CMSC 330: Organization of Programming Languages

Lambda Calculus

Programming Language Features

- Many features exist simply for convenience
 - Multi-argument functions \(\text{foo (a, b, c)} \)
 - Use currying or tuples
 - Loops
 - Use recursion
 - Side effects \(a := 1 \)
 - Use functional programming

- So what language features are really needed?
Turing Completeness

- Computational system that can
 - Simulate a Turing machine
 - Compute every Turing-computable function

- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language

- Most powerful programming language possible
 - Since Turing machine is most powerful automaton

Programming Language Theory

- Come up with a “core” language
 - That’s as small as possible
 - But still Turing complete

- Helps illustrate important
 - Language features
 - Algorithms

- One solution
 - Lambda calculus
Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church
 (born in Washington DC!)

- Formal system
 - Designed to investigate functions & recursion
 - For exploration of foundations of mathematics

- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell...

Lambda Expressions

- A lambda calculus expression is defined as

 \[e ::= x \quad \text{variable} \]
 \[\lambda x.e \quad \text{function} \]
 \[e \; e \quad \text{function application} \]

- \(\lambda x.e \) is like \((\text{fun } x \rightarrow e)\) in OCaml

- That’s it! Nothing but higher-order functions
Three Conveniences

- Syntactic sugar for local declarations
 - let x = e1 in e2 is short for (\lambda x.e2) e1

- Scope of \lambda extends as far right as possible
 - Subject to scope delimited by parentheses
 - \lambda x. \lambda y.x y is same as \lambda x.(\lambda y.(x y))

- Function application is left-associative
 - x y z is (x y) z
 - Same rule as OCaml

Lambda Calculus Semantics

- All we’ve got are functions
 - So all we can do is call them

- To evaluate (\lambda x.e1) e2
 - Evaluate e1 with x replaced by e2

- This application is called beta-reduction
 - (\lambda x.e1) e2 \rightarrow e1[x:=e2]
 - e1[x:=e2] is e1 with occurrences of x replaced by e2
 - This operation is called substitution
 - Slightly different than the environments we saw for OCaml
 - Do syntactic substitutions to replace formals with actuals
 - Instead of using environment to map formals to actuals
 - We allow reductions to occur anywhere in a term
 - Order reductions are applied does not affect final value!
Beta Reduction Example

- \((\lambda x.\lambda z.x z)\ y\)
 \rightarrow (\lambda x.(\lambda z.(x z)))\ y\quad //\text{since}\ \lambda\text{extends to right}
 \rightarrow (\lambda x.(\lambda z.(x z)))\ y\quad //\text{apply}(\lambda x.\text{e1})\ e2\rightarrow\text{e1}[x:=\text{e2}]
 \quad //\text{where}\ e1=\lambda z.(x z),\ e2=y
 \rightarrow \lambda z.(y z)\quad //\text{final result}

- Equivalent OCaml code
 - \((\text{fun } x -> (\text{fun } z -> (x z)))\ y \rightarrow \text{fun } z -> (y z)\)

Lambda Calculus Examples

- \((\lambda x.x)\ z \rightarrow z\)
- \((\lambda x.y)\ z \rightarrow y\)
- \((\lambda x.x\ y)\ z \rightarrow z\ y\)
 - A function that applies its argument to y
Lambda Calculus Examples (cont.)

- \((\lambda x . x) \ y \) \(\rightarrow\) \((\lambda z . z) \ y \)

- \((\lambda x . \lambda y . x) \ z \) \(\rightarrow\) \(\lambda y . z \ y\)
 - A curried function of two arguments
 - Applies its first argument to its second

- \((\lambda x . \lambda y . x) \ (\lambda z . z) \) \(\rightarrow\) \((\lambda y . (\lambda z . z)) \ y \) \(\rightarrow\) \((\lambda z . z) \ x \) \(\rightarrow\) \(x x\)

Defining Substitution

- Use recursion on structure of terms
 - \(x[x:=e] = e\) \(\quad\) // Replace \(x\) by \(e\)
 - \(y[x:=e] = y\) \(\quad\) // \(y\) is different than \(x\), so no effect
 - \((e1 \ e2)[x:=e] = (e1[x:=e]) \ (e2[x:=e])\)
 // Substitute both parts of application
 - \((\lambda x . e')[x:=e] = \lambda x . e'\)
 - In \(\lambda x . e'\), the \(x\) is a parameter, and thus a local variable that is different from other \(x\)'s.
 - So the substitution has no effect in this case, since the \(x\) being substituted for is different from the parameter \(x\) that is in \(e'\)
 - \((\lambda y . e')[x:=e] = ?\)
 - The parameter \(y\) does not share the same name as \(x\), the variable being substituted for
 - Is \(\lambda y . (e'[x:=e])\) correct?
Lambda calculus uses static scoping.

Consider the following
• \((\lambda x. (\lambda x. x)) z \rightarrow ?\)
 ➢ The rightmost “\(x\)” refers to the second binding
• This is a function that
 ➢ Takes its argument and applies it to the identity function

This function is “the same” as \((\lambda x. (\lambda y. y))\)
• Renaming bound variables consistently is allowed
 ➢ This is called alpha-renaming or alpha conversion
• Ex. \(\lambda x. x = \lambda y. y = \lambda z. z\) \(\lambda y. \lambda x. y = \lambda z. \lambda x. z\)

How about the following?
• \((\lambda x. \lambda y. x) y \rightarrow ?\)
• When we replace \(y\) inside, we don’t want it to be captured by the inner binding of \(y\), as this violates static scoping
• I.e., \((\lambda x. \lambda y. x) y \neq \lambda y. y\)

Solution
• \((\lambda x. \lambda y. x) y\) is “the same” as \((\lambda x. \lambda z. x) z\)
 ➢ Due to alpha conversion
• So change \((\lambda x. \lambda y. x) y\) to \((\lambda x. \lambda z. x) y\) first
 ➢ Now \((\lambda x. \lambda z. x) y \rightarrow \lambda z. y z\)
Completing the Definition of Substitution

- Recall: we need to define \((\lambda y.e')[x:=e]\)
 - We want to avoid capturing (free) occurrences of \(y\) in \(e\)
 - Solution: alpha-conversion!
 - Change \(y\) to a variable \(w\) that does not appear in \(e'\) or \(e\)
 (Such a \(w\) is called fresh)
 - Replace all occurrences of \(y\) in \(e'\) by \(w\).
 - Then replace all occurrences of \(x\) in \(e'\) by \(e\)!

- Formally:
 \[
 (\lambda y.e')[x:=e] = \lambda w.((e' [y:=w]) [x:=e]) \text{ (}\ w \text{ is fresh)}
 \]

Beta-Reduction, Again

- Whenever we do a step of beta reduction
 - \((\lambda x.e1) e2 \rightarrow e1[x:=e2]\)
 - We must alpha-convert variables as necessary
 - Usually performed implicitly (w/o showing conversion)

- Examples
 - \((\lambda x.\lambda y.x\ y)\ y = (\lambda x.\lambda z.x\ z)\ y \rightarrow \lambda z.y\ z \quad \text{ // } y \rightarrow z\)
 - \((\lambda x.\lambda x)\ z = (\lambda y.\ (\lambda x.x))\ z \rightarrow z (\lambda x.x) \quad \text{ // } x \rightarrow y\)
 - \((\lambda x.\lambda x)\ z = (\lambda x.\ (\lambda y.y))\ z \rightarrow z (\lambda y.y) \quad \text{ // } x \rightarrow y\)
Encodings

- The lambda calculus is Turing complete

- Means we can encode any computation we want
 - If we’re sufficiently clever...

- Examples
 - Booleans
 - Pairs
 - Natural numbers & arithmetic
 - Looping

Booleans

- Church’s encoding of mathematical logic
 - true = \(\lambda x. \lambda y. x \)
 - false = \(\lambda x. \lambda y. y \)
 - if \(a \) then \(b \) else \(c \)
 - Defined to be the \(\lambda \) expression: \(a \ b \ c \)

- Examples
 - if true then \(b \) else \(c \) \(\rightarrow (\lambda x. \lambda y. x) \ b \ c \rightarrow (\lambda y. b) \ c \rightarrow b \)
 - if false then \(b \) else \(c \) \(\rightarrow (\lambda x. \lambda y. y) \ b \ c \rightarrow (\lambda y. y) \ c \rightarrow c \)
Booleans (cont.)

- Other Boolean operations
 - not = \(\lambda x.((x \text{ false}) \text{ true}) \)
 - not \(x \) = if \(x \) then false else true
 - not true \(\rightarrow (\lambda x.(x \text{ false}) \text{ true}) \text{ true} \rightarrow ((\text{true} \text{ false}) \text{ true}) \rightarrow \text{ false} \)
 - and = \(\lambda x.\lambda y.(x y) \text{ false} \)
 - and \(x \ y \) = if \(x \) then \(y \) else false
 - or = \(\lambda x.\lambda y.(x \text{ true}) y \)
 - or \(x \ y \) = if \(x \) then true else \(y \)

- Given these operations
 - Can build up a logical inference system

Pairs

- Encoding of a pair \(a, b \)
 - \((a,b) = \lambda x.\text{if } x \text{ then } a \text{ else } b \)
 - fst = \(\lambda f.\text{true} \)
 - snd = \(\lambda f.\text{false} \)

- Examples
 - \(\text{fst } (a,b) = (\lambda f.\text{true}) (\lambda x.\text{if } x \text{ then } a \text{ else } b) \rightarrow \)
 - \((\lambda x.\text{if } x \text{ then } a \text{ else } b) \text{ true} \rightarrow \)
 - if \(x \) then \(a \) else \(b \) \rightarrow \(a \)
 - \(\text{snd } (a,b) = (\lambda f.\text{false}) (\lambda x.\text{if } x \text{ then } a \text{ else } b) \rightarrow \)
 - \((\lambda x.\text{if } x \text{ then } a \text{ else } b) \text{ false} \rightarrow \)
 - if \(x \) then \(a \) else \(b \) \rightarrow \(b \)
Natural Numbers (Church Numerals)

- Encoding of non-negative integers
 - $0 = \lambda f.\lambda y.y$
 - $1 = \lambda f.\lambda y.f\ y$
 - $2 = \lambda f.\lambda y.f\ (f\ y)$
 - $3 = \lambda f.\lambda y.f\ (f\ (f\ y))$
 - i.e., $n = \lambda f.\lambda y.\langle\text{apply f n times to } y\rangle$
 - Formally: $n+1 = \lambda f.\lambda y.f\ (n\ f\ y)$

(Alonzo Church, of course)

Operations On Church Numerals

- Successor
 - $\text{succ} = \lambda z.\lambda f.\lambda y.\ f\ (z\ f\ y)$
 - $0 = \lambda f.\lambda y.y$
 - $1 = \lambda f.\lambda y.f\ y$

- Example
 - $\text{succ}\ 0 =$
 - $\left(\lambda z.\lambda f.\lambda y.\ f\ (z\ f\ y)\right)\ (\lambda f.\lambda y.y) \rightarrow$
 - $\lambda f.\lambda y.f\ ((\lambda f.\lambda y.y)\ f\ y) \rightarrow$
 - $\lambda f.\lambda y.f\ ((\lambda y.y)\ y) \rightarrow$ Since $\left(\lambda x.y\right)\ z \rightarrow y$
 - $\lambda f.\lambda y.y$
 - $= 1$
Operations On Church Numerals (cont.)

- **IsZero?**
 - iszero = \(\lambda z. z \ (\lambda y. \text{false}) \ \text{true}\)

 This is equivalent to \(\lambda z. ((z \ (\lambda y. \text{false})) \ \text{true})\)

- **Example**
 - iszero 0 =

 \(\lambda z. z \ (\lambda y. \text{false}) \ \text{true}\) (\(\lambda f. \lambda y. y\)) →

 \(\lambda f. \lambda y. \text{false}\) (\(\lambda y. \text{true}\)) true →

 Since \(\lambda x. y\) \(z \rightarrow y\)

Arithmetic Using Church Numerals

- **If M and N are numbers (as \(\lambda\) expressions)**
 - Can also encode various arithmetic operations

- **Addition**
 - \(M + N = \lambda x. \lambda y. (M x)((N x) y)\)

 Equivalently: \(+ = \lambda M. \lambda N. \lambda x. \lambda y. (M x)((N x) y)\)

 In prefix notation (+ M N)

- **Multiplication**
 - \(M * N = \lambda x. (M (N x))\)

 Equivalently: \(* = \lambda M. \lambda N. \lambda x. (M (N x))\)

 In prefix notation (* M N)
Arithmetic (cont.)

- Prove $1+1 = 2$
 - $1+1 = \lambda x.\lambda y.((1 \ x)((1 \ x) \ y)) =$
 - $\lambda x.\lambda y.((\lambda f.\lambda y.f y) x)((1 \ x) \ y) \rightarrow$
 - $\lambda x.\lambda y.(\lambda y.x \ y)((1 \ x) \ y) \rightarrow$
 - $\lambda x.\lambda y.x ((\lambda f.\lambda y.f y) y) \rightarrow$
 - $\lambda x.\lambda y.x ((\lambda y.x \ y) y) \rightarrow$
 - $\lambda x.\lambda y.x (x \ y) = 2$

- With these definitions
 - Can build a theory of arithmetic

Looping & Recursion

- Define $D = \lambda x.x \ x$, then
 - $D \ D = (\lambda x.x \ x) (\lambda x.x \ x) \rightarrow (\lambda x.x \ x) (\lambda x.x \ x) = D \ D$

- So $D \ D$ is an infinite loop
 - In general, self application is how we get looping
The Fixpoint Combinator

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

Then

\[Y F = \]
\[(\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) F \rightarrow \]
\[(\lambda x. (\lambda x. f (x x)) (\lambda x. f (x x))) \rightarrow \]
\[F ((\lambda x. f (x x)) (\lambda x. f (x x))) = F (Y F) \]

\[Y F \text{ is a } \textit{fixed point} \text{ (aka “fixpoint”) of } F \]

Thus \[Y F = F (Y F) = F (F (Y F)) = \ldots \]

• We can use \(Y \) to achieve recursion for \(F \)

Example

\[\text{fact} = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f (n-1)) \]

• The second argument to \(\text{fact} \) is the integer
• The first argument is the function to call in the body
 ➢ We’ll use \(Y \) to make this recursively call \(\text{fact} \)

\((Y \text{fact}) 1 = (\text{fact} (Y \text{fact})) 1 \)
\[\rightarrow \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times ((Y \text{fact}) 0) \]
\[\rightarrow 1 \times ((Y \text{fact}) 0) \]
\[\rightarrow 1 \times (\text{fact} (Y \text{fact}) 0) \]
\[\rightarrow 1 \times (\text{if } 0 = 0 \text{ then } 1 \text{ else } 0 \times ((Y \text{fact}) (-1)) \]
\[\rightarrow 1 \times 1 \rightarrow 1 \]
Discussion

- Lambda calculus is Turing-complete
 - Most powerful language possible
 - Can represent pretty much anything in “real” language
 - Using clever encodings
- But programs would be
 - Pretty slow (10000 + 1 → thousands of function calls)
 - Pretty large (10000 + 1 → hundreds of lines of code)
 - Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
 - We use richer, more expressive languages
 - That include built-in primitives

The Need For Types

- Consider the untyped lambda calculus
 - false = λx.λy.y
 - 0 = λx.λy.y
- Since everything is encoded as a function...
 - We can easily misuse terms...
 - false 0 → λy.y
 - if 0 then ...
 - ...because everything evaluates to some function
- The same thing happens in assembly language
 - Everything is a machine word (a bunch of bits)
 - All operations take machine words to machine words
Simply-Typed Lambda Calculus

- \(e ::= n \mid x \mid \lambda x : t . e \mid e \ e \)
 - Added integers \(n \) as primitives
 - Need at least two distinct types (integer & function)...
 - ...to have type errors
 - Functions now include the type of their argument

Simply-Typed Lambda Calculus (cont.)

- \(t ::= \text{int} \mid t \rightarrow t \)
 - \(\text{int} \) is the type of integers
 - \(t_1 \rightarrow t_2 \) is the type of a function
 - That takes arguments of type \(t_1 \) and returns result of type \(t_2 \)
 - \(t_1 \) is the domain and \(t_2 \) is the range
 - Notice this is a recursive definition
 - So we can give types to higher-order functions
Summary

- Lambda calculus shows issues with
 - Scoping
 - Higher-order functions
 - Types

- Useful for understanding how languages work