Finite Automata 2

Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far

- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA

Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
NFA for \((a|b)^*abb\)

- **ba**
 - Has paths to either \(S_0\) or \(S_1\)
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to \(S_3\), so accepts string

NFA for \((ab|aba)^*\)

- **aba**
 - Has paths to states \(S_0\), \(S_1\)

- **ababa**
 - Has paths to \(S_0\), \(S_1\)
 - Need to use \(\varepsilon\)-transition

Another example DFA

- **Language?**
 - \((ab|aba)^*\)

Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!
Formal Definition

- A **deterministic finite automaton (DFA)** is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA’s transitions

- A DFA accepts \(s\) if it stops at a final state on \(s\)

Formal Definition: Example

- \(\Sigma = \{0, 1\}\)
- \(Q = \{S0, S1\}\)
- \(q_0 = S0\)
- \(F = \{S1\}\)
- \(\delta\):

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S0</td>
<td>S1</td>
</tr>
<tr>
<td>S1</td>
<td>S0</td>
<td>S1</td>
</tr>
</tbody>
</table>

or as \{(S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1)\}

Nondeterministic Finite Automata (NFA)

- An **NFA** is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q\) specifies the NFA’s transitions
 - Transitions on \(\epsilon\) are allowed – can optionally take these transitions without consuming any input
 - Can have more than one transition for a given state and symbol
 - \(\delta\) is a relation, not a function

- An NFA accepts \(s\) if there is at least one path from its start to final state on \(s\)

Reducing Regular Expressions to NFAs

- **Goal:** Given regular expression \(e\), construct NFA: \(<e> = (\Sigma, Q, q_0, F, \delta)\)
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: \(|F| = 1\) in our NFAs
 - Recall \(F\) = set of final states

- **Base case:** \(a\)

 \(<a> = (\{a\}, \{S0, S1\}, S0, \{S1\}, \{(S0, a, S1)\})\)
Reduction (cont.)

- Base case: ε
 \[\langle \varepsilon \rangle = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset) \]

- Base case: \emptyset
 \[\langle \emptyset \rangle = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset) \]

Reduction: Concatenation

- Induction: AB
 \[\langle A \rangle \cdot \langle B \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_A\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\}) \]

Reduction: Union

- Induction: $(A \mid B)$
 \[\langle A \rangle \cup \langle B \rangle \]
Reduction: Union (cont.)

- Induction: \((A \mid B)\)
 - \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\)
 - \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)\)
 - \<(A \mid B)\> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\},
 \delta_A \cup \delta_B \cup \{(S0,\varepsilon,q_A), (S0,\varepsilon,q_B), (f_A,\varepsilon,S1), (f_B,\varepsilon,S1))\})

Reduction: Closure (cont.)

- Induction: \(A^*\)
 - \(<A^> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\)
 - \(<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},
 \delta_A \cup \{(f_A,\varepsilon,S1), (S0,\varepsilon,q_A), (S0,\varepsilon,S1), (S1,\varepsilon,S0))\})

Reduction Complexity

- Given a regular expression \(A\) of size \(n\)... Size = # of symbols + # of operations
- How many states does \(<A>\) have?
 - 2 added for each |, 2 added for each *
 - \(O(n)\)
 - That's pretty good!
Practice

- Draw NFAs for the following regular expressions and languages
 - \((0|1)^*110^*\)
 - \(101^*111\)
 - all binary strings ending in 1 (odd numbers)
 - all alphabetic strings which come after “hello” in alphabetic order
 - \((ab^*c|d^*a|ab)d\)

Recap

- Finite automata
 - Alphabet, states…
 - \((\Sigma, Q, q_0, F, \delta)\)
- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

Reducing RE to NFA

- Concatenation
- Union
- Closure

Next

- Reducing NFA to DFA
 - \(\varepsilon\)-closure
 - Subset algorithm
- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA

How NFA Works

- When NFA processes a string
 - NFA may be in several possible states
 - Multiple transitions with same label
 - \(\varepsilon\)-transitions
- Example
 - After processing “a”
 - NFA may be in states
 - S1
 - S2
 - S3
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states
- Example

```
NFA
\[ S_1 \to^{a} S_2 \to^{\epsilon} S_3 \]

DFA
\[ S_1, S_2, S_3 \]
```

Reducing NFA to DFA (cont.)

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - NFA \((\Sigma, Q, q_0, F_n, \delta)\)
 - Output
 - DFA \((\Sigma, R, r_0, F_d, \delta)\)
 - Using two subroutines
 - \(\epsilon\)-closure(p)
 - move(p, a)

\(\epsilon\)-transitions and \(\epsilon\)-closure

- We say \(p \to^{\epsilon} q\)
 - If it is possible to go from state \(p\) to state \(q\) by taking only \(\epsilon\)-transitions
 - If \(\exists p, p_1, p_2, \ldots, p_n, q \in Q\) such that
 - \(\{p, \epsilon, p_1\} \in \delta, \{p_1, \epsilon, p_2\} \in \delta, \ldots, \{p_n, \epsilon, q\} \in \delta\)
- \(\epsilon\)-closure(p)
 - Set of states reachable from \(p\) using \(\epsilon\)-transitions alone
 - Set of states \(q\) such that \(p \to^{\epsilon} q\)
 - \(\epsilon\)-closure(p) = \(\{q | p \to^{\epsilon} q\}\)
 - Note
 - \(\epsilon\)-closure(p) always includes \(p\)
 - \(\epsilon\)-closure() may be applied to set of states (take union)

\(\epsilon\)-closure: Example 1

- Following NFA contains
 - \(S_1 \to^{\epsilon} S_2\)
 - \(S_2 \to^{\epsilon} S_3\)
 - \(S_1 \to S_3\)
 - Since \(S_1 \to^{\epsilon} S_2\) and \(S_2 \to^{\epsilon} S_3\)
- \(\epsilon\)-closures
 - \(\epsilon\)-closure(S1) = \(\{ S_1, S_2, S_3 \}\)
 - \(\epsilon\)-closure(S2) = \(\{ S_2, S_3 \}\)
 - \(\epsilon\)-closure(S3) = \(\{ S_3 \}\)
 - \(\epsilon\)-closure(\(\{ S_1, S_2 \}\)) = \(\{ S_1, S_2, S_3 \} \cup \{ S_2, S_3 \}\)
ε-closure: Example 2

- Following NFA contains
 - \(S_1 \xrightarrow{\varepsilon} S_3 \)
 - \(S_3 \xrightarrow{\varepsilon} S_2 \)
 - \(S_1 \xrightarrow{\varepsilon} S_2 \)

 Since \(S_1 \xrightarrow{\varepsilon} S_3 \) and \(S_3 \xrightarrow{\varepsilon} S_2 \)

- ε-closures
 - \(\varepsilon \)-closure(\(S_1 \)) = \{ \(S_1, S_2, S_3 \) \}
 - \(\varepsilon \)-closure(\(S_2 \)) = \{ \(S_2 \) \}
 - \(\varepsilon \)-closure(\(S_3 \)) = \{ \(S_2, S_3 \) \}
 - \(\varepsilon \)-closure(\{ \(S_2, S_3 \) \}) = \{ \(S_2 \) \} \cup \{ \(S_2, S_3 \) \}

ε-closure: Practice

- Find ε-closures for following NFA
 - Find ε-closures for the NFA you construct for
 - The regular expression \((0|1^*)111(0^*|1)\)

Calculating \(\text{move}(p,a) \)

- \(\text{move}(p,a) \)
 - Set of states reachable from \(p \) using exactly one transition on \(a \)
 - Set of states \(q \) such that \(\{ p, a, q \} \in \delta \)
 - \(\text{move}(p,a) = \{ q | \{ p, a, q \} \in \delta \} \)

 - Note: \(\text{move}(p,a) \) may be empty \(\emptyset \)
 - If no transition from \(p \) with label \(a \)

move(a,p) : Example 1

- Following NFA
 - \(\Sigma = \{ a, b \} \)

- Move
 - \(\text{move}(S_1, a) = \{ S_2, S_3 \} \)
 - \(\text{move}(S_1, b) = \emptyset \)
 - \(\text{move}(S_2, a) = \emptyset \)
 - \(\text{move}(S_2, b) = \{ S_3 \} \)
 - \(\text{move}(S_3, a) = \emptyset \)
 - \(\text{move}(S_3, b) = \emptyset \)
move(a,p) : Example 2

Following NFA
• Σ = { a, b }

Move
• move(S1, a) = { S2 }
• move(S1, b) = { S3 }
• move(S2, a) = { S3 }
• move(S2, b) = Ø
• move(S3, a) = Ø
• move(S3, b) = Ø

NFA → DFA Reduction Algorithm

Input NFA (Σ, Q, q₀, Fₙ, δ), Output DFA (Σ, R, r₀, Fₕ, δ)

Algorithm
Let r₀ = ε-closure(q₀), add it to R
While ∃ an unmarked state r ∈ R
Mark r
For each a ∈ Σ
Let S = { s | q ∈ r & move(q,a) = s }
Let e = ε-closure(S)
If e /∈ R
Let R = R ∪ { e }
Let δ = δ ∪ { r, a, e }
Let Fₕ = { r | ∃ s ∈ r with s ∈ Fₙ }

NFA → DFA Example 1

• Start = ε-closure(S1) = { {S1,S3} }
• R = { {S1,S3} }
• r ∈ R = {S1,S3}
• Move({S1,S3},a) = {S2}
 ▶ e = ε-closure({S2}) = {S2}
 ▶ R = R ∪ { {S2} } = { {S1,S3}, {S2} }
 ▶ δ = δ ∪ { {S1,S3}, a, {S2} }
• Move({S1,S3},b) = Ø

NFA → DFA Example 1 (cont.)

• R = { {S1,S3}, {S2} }
• r ∈ R = {S2}
• Move({S2},a) = Ø
• Move({S2},b) = {S3}
 ▶ e = ε-closure({S3}) = {S3}
 ▶ R = R ∪ { {S3} } = { {S1,S3}, {S2}, {S3} }
 ▶ δ = δ ∪ { {S2}, b, {S3} }

NFA → DFA Example 1 (cont.)

• R = { {S1,S3}, {S2} }
• r ∈ R = {S2}
• Move({S2},a) = Ø
• Move({S2},b) = {S3}
 ▶ e = ε-closure({S3}) = {S3}
 ▶ R = R ∪ { {S3} } = { {S1,S3}, {S2}, {S3} }
 ▶ δ = δ ∪ { {S2}, b, {S3} }
NFA → DFA Example 1 (cont.)

- \(R = \{ \{ S1, S3 \}, \{ S2 \}, \{ S3 \} \} \)
- \(r \in R = \{ S3 \} \)
- Move(\{S3\}, a) = \emptyset
- Move(\{S3\}, b) = \emptyset
- Mark \{S3\}, exit loop
- \(F_D = \{ \{ S1, S3 \}, \{ S3 \} \} \)
 - Since \(S3 \in F_n \)
- Done!

NFA → DFA Example 2

\[
R = \{ \{ A \}, \{ B, D \}, \{ C, D \} \}
\]

NFA → DFA Example 3

Analyzing the reduction

- Any string from \{A\} to either \{D\} or \{CD\}
 - Represents a path from A to D in the original NFA

\[
R = \{ \{ A, E \}, \{ B, D, E \}, \{ C, D \}, \{ E \} \}
\]
Analyzing the reduction (cont’d)

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2^n states
 - Since a set with n items may have 2^n subsets
 - Corollary
 - Reducing a NFA with n states may be $O(2^n)$

Minimizing DFA

- Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape

Minimizing DFA: Hopcroft Reduction

- Intuition
 - Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input
- Algorithm
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

- No need to split partition $\{S, T, U, V\}$
 - All transitions on a lead to identical partition $P2$
 - Even though transitions on a lead to different states
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \(a\) from \(S,T\) lead to partition \(P_2\)
 - Transition on \(a\) from \(U\) lead to partition \(P_3\)

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\}
 - Need to split partition \{S,T,U\} into \{S,T\}, \{U\}

Minimizing DFA: Example 1

- DFA
 - Initial partitions
 - Accept \(\{R\}\) = \(P_1\)
 - Reject \(\{S,T\}\) = \(P_2\)
 - Split partition? → Not required, minimization done
 - move(\(S,a\)) = \(T \in P_2\)
 - move(\(S,b\)) = \(R \in P_1\)
 - move(\(T,a\)) = \(T \in P_2\)
 - move (\(T,b\)) = \(R \in P_1\)

Minimizing DFA: Example 2

- DFA
 - Initial partitions
 - Accept \(\{R\}\) = \(P_1\)
 - Reject \(\{S,T\}\) = \(P_2\)
 - Split partition? → Not required, minimization done
 - move(\(S,a\)) = \(T \in P_2\)
 - move(\(S,b\)) = \(R \in P_1\)
 - move(\(T,a\)) = \(S \in P_2\)
 - move (\(T,b\)) = \(R \in P_1\)
Minimizing DFA: Example 3

- **DFA**
 - Initial partitions
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2
 - Split partition? → Yes, different partitions for b
 - move(S, a) = T ∈ P2 move(S, b) = T ∈ P2
 - move(T, a) = T ∈ P2 move(T, b) = R ∈ P1

DFA Minimization Algorithm (1)

- Input DFA (\(\Sigma, Q, q_0, F_n, \delta \)), Output DFA (\(\Sigma, R, r_0, F_d, \delta \))
- **Algorithm**
 - Let \(p_0 = F_n, p_1 = Q - F \) // initial partitions = final, nonfinal states
 - Let \(R = \{ p | p \in \{p_0,p_1\} and p \neq \emptyset \} , P = \emptyset \) // add p to R if nonempty
 - While \(P \neq R \) do // while partitions changed on prev iteration
 - Let \(P = R, R = \emptyset \) // R = new partitions, P = prev partitions
 - For each \(p \in P \) // for each partition from previous iteration
 - \(\{p_0,p_1\} = \text{split}(p,P) \) // split partition, if necessary
 - \(R = R \cup \{ p | p \in \{p_0,p_1\} and p \neq \emptyset \} \) // add p to R if nonempty
 - \(r_0 = p \in R \) where \(q_0 \in p \) // partition w/ starting state
 - \(F_d = \{ p | p \in R and exists s \in p such that s \in F_n \} \) // partitions w/ final states
 - \(\delta(p,c) = q \) when \(\delta(s,c) = r \) where \(s \in p \) and \(r \in q \) // add transitions

DFA Minimization Algorithm (2)

- **Algorithm for** \(\text{split}(p,P) \)
 - Choose some \(r \in p \), let \(q = p - \{r\}, m = \{\} \) // pick some state \(r \) in \(p \)
 - For each \(s \in q \) // for each state in \(p \) except for \(r \)
 - For each \(c \in \Sigma \) // for each symbol in alphabet
 - If \(\delta(r,c) = q_0 \) and \(\delta(s,c) = q_1 \) and \(q_0 \neq q_1 \) // q’s = states reached for \(c \)
 - there is no \(p_1 \in P \) such that \(q_0 \in p_1 \) and \(q_1 \in p_1 \), then
 - \(m = m \cup \{s\} \) // add \(s \) to \(m \) if \(q \)’s not in same partition
 - Return \(p - m, m \) // \(m \) = states that behave differently than \(r \)
 - \(m \) may be \(\emptyset \) if all states behave the same
 - \(p - m \) = states that behave the same as \(r \)

Complement of DFA

- **Given a DFA accepting language \(L \)**
 - How can we create a DFA accepting its complement?
 - Example DFA
 - \(\Sigma = \{a,b\} \)

- Given a DFA accepting language \(L \)
 - How can we create a DFA accepting its complement?
 - Example DFA
 - \(\Sigma = \{a,b\} \)
Complement of DFA (cont.)

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state and every non-accepting state to an accepting state
- Note this only works with DFAs
 - Why not with NFAs?

![DFA Diagram]

Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.

![DFA Diagram]

Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA

![DFA Diagram]

Relating REs to DFAs and NFAs

- Why do we want to convert between these?
 - Can make it easier to express ideas
 - Can be easier to implement

![DFA Diagram]
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

```c
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
                    case '0': cur_state = 0; break;
                    case '1': cur_state = 1; break;
                    case '
': printf("rejected
"); return 0;
                    default: printf("rejected
"); return 0;
                }
            break;
        case 1: switch (symbol) {
                    case '0': cur_state = 0; break;
                    case '1': cur_state = 1; break;
                    case '
': printf("accepted
"); return 1;
                    default: printf("rejected
"); return 0;
                }
            break;
        default: printf("unknown state; I'm confused
");
            break;
    }
}
```

Implementing DFAs (generic)

More generally, use generic table-driven DFA

```c
given components (Σ, Q, q₀, F, δ) of a DFA:
let q = q₀
while (there exists another symbol s of the input string)
    q := δ(q, s);
if q ∈ F then
    accept
else reject
```

Run Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute δ(q, c) in constant time
 - Then time to process s is $O(|s|)$
 - Can't get much faster!
- Constructing DFA for RE A may take $O(2^{|A|})$ time
 - But usually not the case in practice
- So there's the initial overhead
 - But then processing strings is fast

Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(Σ, Q_A, q_A, F_A, δ_A)$, the components of the DFA produced from the RE
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity
Practice

- Convert to a DFA

Convert to an NFA and then to a DFA
 - $(0|1)^*110^*$
 - Strings of alternating 0 and 1
 - $aba^*|(ba|b)$

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE \rightarrow NFA
 - Concatenation, union, closure
 - NFA \rightarrow DFA
 - ε-closure & subset algorithm
- DFA
 - Minimization, complement
 - Implementation