencies F^+ that include only attributes in R_i.

The decomposition is **dependency preserving**, if
$$(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$$

Outline
- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem
BCNF

- Given a relation schema R, and a set of functional dependencies F, if every FD, $A \rightarrow B$, is either:
 1. Trivial
 2. A is a superkey of R

 Then, R is in **BCNF (Boyce-Codd Normal Form)**

- What if the schema is not in BCNF?
 - Decompose (split) the schema into two pieces.
 - Careful: you want the decomposition to be lossless

Achieving BCNF Schemas

For all dependencies $A \rightarrow B$ in $F+$, check if A is a superkey

 By using attribute closure

If not, then

 - Choose a dependency in $F+$ that breaks the BCNF rules, say $A \rightarrow B$
 - Create $R1 = A \ B$
 - Create $R2 = A (R - B - A)$
 - Note that: $R1 \cap R2 = A$ and $A \rightarrow AB (= R1)$, so this is lossless decomposition

Repeat for $R1$, and $R2$

By defining $F1+$ to be all dependencies in F that contain only attributes in $R1$

Similarly $F2+$
Example 1

\[R = (A, B, C) \]
\[F = \{A \rightarrow B, B \rightarrow C\} \]
Candidate keys = \{A\}
BCNF = No. B \rightarrow C violates.

\[R1 = (B, C) \]
\[F1 = \{B \rightarrow C\} \]
Candidate keys = \{B\}
BCNF = true

\[R2 = (A, B) \]
\[F2 = \{A \rightarrow B\} \]
Candidate keys = \{A\}
BCNF = true

Example 2-1

\[R = (A, B, C, D, E) \]
\[F = \{A \rightarrow B, BC \rightarrow D\} \]
Candidate keys = \{ACE\}
BCNF = Violated by \{A \rightarrow B, BC \rightarrow D\} etc…

\[A \rightarrow B \]
\[R1 = (A, B) \]
\[F1 = \{A \rightarrow B\} \]
Candidate keys = \{A\}
BCNF = true

\[AC \rightarrow D \]
\[R2 = (A, C, D, E) \]
\[F2 = \{AC \rightarrow D\} \]
Candidate keys = \{ACE\}
BCNF = false (AC \rightarrow D)

From A \rightarrow B and BC \rightarrow D by pseudo-transitivity

Dependency preservation ???
We can check:
\[A \rightarrow B \text{ (R1), } AC \rightarrow D \text{ (R3),} \]

but we lost BC \rightarrow D
So this is not a dependency-preserving decomposition
Example 2-2

\[R = (A, B, C, D, E) \]
\[F = \{ A \rightarrow B, BC \rightarrow D \} \]
Candidate keys = \{ACE\}
BCNF = Violated by \{A \rightarrow B, BC \rightarrow D\} etc…

\[BC \rightarrow D \]
\[R1 = (B, C, D) \]
\[F1 = \{ BC \rightarrow D \} \]
Candidate keys = \{BC\}
BCNF = true

\[R2 = (B, C, A, E) \]
\[F2 = \{ A \rightarrow B \} \]
Candidate keys = \{ACE\}
BCNF = false (A \rightarrow B)

Dependency preservation ???
We can check:
BC \rightarrow D (R1), A \rightarrow B (R3),
Dependency-preserving decomposition

Example 3

\[R = (A, B, C, D, E, H) \]
\[F = \{ A \rightarrow BC, E \rightarrow HA \} \]
Candidate keys = \{DE\}
BCNF = Violated by \{A \rightarrow BC\} etc…

\[A \rightarrow BC \]
\[R1 = (A, B, C) \]
\[F1 = \{ A \rightarrow BC \} \]
Candidate keys = \{A\}
BCNF = true

\[R2 = (A, D, E, H) \]
\[F2 = \{ E \rightarrow HA \} \]
Candidate keys = \{DE\}
BCNF = false (E \rightarrow HA)

\[E \rightarrow HA \]
\[R3 = (E, H, A) \]
\[F3 = \{ E \rightarrow HA \} \]
Candidate keys = \{E\}
BCNF = true

\[R4 = (ED) \]
\[F4 = \{ \} \] [[only trivial]]
Candidate keys = \{DE\}
BCNF = true

Dependency preservation ???
We can check:
A \rightarrow BC (R1), E \rightarrow HA (R3),
Dependency-preserving decomposition
Mechanisms and definitions to work with FDs
- Closures, candidate keys, canonical covers etc...
- Armstrong axioms

Decompositions
- Loss-less decompositions, Dependency-preserving decompositions

BCNF
- How to achieve a BCNF schema

BCNF may not preserve dependencies

3NF: Solves the above problem

BCNF allows for redundancy

4NF: Solves the above problem

Outline

BCNF may not preserve dependencies

$R = \{ J, K, L \}$

$F = \{ JK \rightarrow L, L \rightarrow K \}$

Two candidate keys = JK and JL

R is not in BCNF

Any decomposition of R will fail to preserve

$JK \rightarrow L$

This implies that testing for $JK \rightarrow L$ requires a join
BCNF may not preserve dependencies

- Not always possible to find a dependency-preserving decomposition that is in BCNF.
- PTIME to determine if there exists a dependency-preserving decomposition in BCNF
 - in size of F
- NP-Hard to find one if it exists
- Better results exist if F satisfies certain properties

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem
3NF

- **Definition: Prime attributes**
 An attribute that is contained in a candidate key for R

- **Example 1:**
 - $R = \{A, B, C, D, E, H\}, F = \{A \rightarrow BC, E \rightarrow HA\}$
 - Candidate keys = \{ED\}
 - Prime attributes: D, E

- **Example 2:**
 - $R = \{J, K, L\}, F = \{JK \rightarrow L, L \rightarrow K\}$
 - Candidate keys = \{JL, JK\}
 - Prime attributes: J, K, L

- **Observation/Intuition:**
 1. A key has no redundancy (is not repeated in a relation)
 2. A prime attribute has limited redundancy

3NF

- Given a relation schema R, and a set of functional dependencies F, if every FD, $A \rightarrow B$, is either:
 1. Trivial, or
 2. A is a superkey of R, or
 3. All attributes in $(B - A)$ are prime

Then, R is in **3NF (3rd Normal Form)**

- *Why is 3NF good?*
3NF and Redundancy

Why does redundancy arise?
- Given a FD, A → B, if A is repeated (B – A) has to be repeated
 1. If rule 1 is satisfied, (B – A) is empty, so not a problem.
 2. If rule 2 is satisfied, then A can’t be repeated, so this doesn’t happen either.
 3. If not, rule 3 says (B – A) must contain only prime attributes.
 This limits the redundancy somewhat.

- So 3NF relaxes BCNF somewhat by allowing for some (hopefully limited) redundancy.
- Why?
 - There always exists a dependency-preserving lossless decomposition in 3NF.

Decomposing into 3NF

- A synthesis algorithm
- Start with the canonical cover, and construct the 3NF schema directly
- Homework assignment.
Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem

BCNF and redundancy

<table>
<thead>
<tr>
<th>MovieTitle</th>
<th>MovieYear</th>
<th>StarName</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>Harrison Ford</td>
<td>Address 1, LA</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>Harrison Ford</td>
<td>Address 2, FL</td>
</tr>
<tr>
<td>Indiana Jones</td>
<td>198x</td>
<td>Harrison Ford</td>
<td>Address 1, LA</td>
</tr>
<tr>
<td>Indiana Jones</td>
<td>198x</td>
<td>Harrison Ford</td>
<td>Address 2, FL</td>
</tr>
<tr>
<td>Witness</td>
<td>19xx</td>
<td>Harrison Ford</td>
<td>Address 1, LA</td>
</tr>
<tr>
<td>Witness</td>
<td>19xx</td>
<td>Harrison Ford</td>
<td>Address 2, FL</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Lot of redundancy

FDs? No non-trivial FDs.

So the schema is trivially in BCNF (and 3NF)

What went wrong?
Multi-valued Dependencies

- The redundancy is because of multi-valued dependencies
- Denoted:
 - `starnname →→ address`
 - `starnname →→ movietitle, moviyear`

- Should not happen if the schema is constructed from an E/R diagram

- Functional dependencies are a special case of multi-valued dependencies

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem
4NF

- Similar to BCNF, except with MVDs instead of FDs.

- Given a relation schema R, and a set of multi-valued dependencies F, if every MVD, $A \rightarrow\rightarrow B$, is either:
 1. Trivial, or
 2. A is a superkey of R

Then, R is in \textit{4NF (4th Normal Form)}

- $4NF \rightarrow BCNF \rightarrow 3NF \rightarrow 2NF \rightarrow 1NF$:
 - If a schema is in 4NF, it is in BCNF.
 - If a schema is in BCNF, it is in 3NF.

- Other way round is untrue.

Comparing the normal forms

<table>
<thead>
<tr>
<th></th>
<th>3NF</th>
<th>BCNF</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminates redundancy because of FD's</td>
<td>Mostly</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Eliminates redundancy because of MVD's</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Preserves FDs</td>
<td>Yes</td>
<td>Maybe</td>
<td>Maybe</td>
</tr>
<tr>
<td>Preserves MVDs</td>
<td>Maybe</td>
<td>Maybe</td>
<td>Maybe</td>
</tr>
</tbody>
</table>

4NF is typically desired and achieved.

A good E/R diagram won't generate non-4NF relations at all

Choice between 3NF and BCNF is up to the designer
Database design process

- Three ways to come up with a schema
 1. Using E/R diagram
 - If good, then little normalization is needed
 - Tends to generate 4NF designs
 2. A universal relation R that contains all attributes.
 - Called universal relation approach
 - Note that MVDs will be needed in this case
 3. An *ad hoc* schema that is then normalized
 - MVDs may be needed in this case

Recap

- What about 1st and 2nd normal forms?

 1NF:
 - Essentially says that no set-valued attributes allowed
 - Formally, a domain is called *atomic* if the elements of the domain are considered indivisible
 - A schema is in 1NF if the domains of all attributes are atomic
 - We assumed 1NF throughout the discussion
 - Non 1NF is just not a good idea

 2NF:
 - Mainly historic interest
 - See Exercise 7.15 in the book
Recap

- We would like our relation schemas to:
 - Not allow potential redundancy because of FDs or MVDs
 - Be *dependency-preserving*:
 - Make it easy to check for dependencies
 - Since they are a form of integrity constraints
- Functional Dependencies/Multi-valued Dependencies
 - Domain knowledge about the data properties
- Normal forms
 - Defines the rules that schemas must follow
 - 4NF is preferred, but 3NF is sometimes used instead

Recap

- Denormalization
 - After doing the normalization, we may have too many tables
 - We may *denormalize* for performance reasons
 - Too many tables \Rightarrow too many joins during queries
 - A better option is to use *views* instead
 - So if a specific set of tables is joined often, create a view on the join
- More advanced normal forms
 - project-join normal form (PJNF or 5NF)
 - domain-key normal form
 - Rarely used in practice