DYNAMIC ENFORCEMENT OF KNOWLEDGE-BASED SECURITY POLICIES

Piotr (Peter) Mardziel

Joint work with Stephen Magill, Michael Hicks (UMD), and Mudhakar Srivatsa (IBM TJ Watson)
Where is your information?
Bad + Good

Getaways in DC 83% Off
homerun.com

The best Getaways in Washington DC. Huge discounts for our members. Click now to join free!

M.S. – Computer Forensics
online.uab.edu

Become a leader in the rapidly growing field of computer forensics with a Masters degree from UAB!

DC Bucket List
partners.livingsocial.com

365 Things to do in Washington, DC before you die.

Cointreau Noir

Remy Martin Cognac blended with orange liqueur: Cointreau Noir. Do you LIKE it?

Redbeacon gives up to 44% off on local plumbers. Sign up today!

Do you have Anxiety?
healingllc.com

Is your mind spinning with worries and you just want a break? Counseling can help! Email us today at AnotherLook @ HealingLLC.com.
Take back control
out = 24 ≤ Age ≤ 30 ∧ Female? ∧ Engaged?
out = (ssn, ccn, fav-color)
reject
The big problem: how to decide to run a query or not?

Q1
out = 24 ≤ age ≤ 30
∧ female?
∧ engaged?

Q2
out = age

Q3
out = (ssn, ccn, fav-color)
Outline

- Clarkson’s work on quantified information flow
 - (adversary) belief/knowledge and belief revision (Bayesian revision)
 - probability of adversary guessing secret
- Suitable knowledge-based policy formulation
 - maintain bound while revealing query outputs or rejecting queries
- Clarkson’s probabilistic semantics
- Computational feasibility
 - approximation of knowledge
 - abstract interpretation (of probabilistic semantics)
 - soundness in terms of policy
- Experimental results
 - compare to prob-scheme, enumeration-based probabilistic evaluation
Clarkson’s Quantitative Information Flow

= belief (probability distribution) over secret data

- Given belief, query, determine revised belief given the output of the query (Bayesian revision)
 - \(\Pr[\text{gender} = \text{male} \mid \text{output} = o] \)
 - \(\Pr[\text{Bad}] < t = \)
 - adversary holding belief has bounded probability of guessing my secret(s) in one try
 - sufficient: \(\Pr[\text{gender} = \text{male} \mid \text{output} = o] < t \)

- Assumption
 - initial belief is correct
 - our approach might help here (later)
 - adversary guesses by sampling

Ex:
\(\Pr[\text{gender} = \text{male}] = 0.5 \)
\(\Pr[\text{gender} = \text{female}] = 0.5 \)
• More about Clarkson’s semantics later
 • Let us consider an example
 • Flawed initial policy
 • \(\text{Pr}[\text{my secret}] < t \)
 • demonstrate problem with rejection
 • revise policy to address problem
Meet Bob

Bob (born September 27, 1980)
bday = 270
byear = 1980

Secret

0 ≤ bday ≤ 364
1956 ≤ byear ≤ 1992

Policy
Pr[bday] < 0.2
Pr[bday,byear] < 0.05

Currently
Pr[bday] = 1/365
Pr[bday,byear] = 1/(365*37)
```plaintext
bday-query1

today := 260;
if bday ≥ today ∧ bday < (today + 7)
then out := true
else out := false

= (out = false)

Bob
bday = 270
byear = 1980
```
Potentially
Pr[bday] = 1/358 < 0.2
Pr[bday,byear] = 1/(358*37) < 0.05

bday-query1
\[
\text{today} := 260;
\]
\[
\text{if } \text{bday} \geq \text{today} \land \text{bday} < (\text{today} + 7)
\]
\[
\text{then out } := \text{true}
\]
\[
\text{else out } := \text{false}
\]

Bob
bday = 270
byear = 1980
Next day ...

\[
\text{bday-query2} \\
\text{today} := 261; \\
\text{if bday} \geq \text{today} \land \text{bday} < (\text{today} + 7) \\
\text{then out} := \text{true} \\
\text{else out} := \text{false}
\]

\[
\text{out} = \text{false}
\]
Potentially
Pr[bday] = 1/357 < 0.2
Pr[bday, byear] = 1/(357 * 37) < 0.05

bday-query2
today := 261;
if bday ≥ today ∧ bday < (today + 7)
then out := true
else out := false

Bob
bday = 270
byear = 1980
Meet Bob'

Bob'
bday = 267
byear = 1980

bdays-query2

\[\text{today} := 261; \]
\[\text{if } \text{bday} \geq \text{today} \land \text{bday} < (\text{today} + 7) \]
\[\text{then out := true} \]
\[\text{else out := false} \]

So reject?
Querier’s perspective

Assume querier knows policy

if bday ≠ 267

will get answer

if bday = 267

will get reject
Querier’s perspective

- **Solution?**
 - Decide policy independently of secret
 - Revised **policy**
 - For every possible output \(o \), for every possible bday, \(\Pr[bday \mid out = o] < t \)
 - So the real bday in particular
 - Therefore \(\Pr[bad] < t \)
bd*ay-query2

today := 261;
if bday >= today ∧ bday < (today + 7)
 then out := true
else out := false

reject

(regardless of what bday actually is)
Clarkson’s Probabilistic Interpretation

- Given $\delta : \text{States} \rightarrow \mathbb{R}$
 - probability distribution on program states (including secrets)
 - $\delta(\sigma) = \text{probability of state } \sigma$
- Given program S
- Compute
 - $[S]\delta$
 - probability distribution on resulting program states
 - $\delta \wedge B$
 - (sub)probability distribution of δ only on states consistent with B
 - $\delta \mid (\text{out} = \text{true})$
 - Bayesian revision, post belief
Probabilistic Interpretation

- **Semantics**
 - $[[\text{skip}]]\delta = \delta$
 - $[[S_1;S_2]]\delta = [[S_2]][[S_1]]\delta$
 - $[[\text{if } B \text{ then } S_1 \text{ else } S_2]]\delta = [[S_1]](\delta \land B) + [[S_2]](\delta \land \neg B)$
 - $[[\text{pif } p \text{ then } S_1 \text{ else } S_2]]\delta = [[S_1]](p^*\delta) + [[S_2]]((1-p)^*\delta)$
 - $[[x := E]]\delta = \delta[x \rightarrow E]$
 - $[[\text{while } B \text{ do } S]]\delta = \text{lfp}(\lambda \delta \cdot F([[S]](\delta \land B)) + (\delta \land \neg B))$

- **Operations**
 - $p^*\delta$ – scale probabilities by p
 - $\delta \land B$ – remove mass inconsistent with B
 - $\delta_1 + \delta_2$ – combine mass from both
 - $\delta[x \rightarrow E]$ – transform mass
Subdistribution operations

\(\delta \land B \) – remove mass inconsistent with \(B \)
\(\delta \land B = \lambda \sigma. \text{if } [B] \sigma = \text{true then } \delta(\sigma) \text{ else } 0 \)

\(\delta_1 + \delta_2 \) – combine mass from both
\(\delta_1 + \delta_2 = \lambda \sigma. \delta_1(\sigma) + \delta_2(\sigma) \)

\(\delta \land x \leq 5 \)
\([y := y + 3] (\delta \land x \leq 5) \)

\(\delta \land x > 5 \)
\([y := y - 3] (\delta \land x > 5) \)

\([\text{if } x \leq 5 \text{ then } y := y + 3 \text{ else } y := y - 3] \delta = [y := y + 3](\delta \land x \leq 5) + [y := y - 3](\delta \land x > 5) \)
Infeasibility

- **Computational trouble**
 - $\delta[x \rightarrow E] = \lambda \sigma \cdot \sum_{\tau} \mathbb{1}[x \rightarrow [E]] = \sigma \delta(\tau)$
 - $\max_{\sigma} \delta(\sigma) = ?$ (for policy check)
 - enumeration?

- **Sampling (prob-scheme, IBAL, …)**
 - evaluate statement for some set of input states
 - poor probability bounds if evaluated on small subset of possible states (later)
 - prohibitive (time, memory) for large state space

- Let’s try an approximation
Abstraction

• **Approximate representation** P
 - P abstracts a set of distributions, $\gamma(P)$

 • sound probability bound
 - if $\delta \in \gamma(P)$ then $\max_{\sigma} \delta(\sigma) \leq \maxprob(P)$

• $((S)) \ P$ – **abstract interpretation**
 - if $\delta \in \gamma(P)$ then $[[S]]\delta \in \gamma(((S))P)$

• $P \mid (\text{out} = X)$ – **abstract conditioning**
 - if $\delta \in \gamma(P)$ then $(\delta \mid (\text{out} = X)) \in \gamma(P \mid (\text{out} = X))$

• (more) computationally feasible

• let us revisit Bob to motivate a suitable abstraction
Representation

P_1: $0 \leq \text{bday} \leq 364$, $1956 \leq \text{byear} \leq 1992$

- $p = 0.000074$
- $s = 13505$ (# of points)
- $m = 1$ (total mass)

P_2: $267 \leq \text{bday} \leq 364$, $1956 \leq \text{byear} \leq 1992$

- $p = 0.000074$
- $s = 3626$
- $m = 0.268$

Can determine (\wedge out = false)
\textbf{spec-byear-query}

\begin{verbatim}
 age := 2011 – byear;
 if age = 20 \lor \ldots \lor age = 60
 then out := true
 else out := false;
 pif 0.1 then out := true
\end{verbatim}

\textbf{pif p then }S_1\textbf{ }
- evaluate }S_1\textbf{ with probability }p
Approximation

\[\land \text{out} = \text{true} \]

\[P_1 : 0 \leq \text{bday} \leq 259, \ 1992 \leq \text{byear} \leq 1992 \]
\[p = 0.0000074 \]
\[s = 260 \]
\[m = 0.0019 \]

\[P_2 : 0 \leq \text{bday} \leq 259, \ 1991 \leq \text{byear} \leq 1991 \]
\[p = 0.0000074 \]
\[s = 260 \]
\[m = 0.019 \]

\[P_1 : 0 \leq \text{bday} \leq 259, \ 1956 \leq \text{byear} \leq 1992 \]
\[p \leq 0.0000074 \]
\[s = 9620 \]
\[m = 0.141 \]

\[P_2 : 267 \leq \text{bday} \leq 364, \ 1956 \leq \text{byear} \leq 1992 \]
\[p \leq 0.0000074 \]
\[s = 3626 \]
\[m = 0.053 \]

...
Approximation

P₁: 0 ≤ bday ≤ 259, 1992 ≤ byear ≤ 1992
 p = 0.000067
 s = 260
 m = 0.019

P₂: 0 ≤ bday ≤ 259, 1982 ≤ byear ≤ 1990
 p = 0.000067
 s = 2340
 m = 0.173

P₂: 267 ≤ bday ≤ 364, 1956 ≤ byear ≤ 1992
 p = 0.000067
 s = 3234 ≠ size of region
 m = 0.215

p and s only refer to possible (non-zero probability) points in region
Approximation

For each P_i, store
- region (polyhedron)
- upper bound on probability of each possible point
- upper bound on the number of points
- upper bound on the total probability mass (useful)

Also store
- lower bounds on the above

$$\Pr[A | B] = \frac{\Pr[A \land B]}{\Pr[B]}$$
Approximation

\[\delta \in \gamma(P) \text{ iff } \]

\[\text{support}(\delta) \subseteq \gamma(C) \]
\[p_{\text{min}} \leq \delta(\sigma) \leq p_{\text{max}} \text{ for every } \sigma \in \text{support}(\delta) \]
\[s_{\text{min}} \leq |\text{support}(\delta)| \leq s_{\text{max}} \]
\[m_{\text{min}} \leq \text{mass}(\delta) \leq m_{\text{max}} \]

\[\max_\sigma \delta(\sigma) \leq p_{\text{max}} \]
Abstract Interpretation

- **Need**
 - \(((S)) P \)
 - define identically to \([S] P\) but using abstract operations
 - if \(\delta \in \gamma(P) \) then \([S] \delta \in \gamma(((S))P)\)

- **Need Abstract operations**
 - \(P_1 + P_2 \)
 - if \(\delta_i \in \gamma(P_i) \) for \(i = 1,2 \) then \(\delta_1 + \delta_2 \in \gamma(P_1 + P_2) \)
 - \(P \land B \)
 - if \(\delta \in \gamma(P) \) then \(\delta \land B \in \gamma(P \land B) \)
 - \(p^*P \)
 - if \(\delta \in \gamma(P) \) then \(p^* \delta \in \gamma(p^*P) \)
 - ...

Abstract operation example

\(\delta_1 + \delta_2 \) – combine mass from both
\(\delta_1 + \delta_2 = \lambda \sigma. \delta_1(\sigma) + \delta_2(\sigma) \)

What is the maximum number of possible points in the sum?
• determine minimum overlap (10)

\[|C_1 \cap C_2| = 20 \]

\[P_1 \]

\[P_2 \]

\[C_2 \]

\[|C_1| = 100 \]

\[|C_2| = 40 \]

\[s_1^{\text{max}} = 100 \]

\[s_2^{\text{max}} = 30 \]

\[P_3 = P_1 + P_2 \]

\[s_3^{\text{max}} \leq s_1^{\text{max}} + s_2^{\text{max}} = 130 \]

\[|C_1| = 100 \]

\[|C_2| = 40 \]

\[s_3^{\text{max}} = 120 \]
Operations

- $P_3 = P_1 + P_2$
 - C_3 – convex hull of C_1, C_2
 - s_3^{max} – what is the smallest overlap?
 - s_3^{min} – what is the largest overlap?
 - p_3^{max} – is overlap possible?
 - p_3^{min} – is overlap impossible?
 - m_3^{max} – simple sum $m_1^{\text{max}} + m_2^{\text{max}}$
 - m_3^{min} – simple sum $m_1^{\text{min}} + m_2^{\text{min}}$

- Other operations, similar, complicated formulas abound

- Need to
 - count number of integer points in a convex polyhedra
 - Latte
 - maximize a linear function over integer points in a polyhedron
 - Latte
 - convex hull, intersection, affine transform
 - Parma
Precision

- Extend abstraction to a set of Probabilistic Polyhedrons
 - $\delta \in \gamma(\{P_1, P_2\})$ iff $\delta = \delta_1 + \delta_2$ with $\delta_1 \in \gamma(P_1)$ and $\delta_2 \in \gamma(P_2)$
 - similarly for more than two
 - $\max_{\sigma} \delta(\sigma) \leq \sum_i p_i^{\max}$
 - can do better with a bit more work

- performance / precision tradeoff
Implementation and Results

\[0 \leq \text{bday} \leq 364 \]
\[1956 \leq \text{byear} \leq 1992 \]
Policy

$\Pr[bday, byear] \leq 0.05$

bday-query1

today := 260;
if bday \geq today \land bday < (today + 7)
then out := true
else out := false

1. **prob** (our implementation)
2. **prob-scheme** (sampling/enumeration)
 - provides sound estimation after partial enumeration
 - measure time and bound on $\max_\sigma \delta(\sigma)$ produced
Implementation and Results

1 pp

\[
0 \leq \text{bday} \leq 364 \\
1956 \leq \text{byear} \leq 1992
\]

> 1 pp

\[
0 \leq \text{bday} \leq 364 \\
1910 \leq \text{byear} \leq 2010
\]
Limiting number of prob. polyhedra requires merging two into one at various points
Deciding which ones to merge is troublesome
 • likely reason for the strangeness above
Conclusions

• Knowledge-based policies
 • quantitative information flow, probabilistic semantics
 • bound on probability of specific bad events (guess of secret)

• Dynamic enforcement, via abstract interpretation
 • policy formulation safe for rejection
 • resistant to state space explosion
 • can be sound in respect to many initial distributions
 • alleviates the problem of determining what is the correct initial distribution

• Drawback
 • restricted language, integer linear expressions

• Potential (future work)
 • simpler domains (Octagons) can replace Polyhedra
 • increased performance?
Thank you!

Go back.