Lambda Calculus

Programming Language Features

- Many features exist simply for convenience
 - Multi-argument functions
 - Use currying or tuples
 - Loops
 - Use recursion
 - Side effects
 - Use functional programming

- So what language features are really needed?

Turing Completeness

- Computational system that can
 - Simulate a Turing machine
 - Compute every Turing-computable function
- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language
- Most powerful programming language possible
 - Since Turing machine is most powerful automaton

Programming Language Theory

- Come up with a “core” language
 - That’s as small as possible
 - But still Turing complete

- Helps illustrate important
 - Language features
 - Algorithms

- One solution
 - Lambda calculus
Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church (born in Washington DC!)

- Formal system
 - Designed to investigate functions & recursion
 - For exploration of foundations of mathematics

- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell...

Lambda Expressions

- A lambda calculus expression is defined as

 $e ::= x$ \hspace{1cm} variable

 $| \lambda x. e$ \hspace{1cm} function

 $| e e$ \hspace{1cm} function application

- Note that this is CFG is ambiguous, but that's not a problem for defining the terms in the language – we are not using it for parsing (i.e., different parse trees = different expressions)

- $\lambda x. e$ is like `(fun x -> e)` in OCaml
- That's it! Nothing but higher-order functions

Three Conveniences

- “Syntactic sugar” for local declarations
 - let $x = e_1$ in e_2 is short for $(\lambda x. e_2) e_1$

- Scope of λ extends as far right as possible
 - Subject to scope delimited by parentheses
 - $\lambda x. \lambda y. x y$ is same as $\lambda x. (\lambda y. (x y))$

- Function application is left-associative
 - $x y z$ is $(x y) z$
 - Same rule as OCaml

OCaml implementation

```
type id = string

type exp =
  Var of id
| Lam of id * exp
| App of exp * exp
```

```
y = Var "y"

\lambda x. x = Lam ("x", Var "x")

\lambda x. \lambda y. x y = Lam ("x", (Lam ("y", App (Var "x", Var "y")) App (Var "x", Var "y")))

(\lambda x. \lambda y. x y) \lambda x. x = App (Lam ("x", Lam ("y", App (Var "x", Var "y")))),
                               App (Var "x", Var "y")),
                             Lam ("x", App (Var "x", Var "x")))
```
Lambda Calculus Semantics

- All we’ve got are functions
 - So all we can do is call them
- To evaluate (λx.e₁) e₂
 - Evaluate e₁ with x replaced by e₂
- This application is called beta-reduction
 - (λx.e₁) e₂ → e₁[x:=e₂]
 - e₁[x:=e₂] is e₁ with occurrences of x replaced by e₂
 - This operation is called substitution
 - Replace formals with actuals
 - Instead of using environment to map formals to actuals
- We allow reductions to occur anywhere in a term
 - Order reductions are applied does not affect final value!

Beta Reduction Example

- (λx.λz.x z) y
 → (λx.(λz.(x z))) y // since λ extends to right
 → (λx.(λz.(x z))) y // apply (λx.e₁) e₂ → e₁[x:=e₂]
 → λz.(y z) // where e₁ = λz.(x z), e₂ = y

Equivalent OCaml code

- (fun x -> (fun z -> (x z))) y → fun z -> (y z)

Lambda Calculus Examples

- (λx.x) z → z
- (λx.y) z → y
- (λx.x y) z → z y
 - A function that applies its argument to y

Lambda Calculus Examples (cont.)

- (λx.x y) (λz.z) → (λz.z) y → y
- (λx.λy.x y) z → λy.z y
 - A curried function of two arguments
 - Applies its first argument to its second
- (λx.λy.x y) (λz.zz) x → (λy.(λz.zz)y)x → (λz.zz)x → xx
Static Scoping & Alpha Conversion

- Lambda calculus uses static scoping

- Consider the following
 - \((\lambda x. (\lambda x. x)) z \rightarrow ? \)
 - The rightmost “x” refers to the second binding
 - This is a function that
 - Takes its argument and applies it to the identity function
 - This function is “the same” as \((\lambda x. (\lambda y. x)) \)
 - Renaming bound variables consistently is allowed
 - This is called alpha-renaming or alpha conversion
 - Ex. \(\lambda x.x = \lambda y.y = \lambda z.z \)

Defining Substitution

- Use recursion on structure of terms
 - \(x[x:=e] = e \) // Replace x by e
 - \(y[x:=e] = y \) // y is different than x, so no effect
 - \((e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e]) \)
 // Substitute both parts of application
 - \((\lambda x.e')[x:=e] = \lambda x.e' \)
 - In \(\lambda x.e' \), the x is a parameter, and thus a local variable that is different from other x’s. Implements static scoping.
 - So the substitution has no effect in this case, since the x being substituted for is different from the parameter x that is in e
 - \((\lambda y.e')[x:=e] = ? \)
 - The parameter y does not share the same name as x, the variable being substituted for
 - Is \(\lambda y. (e'[x:=e]) \) correct? No...

Variable capture

- How about the following?
 - \((\lambda x. (\lambda y. x) y) y \rightarrow ? \)
 - When we replace y inside, we don’t want it to be captured by the inner binding of y, as this violates static scoping
 - I.e., \((\lambda x. (\lambda y. x) y) y \neq \lambda y.y y \)

- Solution
 - \((\lambda x. (\lambda y. x) y) \) is “the same” as \((\lambda x. \lambda z. x z) \)
 - Due to alpha conversion
 - So alpha-convert \((\lambda x. (\lambda y. x) y) y \) to \((\lambda x. \lambda z. x z) y \) first
 - Now \((\lambda x. \lambda z. x z) y \rightarrow \lambda z.y z \)

Completing the Definition of Substitution

- Recall: we need to define \((\lambda y.e')[x:=e] \)
 - We want to avoid capturing (free) occurrences of y in e
 - Solution: alpha-conversion!
 - Change y to a variable \(w \) that does not appear in e’ or e
 - Such a \(w \) is called fresh
 - Replace all occurrences of y in e’ by \(w \).
 - Then replace all occurrences of x in e’ by e!
 - Formally:
 \((\lambda y.e')[x:=e] = \lambda w.((e'[y:=w])[x:=e]) \) (w is fresh)
Beta-Reduction, Again

Whenever we do a step of beta reduction
 • \((\lambda x. e1) e2 \rightarrow e1[x:=e2]\)
 • We must alpha-convert variables as necessary
 • Usually performed implicitly (w/o showing conversion)

Examples
 • \((\lambda x. \lambda y. x \ y) \ y = (\lambda x. \lambda z. x \ z) \ y \rightarrow \lambda z. y \ z \quad // \ y \rightarrow z\)
 • \((\lambda x. (\lambda x. x)) \ z = (\lambda y. (\lambda x. x)) \ z \rightarrow z \ (\lambda x. x) \quad // \ x \rightarrow y\)

OCaml Implementation: Substitution

(* substitute e for y in m *)
let rec subst m y e =
 match m with
 | Var x ->
 if y = x then e (* substitute *)
 else m (* don’t subst *)
 | App (el, e2) ->
 App (subst el1 y e, subst e2 y e)
 | Lam (x, e0) -> ...

OCaml Impl: Substitution (cont’d)

(* substitute e for y in m *)
let rec subst m y e =
 match m with ...
 | Lam (x, e0) ->
 if y = x then m (* substitute *)
 else if not (List.mem x (fvs e)) then
 Lam (x, subst e0 y e) (* Safe: no capture possible *)
 else
 let z = newvar() in (* fresh *)
 let e0' = subst e0 x (Var z) in
 Lam (z, subst e0' y e)

OCaml Impl: Reduction

let rec reduce e =
 match e with
 | App (Lam (x, e), e2) -> subst e x e2 (* Straight β rule *)
 | App (el, e2) ->
 let el' = reduce el in
 if el' != el then App(el', e2)
 else App (el, reduce e2) (* Reduce lhs of app *)
 | Lam (x, e) -> Lam (x, reduce e) (* Reduce rhs of app *)
 | _ -> e (* Reduce function body *)
 nothing to do
Encodings

- The lambda calculus is Turing complete
- Means we can **encode** any computation we want
 - If we’re sufficiently clever...

Examples
- Booleans
- Pairs
- Natural numbers & arithmetic
- Looping

Booleans

- Church’s encoding of mathematical logic
 - **true** = \(\lambda x.\lambda y.x \)
 - **false** = \(\lambda x.\lambda y.y \)
 - **if** a then b else c
 - Defined to be the \(\lambda \) expression: \(a \ b \ c \)

Examples
- if true then b else c = \((\lambda x.\lambda y.x) \ b \ c \rightarrow (\lambda y.\ b \ c \rightarrow \ b \)
- if false then b else c = \((\lambda x.\lambda y.y) \ b \ c \rightarrow (\lambda y.\ c \rightarrow \ c \)

Booleans (cont.)

- Other Boolean operations
 - **not** = \(\lambda x.((x \ false) \ true) \)
 - not x = if x then false else true
 - not true \(\rightarrow (\lambda x.(x \ false) \ true) \ true \rightarrow (true \ false) \ true \rightarrow false \)
 - **and** = \(\lambda x.\lambda y.((x \ y) \ false) \)
 - and \(x \ y \ = \ if \ x \ then \ y \ else \ false \)
 - **or** = \(\lambda x.\lambda y.((x \ true) \ y) \)
 - or \(x \ y \ = \ if \ x \ then \ true \ else \ y \)

- Given these operations
 - Can build up a logical inference system

Pairs

- Encoding of a pair \(a, b \)
 - \((a,b) = \lambda x.\text{if } x \text{ then } a \text{ else } b\)
 - \(\text{fst} = \lambda f.f \ true\)
 - \(\text{snd} = \lambda f.f \ false\)

Examples
- \(\text{fst} \ (a,b) = \ (\lambda f.f \ true) \ (\lambda x.\text{if } x \text{ then } a \text{ else } b) \rightarrow (\lambda x.\text{if } x \text{ then } a \text{ else } b) \ true \rightarrow \text{if true then a else b} \rightarrow a\)
- \(\text{snd} \ (a,b) = \ (\lambda f.f \ false) \ (\lambda x.\text{if } x \text{ then } a \text{ else } b) \rightarrow (\lambda x.\text{if } x \text{ then } a \text{ else } b) \ false \rightarrow \text{if false then a else b} \rightarrow \ b\)
Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
 - 0 = λf.λy.y
 - 1 = λf.λy.f y
 - 2 = λf.λy.f (f y)
 - 3 = λf.λy.f (f (f y))
 - i.e., n = λf.λy.<apply f n times to y>
 - Formally: n+1 = λf.λy.f (n f y)

(Alonzo Church, of course)

Operations On Church Numerals

- Successor
 - succ = λz.λf.λy.f (z f y)
 - 0 = λf.λy.y
 - 1 = λf.λy.f y

- Example
 - succ 0 = (λz.λf.λy.f (z f y)) (λf.λy.y) →
 - λf.λy.f ((λf.λy.y) f y) →
 - λf.λy.f ((λy.y) y) → Since (λx.y) z → y
 - λf.λy.f y
 - = 1

Operations On Church Numerals (cont.)

- IsZero?
 - iszero = λz.z (λy.false) true
 - This is equivalent to λz.((z (λy.false)) true)

- Example
 - iszero 0 =
 - 0 = λf.λy.y
 - (λz.z (λy.false) true) (λf.λy.y) →
 - (λf.λy.y) (λy.false) true →
 - (λy.y) true → Since (λx.y) z → y
 - true

Arithmetic Using Church Numerals

- If M and N are numbers (as λ expressions)
 - Can also encode various arithmetic operations

- Addition
 - M + N = λf.λy.(M f)((N f) y)
 - Equivalently: + = λM.λN.λf.λy.(M f)((N f) y)
 - In prefix notation (+ M N)

- Multiplication
 - M * N = λf.(M (N f))
 - Equivalently: * = λM.λN.λf.λy.(M (N f)) y
 - In prefix notation (* M N)
Arithmetic (cont.)

Prove 1+1 = 2
• 1+1 = λx.λy.((1 x) y)
• 2 = λf.λy.f y

With these definitions
• Can build a theory of arithmetic

The Fixpoint Combinator

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

Then
\[Y F = \]
\[(\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) F \rightarrow \]
\[(\lambda x. F (x x)) (\lambda x. F (x x)) \rightarrow \]
\[F ((\lambda x. F (x x)) (\lambda x. F (x x))) \]
\[= F (Y F) \]

\[Y F \] is a fixed point (aka “fixpoint”) of \(F \)

Thus \(Y F = F (Y F) = F (F (Y F)) = \ldots \)
• We can use \(Y \) to achieve recursion for \(F \)

Loops & Recursion

Define \(D = \lambda x. x \), then
• \(D D = (\lambda x. x) (\lambda x. x) \rightarrow (\lambda x. x) (\lambda x. x) = D D \)

So \(D D \) is an infinite loop
• In general, self application is how we get looping

Example

\[\text{fact} = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f (n-1)) \]
• The second argument to fact is the integer
• The first argument is the function to call in the body
• We’ll use \(Y \) to make this recursively call fact

\[(Y \text{ fact}) 1 = (\text{fact} (Y \text{ fact})) 1 \]
\[\rightarrow \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \ast ((Y \text{ fact}) 0) \]
\[\rightarrow 1 \ast ((Y \text{ fact}) 0) \]
\[\rightarrow 1 \ast (\text{fact} (Y \text{ fact}) 0) \]
\[\rightarrow 1 \ast (\text{if } 0 = 0 \text{ then } 1 \text{ else } 0 \ast ((Y \text{ fact}) (-1)) \]
\[\rightarrow 1 \ast 1 \rightarrow 1 \]
Discussion

- Lambda calculus is Turing-complete
 - Most powerful language possible
 - Can represent pretty much anything in “real” language
 - Using clever encodings
- But programs would be
 - Pretty slow (10000 + 1 \rightarrow \text{thousands of function calls})
 - Pretty large (10000 + 1 \rightarrow \text{hundreds of lines of code})
 - Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
 - We use richer, more expressive languages
 - That include built-in primitives

The Need For Types

- Consider the untyped lambda calculus
 - false = \lambda x.\lambda y.y
 - 0 = \lambda x.\lambda y.y
- Since everything is encoded as a function...
 - We can easily misuse terms...
 - false 0 \rightarrow \lambda y.y
 - if 0 then ...
 ...because everything evaluates to some function
- The same thing happens in assembly language
 - Everything is a machine word (a bunch of bits)
 - All operations take machine words to machine words

Simply-Typed Lambda Calculus (STLC)

- e ::= n | x | \lambda x:t.e | e e
 - Added integers n as primitives
 - Need at least two distinct types (integer & function)...
 - ...to have type errors
 - Functions now include the type of their argument
- t ::= int | t \rightarrow t
 - int is the type of integers
 - t1 \rightarrow t2 is the type of a function
 - That takes arguments of type t1 and returns result of type t2
 - t1 is the domain and t2 is the range
 - Notice this is a recursive definition
 - So we can give types to higher-order functions

Type Checking STLC

- Can define a type checking algorithm using inference rules
 - In the same style as the operational semantics we saw last time. Defines a judgment
 \[\Gamma \vdash e : t \]
 which is read e has type t in environment \(\Gamma \)
 where
 - \(\Gamma ::= \cdot | \Gamma, x:t \)
 - \(\Gamma \) is a type environment, mapping ids to types
Type Environments

- is the empty type environment
 - undefined for all ids
- \(x : t \) is the environment that says \(x \) has type \(t \)
 - and is undefined for all other ids
- If \(\Gamma \) and \(\Gamma' \) are environments then \(\Gamma, \Gamma' \) is the environment defined as follows:
 \[
 (\Gamma, \Gamma')(id) = \begin{cases}
 \Gamma(id) & \text{if } \Gamma'(id) \text{ defined} \\
 \Gamma(id) & \text{if } \Gamma'(id) \text{ undefined but } \Gamma(id) \text{ defined} \\
 \text{undefined} & \text{otherwise}
 \end{cases}
 \]
- Idea: \(\Gamma' \) “overrides” definitions in \(\Gamma \)
- For brevity, can write \(\cdot, \Gamma \) as just \(\Gamma \)

Types are limiting

- STLC will reject some terms as ill-typed, even if they will not produce a run-time error
 - Cannot type check \(Y \) in STLC
 - Or in OCaml, for that matter!
- Surprising theorem: All (well typed) simply-typed lambda calculus terms are strongly normalizing
 - They will terminate
 - Proof is not by straightforward induction
 - Function applications “increase” term size

Type Checking STLC Inference Rules

\[
\begin{align*}
\Gamma(x) &= t \\
\Gamma &\vdash x : t \\
\Gamma &\vdash \lambda x : t . e : t' \\
eg &
\Gamma &\vdash e_1 : t' \\
\Gamma &\vdash e_2 : t \\
\Gamma &\vdash e_1 e_2 : t'
\end{align*}
\]

These rules work the same way as the operational semantics rules: “Proofs” are trees that string them together to prove that an expression has a particular type

Summary

- Lambda calculus shows issues with
 - Scoping
 - Higher-order functions
 - Types
- Useful for understanding how languages work