CMSC330 Fall 2013 Quiz #4

Name ________________________________

Discussion Time 9am 10am 11am Noon 1pm
 TA Name (circle): Ilse Daniel Casey Yoav Ilse
 Richard Richard Richard

Instructions

• Do not start this test until you are told to do so!
• You have 15 minutes for this quiz.
• This is a closed book exam. No notes or other aids are allowed.
• For partial credit, show all of your work and clearly indicate your answers.
• Write neatly. Credit cannot be given for illegible answers.

1. (8 pts) Prolog

Given the following clauses, list all answers returned by the following queries.

hobbit(frodo).
hobbit(samwise).
human(aragorn).
human(gandolf).
taller(gandolf,aragorn).
taller(X,Y) :- human(X),hobbit(Y).

a. (2 pts) ?- human(Z).

foo([],X,[X]).
foo([HiT],X,[HiR]) :- foo(T,X,R).

b. (2 pts) ?- taller(gandolf,Z).

c. (2 pts) ?- foo([],2,Z).

d. (2 pts) ?- foo([a,b,c],d,Z)
2. (12 pts) Multithreading

Consider the following multithreaded Ruby code. Assume there are multiple threads being executed in the program, but just a single Market object. If we freeze program execution at some point in time, each thread \(T \) will have just finished executing some statement \(S \) (i.e., statement \(S \) will have been the last statement executed by thread \(T \)). We wish to examine the state of these threads.

<table>
<thead>
<tr>
<th>class Market</th>
<th>def produce</th>
<th>def acquire</th>
</tr>
</thead>
<tbody>
<tr>
<td>def initialize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@count = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@myL = Monitor.new</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@myC = @myL.new_cond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@myL.synchronize {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. @myC.wait_while(@count >9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. @count += 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. @myC.broadcast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{produce} \]

\[\text{acquire} \]

a. (3 pts) Is it possible given two threads \(x \) and \(y \) for the last statement executed by both threads to be statement 4 in the code above? Explain your answer.

b. (3 pts) Is it possible given two threads \(x \) and \(y \) for the last statement executed by thread \(x \) to be statement 4, and the last statement executed by thread \(y \) to be statement 2? Explain your answer.

c. (3 pts) Is it possible given two threads \(x \) and \(y \) for the last statement executed by thread \(x \) to be statement 5, and the last statement executed by thread \(y \) to be statement 2? Explain your answer.

d. (3 pts) Is it possible to modify the code above to reduce how often threads are woken up, but must go right back to sleep because there is no work to perform? Explain your answer.