1. (4 pts) Ruby

Ruby has two classes Array and Hash that are similar but different in important ways. Both are frequently used to store a collection of data, and answer queries on the data (e.g., whether item x is present in the collection). Consider the difference between the following usages of Array and Hash in Ruby.

Given a[x] = y // if a is an array, x is the index, y is the element
 // if a is a hash, x is the key, and y is the value

The method include?(x) is found in both the Array and Hash classes. For arrays, include?(x) returns true if x is one of the elements of the array. For hashes include?(x) returns if x is a key in the hash.

Consider the following code:

 a[2] = 3
 x = a.include?(2)
 y = a.include?(3)

 a. (1 pt) If the code is preceded by the line a = [], what are the values of x & y?

 b. (1 pt) If the code is preceded by the line a = { }, what are the values of x & y?

 c. (2 pt) What is a simple alternative to writing a.include?(x) when “a” is a Hash?
 I.e., write code to test whether “x” is a key in Hash a without using “a.include?”.
2. (6 pts) RE to NFA

Create a NFA for c(alb)*, using the algorithm discussed in class.
3. (10 pts) Consider the following NFA.

![NFA Diagram]

a. (2 pts) Does the NFA accept the string “bba”? If it accepts the string, list a sequence of state transitions (e.g., 1,2,3) that leads to acceptance of “bba”.

b. (8 pts) Convert the NFA to a DFA using the subset construction algorithm discussed in class. Be sure to label each state in the DFA with the corresponding state(s) in the NFA.