CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata

Introduction

- That’s it for the basics of Ruby
 - If you need other material for your project, come to office hours or check out the documentation

- Next up: How do regular expressions (REs) really work?
 - Mixture of a very practical tool (string matching with REs) and some nice theory
 - A great computer science result
A Few Questions About REs

- What does a regular expression represent?
 - Just a set of strings

- What are the basic components of REs?
 - E.g., we saw that e+ is the same as ee*

- How are REs implemented?
 - We’ll see how to build a structure to parse REs

Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

- Example alphabets:
 - Binary: $\Sigma = \{0,1\}$
 - Decimal: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
 - Alphanumeric: $\Sigma = \{0-9,a-z,A-Z\}$
Definition: String

- A string is a finite sequence of symbols from Σ
 - ϵ is the empty string ("" in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\epsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \epsilon \} \neq \epsilon$
- Example strings:
 - $0101 \in \Sigma = \{0, 1\}$ (binary)
 - $0101 \in \Sigma = \text{decimal}$
 - $0101 \in \Sigma = \text{alphanumeric}$

Definition: String concatenation

- String concatenation is indicated by juxtaposition
 - If $s_1 = \text{super}$ and $s_2 = \text{hero}$, then $s_1 s_2 = \text{superhero}$
 - Sometimes also written $s_1 \cdot s_2$
 - For any string s, we have $s \epsilon = \epsilon s = s$
 - You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:
 - If $s_1 = \text{super} \in \Sigma_1 = \{s,u,p,e,r\}$ and $s_2 = \text{hero} \in \Sigma_2 = \{h,e,r,o\}$, then $s_1 s_2 = \text{superhero} \in \Sigma_3 = \{e,h,o,p,r,s,u\}$
Definition: Language

- A language \(L \) is a set of strings over an alphabet.

- Example: The set of phone numbers over the alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\} \)
 - Give an example element of this language: (123) 456-7890
 - Are all strings over the alphabet in the language? No
 - Is there a Ruby regular expression for this language?
 \(/\(\d\(3, 3\)\) \d\(3, 3\)\-\d\(4, 4\)/

- Example: The set of all strings over \(\Sigma \)
 - Often written \(\Sigma^* \)

Definition: Language (cont.)

- Example: The set of strings of length 0 over the alphabet \(\Sigma = \{a, b, c\} \)
 - \(L = \{ s \mid s \in \Sigma^* \text{ and } |s| = 0 \} = \{\epsilon\} \neq \emptyset \)

- Example: The set of all valid Ruby programs
 - Is there a Ruby regular expression for this language?
 No. Matching (an arbitrary number of) brackets so that they are balanced is impossible using REs \{ { … } } \}

- Can REs represent all possible languages?
 - The answer turns out to be no!
 - The languages represented by regular expressions are called, appropriately, the regular languages.
Operations on Languages

- Let \(\Sigma \) be an alphabet and let \(L, L_1, L_2 \) be languages over \(\Sigma \).
- Concatenation \(L_1L_2 \) is defined as
 - \(L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\} \)
- Union is defined as
 - \(L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\} \)
- Kleene closure is defined as
 - \(L^* = \{x \mid \varepsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots\} \)

Definition: Regular Expressions

- Given an alphabet \(\Sigma \), the regular expressions over \(\Sigma \) are defined inductively as

 \[
 \begin{array}{|c|c|}
 \hline
 \text{regular expression} & \text{denotes language} \\
 \hline
 \emptyset & \emptyset \\
 \varepsilon & \{\varepsilon\} \\
 \text{each element } \sigma \in \Sigma & \{\sigma\} \\
 \hline
 \end{array}
 \]

Constants
Definition: Regular Expressions (cont.)

Let A and B be regular expressions denoting languages L_A and L_B, respectively.

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$(A</td>
<td>B)$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

Operations

There are no other regular expressions over Σ.

Regular Expressions Denote Languages

By applying operations on constants
- Generates a set of strings (i.e., a language)
- Examples
 - $a \rightarrow \{“a”\}$
 - $a|b \rightarrow \{“a”\} \cup \{“b”\} = \{“a”, “b”\}$
 - $a^* \rightarrow \{\varepsilon\} \cup \{“a”\} \cup \{“aa”\} \cup \ldots = \{\varepsilon, “a”, “aa”, …\}$

If $s \in$ language generated by a RE r, we say that r accepts, describes, or recognizes string s.
Precedence

Order in which operators are applied

- In arithmetic
 - Multiplication \(\times \) > addition \(+\)
 - \(2 \times 3 + 4 = (2 \times 3) + 4 = 10 \)
- In regular expressions
 - Kleene closure \(* \) > concatenation \(\cdot \) > union \(| \)
 - \(ab\{c = (a \cdot b) \cdot c = \{ab\}^*, \{c\}^* \} \)
 - \(ab^* = a \cdot (b^*) = \{a\}^*, \{ab\}, \{abb\}, \{bbb\} \ldots \)
 - \(a|b^* = a \cdot (b^*) = \{a\}, \{\}^*, \{b\}, \{bb\}, \{bbb\} \ldots \)
- Can change order using parentheses \(() \)
 - E.g., \(a(b|c), (ab)^*, (a|b)^* \)

Regular Languages

- The languages that can be described using regular expressions are the regular languages or regular sets
- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over \(\Sigma \)
 - reads the same backward or forward
 - \(\{a^nb^n \mid n > 0 \} \) (\(a^n \) = sequence of \(n \) \(a \)'s)
 - Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Ruby Regular Expressions

Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition

- `/Ruby/` – concatenation of single-character REs
- `/Ruby|Regular/` – union
- `/Ruby*/` – Kleene closure
- `/Ruby\+/` – same as `(Ruby)(Ruby)*`
- `/Ruby\?/` – same as `(ε|(Ruby))` (ε is ε)
- `/[a-z]/` – same as (a|b|c|...|z)
- `/[^0-9]/` – same as (a|b|c|...) for a,b,c,... ∈ Σ - {0..9}
- `^, $` – correspond to extra characters in alphabet

Implementing Regular Expressions

We can implement a regular expression by turning it into a finite automaton

- A “machine” for recognizing a regular language
Finite Automata

- Machine starts in start or initial state
- Repeat until the end of the string is reached
 - Scan the next symbol s of the string
 - Take transition edge labeled with s
- String is accepted if automaton is in final state when end of string reached

Finite Automata: States

- Start state
 - State with incoming transition from no other state
 - Can have only 1 start state

- Final states
 - States with double circle
 - Can have 0 or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

0 0 1 0 1 1
accepted

Finite Automaton: Example 2

0 0 1 0 1 0
not accepted
What Language is This?

- All strings over \(\{0, 1\} \) that end in 1
- What is a regular expression for this language?
 \((0|1)^*1\)

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3 (cont.)

What language does this DFA accept?

- $a^*b^*c^*$

S3 is a **dead state** – a nonfinal state with **no** transition to another state

Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

Language?
- Strings over $\{0,1,2,3\}$ with alternating even and odd digits, beginning with odd digit
Finite Automaton: Example 4

\[a^*b^*c^*\] again, so DFAs are not unique

Finite Automaton: Example 5

- **Description for each state**
 - S0 = “Haven’t seen anything yet” OR “seen zero or more b’s” OR “Last symbol seen was a b”
 - S1 = “Last symbol seen was an a”
 - S2 = “Last two symbols seen were ab”
 - S3 = “Last three symbols seen were abb”

- **Language?**
 - \((a|b)^*abb\)
Practice

Give the English descriptions and the DFA or regular expression of the following languages:

- \(((0|1)(0|1)(0|1)(0|1)(0|1))^*\)
 - All strings with length a multiple of 5
- \((01)^*|(10)^*|(01)^*0|(10)^*1\)
 - All alternating binary strings

Practice

- Give the regular expressions and finite automata for the following languages
 - You and your neighbors’ names
 - All protein-coding DNA strings (including only ATCG and appearing in multiples of 3)
 - All binary strings containing an even length substring of all 1’s
 - All binary strings containing exactly two 1’s
 - All binary strings that start and end with the same number
Review

- **Languages**
 - Sets of strings
 - Operations on languages

- **Regular expressions**
 - Constants
 - Operators
 - Precedence

- **Finite automata**
 - States
 - Transitions
 - Accept strings