
CMSC 330 Practice Problem 4 Solutions

1. Context Free Grammars
a. List the 4 components of a context free grammar.

Terminals, non-terminals, productions, start symbol
b. Describe the relationship between terminals, non-terminals, and productions.

Productions are rules for replacing a single non-terminal with a string of
terminals and non-terminals

c. Define ambiguity.
Multiple left-most (or right-most) derivations for the same string

d. Describe the difference between scanning & parsing.
Scanning matches input to regular expressions to produce terminals,
parsing matches terminals to grammars to create parse trees

e. Describe an abstract syntax tree (AST)
Compact representations of parse trees with only essential parts

2. Describing Grammars

a. Describe the language accepted by the following grammar:
S → abS | a
(ab)*a

b. Describe the language accepted by the following grammar:
S → aSb | ε
anbn, n ≥ 0

c. Describe the language accepted by the following grammar:
S → bSb | A A → aA | ε
bna*bn, n ≥ 0

d. Describe the language accepted by the following grammar:
S → AS | B A → aAc | Aa | ε B→ bBb | ε
Strings of a & c with same or fewer c’s than a’s and no prefix has more
c’s than a’s, followed by an even number of b’s

e. Describe the language accepted by the following grammar:
S → S and S | S or S | (S) | true | false
Boolean expressions of true & false separated by and & or, with some
expressions enclosed in parentheses

f. Which of the previous grammars are left recursive?
2d, 2e

g. Which of the previous grammars are right recursive?
2a, 2c, 2d, 2e

h. Which of the previous grammars are ambiguous? Provide proof.
Examples of multiple left-most derivations for the same string
2d: S => AS => AaS => aS => aB => a

S => AS => S => AS => AaS => aS => aB => a
2e: S => S and S => S and S and S => true and S and S

=> true and true and S => true and true and true
 S => S and S => true and S => true and S and S

=> true and true and S => true and true and true

3. Creating Grammars
a. Write a grammar for axby, where x = y

S → aSb | ε
b. Write a grammar for axby, where x > y

S → aL L → aL | aLb | ε
c. Write a grammar for axby, where x = 2y

S → aaSb | ε
d. Write a grammar for axbyaz, where z = x+y

S → aSa | L L → bLa | ε
e. Write a grammar for axbyaz, where z = x-y

S → aSa | L L → aLb | ε
f. Write a grammar for all strings of a and b that are palindromes.

S → aSa | bSb | L L → a | b | ε
g. Write a grammar for all strings of a and b that include the substring baa.

S → LbaaL L → aL | bL | ε // L = any
h. Write a grammar for all strings of a and b with an odd number of a’s and an odd

number of b’s.
S → EaEbE | EbEaE E → EaEaE | EbEbE | ε | SS // E = even #s

i. Write a grammar for the “if” statement in OCaml
S → if E then E else E | if E then E E → S | expr

j. Write a grammar for all lists in OCaml
S → [] | [E] | E::S E → elem | S // Ignores types, allows lists of lists

k. Which of your grammars are ambiguous? Can you come up with an
unambiguous grammar that accepts the same language?

Grammar for 3h is ambiguous. An unambiguous grammar must exist
since the language can be recognized by a deterministic finite automaton,
and DFA -> RE -> Regular Grammar.
Grammar for 3i is ambiguous. Multiple derivations for “if expr then if
expr then expr else expr”. It is possible to write an unambiguous
grammar by restricting some S so that no unbalanced if statement can be
produced.

4. Derivations, Parse Trees, Precedence and Associativity

For the following grammar: S → S and S | true
a. List 4 derivations for the string “true and true and true”.

i. S => S and S => S and S and S => true and S and S => true and true
and S => true and true and true

ii. S => S and S => true and S => true and S and S => true and true and
S => true and true and true

iii. S => S and S => S and true => S and S and true => S and true and
true => true and true and true

iv. S => S and S => S and S and S => S and S and true => S and true and
true => true and true and true

v. S => S and S => S and S and S => true and S and S => true and S and
true => true and true and true

vi. S => S and S => S and S and S => S and true and S => true and true
and S => true and true and true

vii. S => S and S => S and S and S => S and true and S => S and true and
true => true and true and true

viii. S => S and S => S and S and S => S and S and true => true and S and
true => true and true and true

ix. S => S and S => S and S and S => S and S and true => S and true and
true => true and true and true

x. S => S and S => true and S => true and S and S => true and S and
true => true and true and true

xi. S => S and S => S and true => S and S and true => true and S and
true => true and true and true

xii. S => S and S => S and S and S => true and S and S => true and true
and S => true and true and true

xiii. S => S and S => S and S and S => true and S and S => true and S and
true => true and true and true

xiv. S => S and S => S and S and S =>S and true and S => true and true
and S => true and true and true

xv. S => S and S => S and S and S => S and true and S => S and true and
true => true and true and true

xvi. S => S and S => S and S and S => S and S and true => true and S and
true => true and true and true

b. Label each derivation as left-most, right-most, or neither.
i and ii are left-most derivations, iii and iv are right-most derivations,
remaining derivations are neither

c. List the parse tree for each derivation
Tree 1 = ii, iii, x, xi, Tree 2 = rest

S

S Sand

true

true true

andS S

S

SS and

true

true true

andS S

Tree 1 Tree 2
S

S Sand

true

true true

andS S

S

SS and

true

true true

andS S

Tree 1 Tree 2

d. What is implied about the associativity of “and” for each parse tree?

Tree 1 => and is right-associative, Tree 2 => and is left-associative

For the following grammar: S → S and S | S or S | true
e. List all parse trees for the string “true and true or true”

S

S Sand

true

true true

orS S

S

SS or

true

true true

andS S

Tree 1 Tree 2
S

S Sand

true

true true

orS S

S

SS or

true

true true

andS S

Tree 1 Tree 2

f. What is implied about the precedence/associativity of “and” and “or” for each

parse tree?
Tree 1 => or has higher precedence than and
Tree 2 => and has higher precedence than or

g. Rewrite the grammar so that “and” has higher precedence than “or” and is right
associative

S → S or S | L // op closer to Start = lower precedence op
L → true and L | true // right recursive = right associative

5. Left factoring
Rewrite the following grammars so they can be parsed by a predicative parser by
applying left factoring where necessary
a. S → a b c | a c
 ↓
 S → a L
 L→ b c | c
b. S → a a | a b | a
 ↓
 S → a L
 L→ a | b | ε
c. S → a b A c | a b B a

 ↓
 S → a b L
 L→ A c | B a

d. S → a a A | a a a B | a c
 ↓
 S → a L
 L→ a A | a a B | c
 ↓
 S → a L
 L→ a M | c
 M → A | a B

6. Parsing
 For the problem, assume the term “predictive parser” refers to a top-down,
 recursive descent, non-backtracking predictive parser.

a. Consider the following grammar: S → S and S | S or S | (S) | true | false
i. Compute First sets for each production and nonterminal

First(true) = { “true” }
First(false) = { “false” }
First((S)) = { “(“ }
First(S and S) = First(S or S) = First(S) = { “(“, “true”, “false” }

ii. Explain why the grammar cannot be parsed by a predictive parser
First sets of productions intersect, grammar is left recursive

b. Consider the following grammar: S → abS | acS | c
i. Compute First sets for each production and nonterminal

First(abS) = { a }
First(acS) = { a }
First(c) = { c }
First(S) = { a, c }

ii. Show why the grammar cannot be parsed by a predictive parser.
First sets of productions overlap
First(abS) ∩ First(acS) = { a } ∩ { a } = { a } ≠ �

iii. Rewrite the grammar so it can be parsed by a predictive parser.
S → aL | c L → bS | cS

iv. Write a predictive parser for the rewritten grammar.
parse_S() {
 if (lookahead == “a”) {
 match(“a”); // S → aL
 parse_L();
 }
 else if (lookahead == “c”)
 match(“c”); // S → c
 }
 else error();
}
parse_L() {
 if (lookahead == “b”) {
 match(“b”); // L → bS
 parse_S();
 }
 else if (lookahead == “c”) {
 match(“c”); // L → cS
 parse_S();
 }
 else error();
}

c. Consider the following grammar: S → Sa | Sc | c
i. Show why the grammar cannot be parsed by a predictive parser.

First sets of productions intersect, grammar is left recursive
ii. Rewrite the grammar so it can be parsed by a predictive parser.

S → c L L → aL | cL | ε
iii. Write a recursive descent parser for your new grammar

parse_S() {
 if (lookahead == “c”) {
 match(“c”); // S → cL
 parse_L();
 }
 else error();
}
parse_L() {
 if (lookahead == “a”) {
 match(“a”); // L → aL
 parse_L();
 }
 else if (lookahead == “c”) {
 match(“c”); // L → cL
 parse_L();
 }
 else ; // L →ε
}

