Finite Automata 2

Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far

- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

 ![Diagram of an NFA with multiple transitions on the same symbol]

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA

NFA for \((a|b)^*abb\)

- \(ba\)
 - Has paths to either S0 or S1
 - Neither is final, so rejected

- \(babaabb\)
 - Has paths to different states
 - One path leads to S3, so accepts string
Another example DFA

Language?
- \((ab|aba)^* \)

Comparing DFAs and NFAs (cont.)
- NFAs may have transitions with empty string label
 - May move to new state without consuming character
- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
NFA for \((ab|aba)^*\)

- aba
 - Has paths to states S0, S1
- ababa
 - Has paths to S0, S1
 - Need to use ε-transition

Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!
Formal Definition

A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where

- \(\Sigma\) is an alphabet
 - the strings recognized by the DFA are over this set
- \(Q\) is a nonempty set of states
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final states
 - How many can there be?
- \(\delta: Q \times \Sigma \rightarrow Q\) specifies the DFA’s transitions
 - What's this definition saying that \(\delta\) is?

- A DFA accepts \(s\) if it stops at a final state on \(s\)

Formal Definition: Example

- \(\Sigma = \{0, 1\}\)
- \(Q = \{S0, S1\}\)
- \(q_0 = S0\)
- \(F = \{S1\}\)
- \(\delta\):

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S0</td>
<td>S1</td>
</tr>
<tr>
<td>S1</td>
<td>S0</td>
<td>S1</td>
</tr>
</tbody>
</table>

or as \(\{(S0,0,S01),(S0,1,S1),(S1,0,S0),(S1,1,S1)\}\)
Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 1. \(\Sigma\) is an alphabet
 2. \(Q\) is a nonempty set of states
 3. \(q_0 \in Q\) is the start state
 4. \(F \subseteq Q\) is the set of final states
 5. \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow Q\) specifies the NFA's transitions
 - Transitions on \(\varepsilon\) are allowed – can optionally take these transitions without consuming any input
 - Can have more than one transition for a given state and symbol

- An NFA accepts \(s\) if there is at least one path from its start to final state on \(s\)

Reducing Regular Expressions to NFAs

- Goal: Given regular expression \(e\), construct NFA: \(<e> = (\Sigma, Q, q_0, F, \delta)\)
 1. Remember regular expressions are defined recursively from primitive RE languages
 2. Invariant: \(|F| = 1\) in our NFAs
 - Recall \(F\) = set of final states

- Base case: \(a\)

\(<a> = \{\{a\}, \{S0, S1\}, S0, \{S1\}, \{(S0, a, S1)\}\} \)
Reduction (cont.)

- Base case: ϵ

 $<\epsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$

- Base case: \emptyset

 $<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$

Reduction: Concatenation

- Induction: AB

 - $<A>$
 - $$
Reduction: Concatenation (cont.)

- Induction: \(AB \)

\[<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \]
\[= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \]
\[<AB> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\}) \]

Reduction: Union

- Induction: \(A \cup B \)
Reduction: Union (cont.)

Induction: \((A|B)\)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)\)
- \(<(A|B)> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})\)

Reduction: Closure

Induction: \(A^*\)
Reduction: Closure (cont.)

- Induction: \(A^* \)

\[
\begin{align*}
\langle A \rangle &= (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \\
\langle A^* \rangle &= (\Sigma_A, Q_A \cup \{S0, S1\}, S0, \{S1\}, \delta_A \cup \{(f_A, \varepsilon, S1), (S0, \varepsilon, q_A), (S0, \varepsilon, S1), (S1, \varepsilon, S0)\})
\end{align*}
\]

Reduction Complexity

- Given a regular expression \(A \) of size \(n \)...
 Size = \# of symbols + \# of operations

- How many states does \(\langle A \rangle \) have?
 - 2 added for each |, 2 added for each *
 - \(O(n) \)
 - That’s pretty good!
Practice

- Draw NFAs for the following regular expressions and languages
 - \((0|1)^*110^*\)
 - \(101^*111\)
 - all binary strings ending in 1 (odd numbers)
 - all alphabetic strings which come after “hello” in alphabetic order
 - \((ab^*c|d^*a|ab)d\)

Recap

- Finite automata
 - Alphabet, states…
 - \((\Sigma, Q, q_0, F, \delta)\)

- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

- Reducing RE to NFA
 - Concatenation
 - Union
 - Closure
Next

- Reducing NFA to DFA
 - ε-closure
 - Subset algorithm
- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA

How NFA Works

- When NFA processes a string
 - NFA may be in several possible states
 - Multiple transitions with same label
 - ε-transitions
- Example
 - After processing “a”
 - NFA may be in states
 - S1
 - S2
 - S3
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states

- Example

```
  NFA
                  S1  a  S2  ε  S3
                  a  S1, S2, S3

  DFA
                  S1  a
```

Reducing NFA to DFA (cont.)

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA (Σ, Q, q_0, F, δ)
 - Output
 - DFA (Σ, R, q_0, F, δ)
 - Using
 - ε-closure(p)
 - move(p, a)
ε-transitions and ε-closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions
 - If \(\exists p, p_1, p_2, \ldots p_n, q \in Q \) such that
 - \(\{p, \varepsilon, p_1\} \in \delta, \{p_1, \varepsilon, p_2\} \in \delta, \ldots, \{p_n, \varepsilon, q\} \in \delta \)

- \(\varepsilon \)-closure(\(p \))
 - Set of states reachable from \(p \) using \(\varepsilon \)-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \)
 - \(\varepsilon \)-closure(\(p \)) = \{ \(q \mid p \xrightarrow{\varepsilon} q \) \}
 - Note
 - \(\varepsilon \)-closure(\(p \)) always includes \(p \)
 - \(\varepsilon \)-closure(\(p \)) may be applied to set of states (take union)

ε-closure: Example 1

- Following NFA contains
 - \(S_1 \xrightarrow{\varepsilon} S_2 \)
 - \(S_2 \xrightarrow{\varepsilon} S_3 \)
 - \(S_1 \xrightarrow{\varepsilon} S_3 \)

- \(\varepsilon \)-closures
 - \(\varepsilon \)-closure(\(S_1 \)) = \{ \(S_1, S_2, S_3 \) \}
 - \(\varepsilon \)-closure(\(S_2 \)) = \{ \(S_2, S_3 \) \}
 - \(\varepsilon \)-closure(\(S_3 \)) = \{ \(S_3 \) \}
 - \(\varepsilon \)-closure(\{ \(S_1, S_2 \) \}) = \{ \(S_1, S_2, S_3 \) \} \cup \{ S_2, S_3 \} \)
ε-closure: Example 2

- Following NFA contains
 - $S_1 \xrightarrow{\epsilon} S_3$
 - $S_3 \xrightarrow{\epsilon} S_2$
 - $S_1 \xrightarrow{\epsilon} S_2$

- **ε-closures**
 - ϵ-closure(S_1) = $\{ S_1, S_2, S_3 \}$
 - ϵ-closure(S_2) = $\{ S_2 \}$
 - ϵ-closure(S_3) = $\{ S_2, S_3 \}$
 - ϵ-closure($\{ S_2, S_3 \}$) = $\{ S_2 \} \cup \{ S_2, S_3 \}$

ε-closure: Practice

- Find ϵ-closures for following NFA

- Find ϵ-closures for the NFA you construct for
 - The regular expression $(0|1^*)111(0^*1)$
Calculating move(p, a)

- move(p, a)
 - Set of states reachable from p using exactly one transition on a
 - Set of states q such that \{p, a, q\} ∈ δ
 - move(p, a) = \{q | \{p, a, q\} ∈ δ\}

- Note move(p, a) may be empty Ø
 - If no transition from p with label a

move(a, p) : Example 1

- Following NFA
 - \(\Sigma = \{a, b\}\)

- Move
 - move(S1, a) = \{S2, S3\}
 - move(S1, b) = Ø
 - move(S2, a) = Ø
 - move(S2, b) = \{S3\}
 - move(S3, a) = Ø
 - move(S3, b) = Ø
move(a, p) : Example 2

- Following NFA
 - \(\Sigma = \{ a, b \} \)

- Move
 - move(S1, a) = \{ S2 \}
 - move(S1, b) = \{ S3 \}
 - move(S2, a) = \{ S3 \}
 - move(S2, b) = \emptyset
 - move(S3, a) = \emptyset
 - move(S3, b) = \emptyset

NFA → DFA Reduction Algorithm

- Input NFA \((\Sigma, Q, q_0, F_n, \delta)\), Output DFA \((\Sigma, R, r_0, F_d, \delta)\)
- Algorithm
 - Let \(r_0 = \varepsilon\)-closure\((q_0)\), add it to \(R \) // DFA start state
 - While \(\exists \) an unmarked state \(r \in R \)
 - Mark \(r \) // each state visited once
 - For each \(a \in \Sigma \)
 - Let \(S = \{ s \mid q \in r \& \text{move}(q, a) = s \} \) // states reached via \(a \)
 - Let \(e = \varepsilon\)-closure\((S)\) // states reached via \(\varepsilon \)
 - If \(e \notin R \)
 - Let \(R = e \cup R \) // add \(e \) to \(R \) (unmarked)
 - Let \(\delta = \delta \cup \{ r, a, e \} \) // add transition \(r \rightarrow e \)
 - Let \(F_d = \{ r \mid \exists s \in r \text{ with } s \in F_n \} \) // final if include state in \(F_n \)
NFA → DFA Example 1

• Start = ε-closure(S1) = {S1, S3}
• R = {S1, S3}
• r ∈ R = {S1, S3}
• Move({S1, S3}, a) = {S2}
 » e = ε-closure({S2}) = {S2}
 » R = R ∪ {S2} = {S1, S3, {S2}}
 » δ = δ ∪ {{S1, S3}, a, {S2}}
• Move({S1, S3}, b) = Ø

NFA

DFA

ε

{1,3} {2}

a b

a

b

S1 S2 S3

NFA → DFA Example 1 (cont.)

• R = {S1, S3, {S2}}
• r ∈ R = {S2}
• Move({S2}, a) = Ø
• Move({S2}, b) = {S3}
 » e = ε-closure({S3}) = {S3}
 » R = R ∪ {S3} = {S1, S3, {S2}, {S3}}
 » δ = δ ∪ {{S2}, b, {S3}}
NFA → DFA Example 1 (cont.)

- \(R = \{ \{S1, S3\}, \{S2\}, \{S3\} \} \)
- \(r \in R = \{S3\} \)
- \(\text{Move}(\{S3\}, a) = \emptyset \)
- \(\text{Move}(\{S3\}, b) = \emptyset \)
- \(F_d = \{\{S1, S3\}, \{S3\}\} \)
 - Since \(S3 \in F_n \)
- Done!

NFA

```
NFA
R = { {S1, S3}, {S2}, {S3} }
```

DFA

```
DFA
F_d = {{S1, S3}, {S3}}
```

NFA → DFA Example 2

- NFA
- DFA

```
R = { {A}, {B, D}, {C, D} }
```

CMSC 330

37

CMSC 330

38
NFA → DFA Example 3

NFA

DFA

\[R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \} \]

Equivalence of DFAs and NFAs

- Any string from \{A\} to either \{D\} or \{CD\}
 - Represents a path from A to D in the original NFA

NFA

DFA
Equivalence of DFAs and NFAs (cont.)

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2^n states
 - Since a set with n items may have 2^n subsets
 - Corollary
 - Reducing a NFA with n states may be $O(2^n)$

Minimizing DFA

- Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape
Minimizing DFA: Hopcroft Reduction

- **Intuition**
 - Look for states that can be distinguish from each other
 - End up in different accept / non-accept state with identical input

- **Algorithm**
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states \(x, y \) belong in same partition if and only if for all symbols in \(\Sigma \) they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

- No need to split partition \(\{S, T, U, V\} \)
 - All transitions on \(a \) lead to identical partition \(P2 \)
 - Even though transitions on \(a \) lead to different states
Splitting Partitions (cont.)

- Need to split partition \{S, T, U\} into \{S, T\}, \{U\}
 - Transitions on \(a\) from \(S, T\) lead to partition \(P_2\)
 - Transition on \(a\) from \(U\) lead to partition \(P_3\)

![Diagram showing partition splitting](image)

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S, T, U\}
 - After splitting partition \{X, Y\} into \{X\}, \{Y\}
 - Need to split partition \{S, T, U\} into \{S, T\}, \{U\}

![Diagram showing partition resplitting](image)
DFA Minimization Algorithm (1)

- **Input** DFA ($\Sigma, Q, q_0, F_n, \delta$), **Output** DFA ($\Sigma, R, r_0, F_d, \delta$)

- **Algorithm**

 Let $p_0 = F_n$, $p_1 = Q - F$ // initial partitions = final, nonfinal states

 Let $R = \{ p \mid p \in \{p_0, p_1\} \text{ and } p \neq \emptyset \}$, $P = \emptyset$ // add p to R if nonempty

 While $P \neq R$ do // while partitions changed on prev iteration

 Let $P = R$, $R = \emptyset$ // P = prev partitions, R = current partitions

 For each $p \in P$ // for each partition from previous iteration

 $\{p_0, p_1\} = \text{split}(p, P)$ // split partition, if necessary

 $R = R \cup \{ p \mid p \in \{p_0, p_1\} \text{ and } p \neq \emptyset \}$ // add p to R if nonempty

 $r_0 = p \in R$ where $q_0 \in p$ // partition w/ starting state

 $F_d = \{ p \mid p \in R \text{ and exists } s \in p \text{ such that } s \in F_n \}$ // partitions w/ final states

 $\delta(p, \cdot) = r$ when $\delta(s, \cdot) = r$ where $s \in p$ and $r \in q$ // add transitions

DFA Minimization Algorithm (2)

- **Algorithm for** $\text{split}(p, P)$

 Choose some $r \in p$, let $q = p - \{r\}$, $m = \{\}$ // pick some state r in p

 For each $s \in q$ // for each state in p except for r

 For each $c \in \Sigma$ // for each symbol in alphabet

 If $\delta(r, c) = q_0$ and $\delta(s, c) = q_1$ and // q's = states reached for c
 there is no $p_i \in P$ such that $q_0 \in p_i$ and $q_1 \in p_i$, then

 $m = m \cup \{s\}$ // add s to m if q's not in same partition

 Return $p - m, m$ // $m = \text{states that behave differently than } r$

 // m may be \emptyset if all states behave the same

 // $p - m = \text{states that behave the same as } r$
Minimizing DFA: Example 1

- **DFA**

- **Initial partitions**
 - Accept \(\{ R \} \) → P1
 - Reject \(\{ S, T \} \) → P2

- **Split partition? → Not required, minimization done**
 - \(\text{move}(S,a) = T \rightarrow P2 \) ← \(\text{move}(S,b) = R \rightarrow P1 \)
 - \(\text{move}(T,a) = T \rightarrow P2 \) ← \(\text{move}(T,b) = R \rightarrow P1 \)

Minimizing DFA: Example 2

- **DFA**

- **Initial partitions**
 - Accept \(\{ R \} \) → P1
 - Reject \(\{ S, T \} \) → P2

- **Split partition? → Not required, minimization done**
 - \(\text{move}(S,a) = T \rightarrow P2 \) ← \(\text{move}(S,b) = R \rightarrow P1 \)
 - \(\text{move}(T,a) = S \rightarrow P2 \) ← \(\text{move}(T,b) = R \rightarrow P1 \)
Minimizing DFA: Example 3

- **DFA**
 - Initial partitions
 - Accept \{ R \} → P1
 - Reject \{ S, T \} → P2
 - Split partition? → Yes, different partitions for B
 - move(S,a) = T → P2
 - move(S,b) = T → P2
 - move(T,a) = T → P2
 - move(T,b) = R → P1

Complement of DFA

- **Given a DFA accepting language L**
 - How can we create a DFA accepting its complement?
 - Example DFA
 - \(\Sigma = \{a,b\} \)
Complement of DFA (cont.)

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

- Note this only works with DFAs
 - Why not with NFAs?

Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.
Reducing DFAs to REs

General idea

- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA

Relating REs to DFAs and NFAs

- Why do we want to convert between these?
 - Can make it easier to express ideas
 - Can be easier to implement
Implementing DFAs

It's easy to build a program which mimics a DFA

```
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
    case 0: switch (symbol) {
              case '0': cur_state = 0; break;
              case '1': cur_state = 1; break;
              case '
               printf("rejected
   "); return 0;
              default: printf("rejected
   "); return 0;
             } break;
    case 1: switch (symbol) {
              case '0': cur_state = 0; break;
              case '1': cur_state = 1; break;
              case '
               printf("accepted
   "); return 1;
              default: printf("rejected
   "); return 0;
             } break;
    default: printf("unknown state; I'm confused\n"); break;
    }
}
```

Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA

given components (Σ, Q, q₀, F, δ) of a DFA:
let q = q₀
while (there exists another symbol s of the input string)
 q := δ(q, s);
if q ∈ F then
 accept
else reject

• q is just an integer
• Represent δ using arrays or hash tables
• Represent F as a set
Run Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!
- Constructing DFA for RE A may take $O(2^{|A|})$ time
 - But usually not the case in practice
- So there’s the initial overhead
 - But then processing strings is fast

Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_A, q_A, \{f_A\}, \delta_A)$, the components of the DFA produced from the RE
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity
Practice

- Convert to a DFA
- Convert to an NFA and then to a DFA
 - $(0|1)^*11|0^*$
 - Strings of alternating 0 and 1
 - $aba^*|(ba|b)$

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - ϵ-closure & subset algorithm
- DFA
 - Minimization, complement
 - Implementation