How do regular expressions work?

- What we’ve learned
 - What regular expressions are
 - What they can express, and cannot
 - Programming with them

- What’s next: how they work
 - Mixture of a very practical tool (string matching with REs) and some nice theory
 - A great computer science result

A Few Questions About REs

- How are REs implemented?
 - Implementing a one-off RE is not so hard
 - How to do it in general?
 - We’ll see how to build a structure to parse REs
- What are the basic components of REs?
 - Can implement some features in terms of others
 - E.g., we saw that e^+ is the same as ee^*
- What does a regular expression represent?
 - Just a set of strings
 - This observation provides insight on how we go about our implementation

Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

- Example alphabets:
 - Binary: $\Sigma = \{0, 1\}$
 - Decimal: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Alphanumeric: $\Sigma = \{0-9, a-z, A-Z\}$
Definition: String

- A string is a finite sequence of symbols from Σ
 - ϵ is the empty string ("" in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\epsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \epsilon \} \neq \epsilon$

- Example strings:
 - $0101 \in \Sigma = \{0, 1\}$ (binary)
 - $0101 \in \Sigma = \text{decimal}$
 - $0101 \in \Sigma = \text{alphanumeric}$

Definition: String concatenation

- String concatenation is indicated by juxtaposition
 - If $s_1 = \text{super}$ and $s_2 = \text{hero}$, then $s_1 s_2 = \text{superhero}$
 - Sometimes also written $s_1 \cdot s_2$
 - For any string s, we have $s \epsilon = \epsilon s = s$
 - You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:
 - If $s_1 = \text{super} \in \Sigma_1 = \{s,u,p,e,r\}$ and $s_2 = \text{hero} \in \Sigma_2 = \{h,e,r,o\}$, then $s_1 s_2 = \text{superhero} \in \Sigma_3 = \{e,h,o,p,r,s,u\}$

Definition: Language

- A language L is a set of strings over an alphabet

- Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (,), -\}$
 - Give an example element of this language
 - Are all strings over the alphabet in the language? **No**
 - Is there a Ruby regular expression for this language? **No**
 - $/\d(3,3)\d(3,3)-\d(4,4)/$

- Example: The set of all strings over Σ
 - Often written Σ^*

Definition: Language (cont.)

- Example: The set of strings of length 0 over the alphabet $\Sigma = \{a, b, c\}$
 - $L = \{ s \mid s \in \Sigma^* \text{ and } |s| = 0 \} = \{\epsilon\} \neq \emptyset$

- Example: The set of all valid Ruby programs
 - Is there a Ruby regular expression for this language?
 - **No**. Matching (an arbitrary number of) brackets so that they are balanced is impossible using REs $\{ \{ \ldots \} \}$

- REs represent languages, but not all of them
 - The languages represented by regular expressions are called, appropriately, the regular languages
Definition: Regular Expressions

- Given an alphabet Σ, the regular expressions over Σ are defined inductively as:

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>ε</td>
<td>{ε}</td>
</tr>
<tr>
<td>each element σ ∈ Σ</td>
<td>{σ}</td>
</tr>
</tbody>
</table>

Properties

- Constants

Operations

- Let A and B be regular expressions denoting languages L_A and L_B, respectively

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>L_A L_B</td>
</tr>
<tr>
<td>(A</td>
<td>B)</td>
</tr>
<tr>
<td>A*</td>
<td>L_A*</td>
</tr>
</tbody>
</table>

There are no other regular expressions over Σ

Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ

- Concatenation L_1L_2 is defined as
 - L_1L_2 = { xy | x ∈ L_1 and y ∈ L_2 }

- Union is defined as
 - L_1 ∪ L_2 = { x | x ∈ L_1 or x ∈ L_2 }

- Kleene closure is defined as
 - L^* = { x | x = ε or x ∈ L or x ∈ LL or x ∈ LLL or ... }

Regular Expressions Denote Languages

- By applying operations on constants
 - Generates a set of strings (i.e., a language)
 - Examples
 - a → ("a")
 - ab → ("a") ∪ ("b") = ("a", "b")
 - a* → (ε) ∪ ("a") ∪ ("aa") ∪ ... = {ε, "a", "aa", ... }
 - If s ∈ language generated by a RE r, we say that r accepts, describes, or recognizes string s
Precedence

Order in which operators are applied

- In arithmetic
 - Multiplication \times > addition $+$
 - $2 \times 3 + 4 = (2 \times 3) + 4 = 10$

- In regular expressions
 - Kleene closure * > concatenation $>$ union $|$
 - $ab|c = (a b) | c = \{ab", "c\}$
 - $ab^* = a (b^*) = \{a", "ab", "abb"…\}$
 - $a|b^* = a | (b^*) = \{a", "b", "bb", "bbb"…\}$

- Can change order using parentheses $()$
 - E.g., $a(b|c), (ab)^*, (ab)^*$

Regular Languages

- The languages that can be described using regular expressions are the regular languages or regular sets

- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - reads the same backward or forward
 - $\{a^n b^n | n > 0 \}$ (a^n = sequence of n a’s)

- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools

Ruby Regular Expressions

- Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition
 - /Ruby/ – concatenation of single-character REs
 - /(Ruby|Regular)/ – union
 - /(Ruby)^*/ – Kleene closure
 - /(Ruby)+/ – same as (Ruby)(Ruby)*
 - /(Ruby)?/ – same as (\e)((Ruby)) (\e is \e)
 - /[a-z]/ – same as (a|b|c|…|z)
 - /[^[0-9]//] – same as (a|b|c|…|z) for a,b,c,… $\in \Sigma - \{0..9\}$
 - $^$, $\$ – correspond to extra characters in alphabet

Implementing Regular Expressions

- We can implement a regular expression by turning it into a finite automaton
 - A “machine” for recognizing a regular language

"String"
"String" "String"
"String" "String"
Yes No
Finite Automata

- Machine starts in start or initial state
- Repeat until the end of the string is reached
 - Scan the next symbol s of the string
 - Take transition edge labeled with s
- String is accepted if automaton is in final state when end of string reached

Finite Automata: States

- Start state
 - State with incoming transition from no other state
 - Can have only 1 start state

- Final states
 - States with double circle
 - Can have 0 or more final states
 - Any state, including the start state, can be final

Finite Automaton: Example 1

Finite Automaton: Example 2

Strings:

- 0 0 1 0 1 1 accepted
- 0 0 1 0 1 0 not accepted
What Language is This?

- All strings over \{0, 1\} that end in 1
- What is a regular expression for this language? \((0|1)^*1\)

Finite Automaton: Example 3

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S2</td>
<td>Y</td>
</tr>
<tr>
<td>acc</td>
<td>S2</td>
<td>Y</td>
</tr>
<tr>
<td>bbc</td>
<td>S2</td>
<td>Y</td>
</tr>
<tr>
<td>aabbb</td>
<td>S1</td>
<td>Y</td>
</tr>
<tr>
<td>aa</td>
<td>S0</td>
<td>Y</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>S0</td>
<td>Y</td>
</tr>
<tr>
<td>acba</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>

Finite Automaton: Example 3 (cont.)

S3 is a dead state – a nonfinal state with no transition to another state

Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

- Language?
 - Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit
Finite Automaton: Example 4

\[a^*b^*c^* \]

again, so DFAs are not unique

Finite Automaton: Example 5

Description for each state

• \(S_0 = \) “Haven’t seen anything yet” OR “seen zero or more b’s” OR “Last symbol seen was a b”

• \(S_1 = \) “Last symbol seen was an a”

• \(S_2 = \) “Last two symbols seen were ab”

• \(S_3 = \) “Last three symbols seen were abb”

Language?

• \((a|b)^*abb\)

The Questions (for next time)

- Are FAs equivalent to regular expressions?
 - Every FA can be translated into an RE
 - Every RE can be translated into an FA
 - Yes!

- How can we generate an FA for a given RE?
 - If we can do this, we can implement RE matching

- How can we optimize an FA?
 - Many FAs can implement the same language
 - Some might be more efficient than others

Practice

Give the English descriptions and the DFA or regular expression of the following languages:

- \(((0|1)(0|1)(0|1)(0|1)(0|1))^*\)
 - All strings with length a multiple of 5

- \((01)^*(10)^*(01)^*0(10)^*1\)
 - All alternating binary strings

All binary strings containing the substring “11”
Practice

- Give the regular expressions and finite automata for the following languages
 - You and your neighbors’ names
 - All protein-coding DNA strings (including only ATCG and appearing in multiples of 3)
 - All binary strings containing an even length substring of all 1’s
 - All binary strings containing exactly two 1’s
 - All binary strings that start and end with the same number

Review

- Languages
 - Sets of strings
 - Operations on languages
- Regular expressions
 - Constants
 - Operators
 - Precedence
- Finite automata
 - States
 - Transitions
 - Accept strings