CMSC 330: Organization of Programming Languages

Operational Semantics

Recall Architecture of Compilers, Interpreters

Front end: syntax, (possibly) type checking, other checks
Back end: semantics (i.e. execution)
Specifying Syntax, Semantics

- We have seen how the syntax of a programming language may be specified precisely
 - Regular expressions
 - Context-free grammars

- What about formal methods for defining the semantics of a programming language?
 - I.e., what does a program mean / do?

Formal Semantics of a Prog. Lang.

- Mathematical description of all possible computations performed by programs written in that language

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Formal Semantics (cont.)

- Denotational semantics: translate programs into math!
 - Usually: convert programs into functions mapping inputs to outputs
 - Analogous to compilation
- Operational semantics: define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation
- Axiomatic semantics
 - Describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - Preconditions: assumed properties of initial states
 - Postcondition: guaranteed properties of final states
 - Logical rules describe how to systematically build up these transformers from programs

This Course: Operational Semantics

- We will show how an operational semantics may be defined using a subset of OCaml
- Approach: use rules to define a relation
 \[E \Rightarrow v \]
 - \(E \): expression in OCaml subset
 - \(v \): value that results from evaluating \(E \)
- To begin with, need formal definitions of:
 - Set \(\text{Exp} \) of expressions
 - Set \(\text{Val} \) of values
Defining Exp

- Recall: operational semantics defines what happens in backend
 - Front end parses code into abstract syntax trees (ASTs)
 - So inputs to backend are ASTs
- How to define ASTs?
 - Standard approach
 - Using grammars!
 - Idea
 - Grammar defines abstract syntax (no parentheses, grouping constructs, etc.; grouping is implicit)

OCaml Abstract Syntax

\[E ::= x \mid n \mid \text{true} \mid \text{false} \mid [] \]
\[\mid E \; op \; E \ (op \in \{+,-,/,\ast,=,<,>,::,\text{etc.}\}) \]
\[\mid _op \; E \ (_op \in \{\text{hd, tl}\}) \]
\[\mid \text{if } E \text{ then } E \text{ else } E \]
\[\mid \text{fun } x \rightarrow E \mid E \; E \mid \text{let } x = E \text{ in } E \]
- \(x \) may be any identifier
- \(n \) is any numeral (digit sequence, with optional -).
- \(\text{true} \) and \(\text{false} \) stand for the two boolean constants
- \([] \) is the empty list

\(\text{Exp} = \) set of (type-correct) ASTs defined by grammar
- Note that the grammar is ambiguous
 - OK because not using grammar for parsing
 - But for defining the set of all syntactically legal terms
Values

What can results be?

- Integers
- Booleans
- Lists
- Functions

We will deal with first three initially

Formal Definition of Val

Let

- \(\mathbb{Z} = \{ ..., -1, 0, -1, ... \} \) be the (math) set of integers
- \(\mathbb{B} = \{ \text{ff}, \text{tt} \} \) be the (math) set of booleans
- nil be a distinguished value (empty list)

Then Val is the smallest set such that

- \(\mathbb{Z}, \mathbb{B} \subseteq \text{Val} \) and nil \(\in \text{Val} \)
- If \(\nu_1, \nu_2 \in \text{Val} \) then \(\langle \nu_1, \nu_2 \rangle \in \text{Val} \)

“Smallest set”?
- Every integer and boolean is a value, as is nil
- Any pair of values is also a value
Operations on Val

- Basic operations will be assumed
 - +, -, *, /, =, <, ≤, etc.
- Not all operations are applicable to all values!
 - tt + ff is undefined
 - So is 1 + nil
- A key purpose of type checking is to prevent these undefined operations from occurring during execution

Implementing Exp, Val in OCaml

\[
E ::= x \mid n \mid true \mid false \mid [] \mid \text{if } E \text{ then } E \text{ else } E \\
| \text{fun } x = E \mid E \ E \mid \text{let } x = E \text{ in } E \ldots
\]

```ocaml
type ast =
  | Id of string
  | Num of int
  | Bool of bool
  | Nil
  | If of ast * ast * ast
  | Fun of string * ast
  | App of ast * ast
  | Let of string * ast * ast
  | ...

Val

type value =
  | Val_Num of int
  | Val_Bool of bool
  | Val.Nil
  | Val_Pair of value *
  | value
  | ...
```

CMSC 330
Defining Evaluation (⇒)

- Approach is inductive and uses rules:
 - Idea: if the conditions \(H_1 \ldots H_n \) ("hypotheses") are true, the rule says the condition \(C \) ("conclusion") below the line follows
 - Hypotheses, conclusion are statements about \(\Rightarrow \); hypotheses involve subexpressions of conclusions
 - If \(n=0 \) (no hypotheses) then the conclusion is automatically true and is called an axiom
 - A "-" may be written in place of the hypothesis list in this case
 - Terminology: statements one is trying to prove are called judgments
 - This method is often called “Structural Operational Semantics (SOS)” or “Natural Semantics”

SOS Rules: Basic Values

<table>
<thead>
<tr>
<th>()</th>
<th>()</th>
</tr>
</thead>
</table>
| \(n \Rightarrow n \) | \(
| \(\) | \(n \Rightarrow n \) | |
| false \(\Rightarrow \) ff | \(\) | \(true \Rightarrow \) tt |
| \(\) | \(\) |
| \(\) | \(\) |
| \([] \Rightarrow \) nil | \(\) | \(\) |

- Each basic entity evaluates to its corresponding value
- Note: axioms!
SOS Rules: Built-in Functions

How about built-in functions (+, -, etc.)?
- In OCaml, type-checking done in front end
- Thus, ASTs coming to back end are type-correct
- So we assume Exp contains type-correct ASTs
- We will use relevant operations on value side

For arithmetic, comparison operations, etc.

\[
\begin{align*}
E_1 &\Rightarrow v_1 & E_2 &\Rightarrow v_2 \\
E_1 \text{ op } E_2 &\Rightarrow v_1 \text{ op } v_2
\end{align*}
\]

For ::

\[
\begin{align*}
E_1 &\Rightarrow v_1 & E_2 &\Rightarrow v_2 \\
E_1 :: E_2 &\Rightarrow \langle v_1, v_2 \rangle
\end{align*}
\]

Rules are recursive
- :: is implemented using pairing
 - Type system guarantees result is list
Trees of Semantic Rules

- When we apply rules to an expression, we actually get a tree
 - Corresponds to the recursive evaluation procedure
 - For example:
 \[(3 + 4) + 5\]

 \[
 \begin{align*}
 3 & \Rightarrow 3 \\
 4 & \Rightarrow 4 \\
 \end{align*}
 \]

 \[
 \begin{align*}
 (3 + 4) & \Rightarrow 7 \\
 5 & \Rightarrow 5 \\
 \end{align*}
 \]

 \[
 (3 + 4) + 5 \Rightarrow 12
 \]

Rules for \(\text{hd}, \text{tl}\)

- Note that the rules only apply if \(E\) evaluates to a pair of values
- Nothing in this rule requires the pair to correspond to a list
- The OCaml type system ensures this
Error Cases

- What if \(v_1, v_2 \) aren’t integers?
 - E.g., what if we write \(\text{false} + \text{true} \)?
 - It can be parsed in OCaml, but type checker will disallow it from being passed to back end

- In a language with dynamic strong typing (e.g. Ruby), rules include explicit type checks

<table>
<thead>
<tr>
<th>(E_1 \Rightarrow v_1)</th>
<th>(E_2 \Rightarrow v_2)</th>
<th>(E_1 + E_2 \Rightarrow v_1 + v_2)</th>
</tr>
</thead>
</table>

- Convention: if no rules are applicable to an expression, its result is an error

Rules for If

- Notice that only one branch is evaluated
 - E.g.
 - \(\text{if true then 3 else 4} \Rightarrow 3 \)
 - \(\text{if false then 3 else 4} \Rightarrow 4 \)
Using Rules to Define Evaluation

- $E \Rightarrow v$ holds if and only if a proof can be built
 - Proofs start with axioms, involve applications of rules whose hypotheses have been proved
 - No proof means $E \not\Rightarrow v$
- Proofs can be constructed in a goal-directed fashion
- Thus, function $\text{eval}(E) = \{ v \mid E \Rightarrow v \}$
 - Determinism of semantics implies at most one element for any E

Rules for Identifiers

- The previous rules handle expressions that involve constants (e.g. 1, true) and operations
- What about variables?
 - These are allowed as expressions
 - How do we evaluate them?
- In a program, variables must be declared
 - The values that are part of the declaration are used to evaluate later occurrences of the variables
 - We will use environments to “hold” these declarations in our semantics
Environments

- Mathematically, an environment is a partial function from identifiers to values
 - If \(A \) is an environment, and \(\text{id} \) is an identifier, then \(A(\text{id}) \) can either be …
 - … a value (intuition: the variable has been declared)
 - … or undefined (intuition: variable has not been declared)

- An environment can also be thought of as a table
 - If \(A \) is

Id	Val
\(x \)	0
\(y \)	\(\text{ff} \)

 - then \(A(x) \) is 0, \(A(y) \) is \(\text{ff} \), and \(A(z) \) is undefined

Notation, Operations on Environments

- \(\varepsilon \) is the empty environment (undefined for all ids)
- \(\text{x:v} \) is the environment that maps \(x \) to \(v \) and is undefined for all other ids
- If \(A \) and \(A' \) are environments then \(A, A' \) is the environment defined as follows

\[
(A, A')(\text{id}) = \begin{cases}
A'(\text{id}) & \text{if } A'(\text{id}) \text{ defined} \\
A(\text{id}) & \text{if } A'(\text{id}) \text{ undefined but } A(\text{id}) \text{ defined} \\
\text{undefined} & \text{otherwise}
\end{cases}
\]

- Idea: \(A' \) “overwrites” definitions in \(A \)
- For brevity, can write \(\bullet, A \) as just \(A \)
Semantics with Environments

- To give a semantics for identifiers, we will extend judgments from
 \[E \Rightarrow v \]
 to
 \[A; E \Rightarrow v \]
 where \(A \) is an environment
 - Idea: \(A \) is used to give values to the identifiers in \(E \)
 - \(A \) can be thought of as containing all the declarations made up to \(E \)
- Existing rules can be modified by inserting \(A \) everywhere in the judgments

Existing Rules Have To Be Modified

- E.g.

<table>
<thead>
<tr>
<th>(E_1 \Rightarrow v_1)</th>
<th>(E_2 \Rightarrow v_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_1 + E_2 \Rightarrow v_1 + v_2)</td>
<td></td>
</tr>
</tbody>
</table>

- becomes

<table>
<thead>
<tr>
<th>(A; E_1 \Rightarrow v_1)</th>
<th>(A; E_2 \Rightarrow v_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A; E_1 + E_2 \Rightarrow v_1 + v_2)</td>
<td></td>
</tr>
</tbody>
</table>

- These modifications can be done systematically
Rule for Identifiers

- x is an identifier
- To determine its value v “look it up” in A!

\[
\begin{align*}
A(x) &= v \\
A; x &\Rightarrow v
\end{align*}
\]

Rule for Let Binding

- We evaluate the first expression, and then evaluate the second expression in an environment extended to include a binding for x

\[
\begin{align*}
A; E_1 &\Rightarrow v_1 \\
A, x: v_1; E_2 &\Rightarrow v_2 \\
A; \text{let } x = E_1 \text{ in } E_2 &\Rightarrow v_2
\end{align*}
\]
Function Values

- So far our semantics handles
 - Constants
 - Built-in operations
 - Identifiers

- What about function definitions?
 - Recall form: `fun x → E`
 - To evaluate these expressions we need to add closures to our set of values

Closures

- ... are what OCaml function expressions evaluate to
- A closure consists of
 - Parameter (id)
 - Body (expression)
 - Environment (used to evaluate free variables in body)

- Formal extension to Val
 - if x is an id, E is an expression, and A is an environment
 - … then \((A, \lambda x. E) \in Val\)
Rule for Function Definitions

\[
\begin{array}{|c|c|}
\hline
- & \hline
\end{array}
\]

\[A; \text{fun } x \rightarrow E \Rightarrow (A, \lambda x. E)\]

- The expression evaluates to a closure
 - The id and body in the closure come from the expression
 - The environment is the one in effect when the expression is evaluated
- This will be used to implement static scope

Evaluating Function Application

- How do we evaluate a function application expression of the form \(E_1 \ E_2\)?
 - Static scope
 - Call by value
- Strategy
 - Evaluate \(E_1\), producing \(v_1\)
 - If \(v_1\) is indeed a function (i.e. closure) then
 - Evaluate \(E_2\), producing \(v_2\)
 - Set the parameter of closure \(v_1\) equal to \(v_2\)
 - Evaluate the body under this binding of the parameter
 - Remember that non-parameter ids in the body must be interpreted using the closure!
Rule for Function Application

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A; E₁ ⇒ (A'; λx.E)</td>
<td>1st hypothesis: E₁ evaluates to a closure</td>
</tr>
<tr>
<td>A; E₂ ⇒ v₂</td>
<td>2nd hypothesis: E₂ produces a value (call by value!)</td>
</tr>
<tr>
<td>A', x:v₂; E ⇒ v</td>
<td>3rd hypothesis: Body E in modified closure environment produces a value</td>
</tr>
<tr>
<td>A; E₁ E₂ ⇒ v</td>
<td>This last value is the result of the application</td>
</tr>
</tbody>
</table>

Example: (fun x → x + 3) 4

\[
\begin{align*}
\ast, \ x:4; \ x & \Rightarrow 4 \\
\ast, \ x:4; \ 3 & \Rightarrow 3 \\
\ast; \ \text{fun} \ x \rightarrow x + 3 & \Rightarrow (\ast, \ \lambda x. x + 3) \\
\ast; \ 4 & \Rightarrow 4 \\
\ast, \ x:4; \ x + 3 & \Rightarrow 7 \\
\ast; \ (\text{fun} \ x \rightarrow x + 3) \ 4 & \Rightarrow 7
\end{align*}
\]
Example: \((\text{fun } x \rightarrow (\text{fun } y \rightarrow x + y))\) 3 4

\[
\bullet; (\text{fun } x \rightarrow (\text{fun } y \rightarrow x + y)) \Rightarrow (\bullet, \lambda x.(\text{fun } y \rightarrow x + y))
\]
\[
\bullet; 3 \Rightarrow 3
\]
\[
x:3; (\text{fun } y \rightarrow x + y) \Rightarrow (x:3, \lambda y.(x + y))
\]
\[
\bullet; (\text{fun } x \rightarrow (\text{fun } y \rightarrow x + y)) 3 \Rightarrow (x:3, \lambda y.(x + y))
\]

Let \(<\text{previous}> = (\text{fun } x \rightarrow (\text{fun } y \rightarrow x + y)) 3

Example (cont.)

\[
\bullet, x:3, y:4; x \Rightarrow 3 \quad \bullet, x:3, y:4; y \Rightarrow 4
\]
\[
\bullet; <\text{previous}> \Rightarrow (x:3, \lambda y.(x + y))
\]
\[
\bullet; 4 \Rightarrow 4
\]
\[
x:3, y:4; (x + y) \Rightarrow 7
\]
\[
\bullet; (<\text{previous}> 4) \Rightarrow 7
\]
Dynamic Scoping

- The previous rule for functions implements static scoping, since it implements closures.
- We could easily implement dynamic scoping.

\[
egin{array}{c}
A; E_1 \Rightarrow (A', \lambda x. E) \\
A; E_2 \Rightarrow v_2 \\
A, x : v_2; E \Rightarrow v \\
A; E_1 E_2 \Rightarrow v
\end{array}
\]

- The only difference is to use the current environment \(A \), not the environment \(A' \).
 - Easy to see the origins of the dynamic scoping bug!

Practice Examples

- Give a derivation that proves the following (where \(\bullet \) is the empty environment)
 1. \(\bullet; \text{let } x = 5 \text{ in let } y = 7 \text{ in } x+y \Rightarrow 12 \)
 2. \(\bullet; \text{let } x = \text{let } x = 5 \text{ in } x+2 \text{ in } x+2 \Rightarrow 9 \)
 3. \(\bullet; \text{let } f = \text{fun } x \rightarrow x+5 \text{ in } f \ 7 \Rightarrow 12 \)
 4. \(\bullet; \text{let } y = 5 \text{ in } \text{let } f = \text{fun } x \rightarrow x+y \text{ in } \text{let } y = 6 \text{ in } f \ 7 \Rightarrow 12 \)
- Using the dynamic scoping version of the function application rule, prove
 1. \(\bullet; \text{let } y = 5 \text{ in } \text{let } f = \text{fun } x \rightarrow x+y \text{ in } \text{let } y = 6 \text{ in } f \ 7 \Rightarrow 13 \)