CMSC330 Spring 2010 Midterm #2 Solutions

1. (16 pts) OCaml Types and Type Inference

 Give the type of the following OCaml expression

a. (2 pts) [[1 ; 2]] Type = int list list
 b. (3 pts) fun x -> 2::x Type = (int list) -> (int list)

 Write an OCaml expression with the following type

c. (2 pts) int list -> int Code = fun (x::_) -> x+2
 d. (4 pts) (int -> bool) -> int Code = fun x -> if (x 1) then 2 else 3

 Give the value of the following OCaml expression. If an error exists, describe it

e. (2 pts) if (1 < 2) then 3 Value = error since 3 must be of type (_)
f. (3 pts) let f x = f 2 in 1 Value = error since f is undefined

2. (14 pts) Higher order & anonymous functions

 A prefix sum is an operation on lists in which the nth element in the result list is obtained from the sum of the first n elements in the operand list. Using the following code for fold and an anonymous function, write a function prefixSum which given a list of ints, returns the prefix sum for the list.

 You are not allowed to use any helper functions or OCaml library functions, with the exception of List.rev (which reverses a list).

 Partial credit given for solutions which do not use fold.

 Example: prefixSum [] = []
 prefixSum [1;1;1;1] = [1;2;3;4;5]
 prefixSum [1;2;3;4] = [1;3;6;10]

 let rec fold f a lst = match lst with

 let prefixSum lst = List.rev (fold

 (fun a y -> match a with

 [] lst) ;;

 a b c d

 a a+b a+b a+b
 a+b c+c+d

 a a+b a+b a+b
 a+b +c+c+d
3. (16 pts) OCaml polymorphic datatypes

Consider the OCaml type tree implementing a binary tree of ints:

```ocaml
type tree = Empty | Node of int * tree * tree;;
```

a. (4 pts) Write an OCaml expression creating the data structure for a binary tree where the root node has value 5 and has one child node with value 7.

\[\text{Node (5, Empty, Node (7, Empty, Empty)) OR Node (5, Node (7, Empty, Empty), Empty)} \]

b. (5 pts) Implement a function `count5` that takes a tree and returns the number of nodes with the value 5. You may use helper functions (though they are not needed).

```ocaml
let rec count5 = function
  | Empty -> 0 // 0 if empty
  | Node (n, lt, rt) ->
    (if (n=5) then 1 else 0) + (count5 lt) + (count5 rt) // recurse on subtrees

```

c. (7 pts) Implement a function `prune5` that takes a tree and returns a tree where all nodes with the value 5 (and their subtrees) are removed. You may use helper functions (though they are not needed).

```ocaml
let rec prune5 = function
  | Empty -> Empty // no change if empty
  | Node (n, lt, rt) ->
    if (n=5) then Empty // if 5 then prune
    else (Node (n, prune5 lt, prune5 rt)) // recurse on subtrees
```

4. (16 pts) Context free grammars

Consider the following grammar: \(S \rightarrow S \ x \ T \ | \ T \rightarrow a \ | \ b \)

a. (3 pts) Describe the set of strings generated by the grammar \(((a|b)x)^n(a|b) \ OR \ (a|b)(x(a|b))^n \)

b. (3 pts) Provide a left-most derivation for the string “axbxb”.

\[S \Rightarrow SxT \Rightarrow SxTxT \Rightarrow TxTxT \Rightarrow axTxT \Rightarrow axbTxT \Rightarrow axbxb \]

c. (2 pts) Provide a parse tree for the string “axbxb”.

See right
d. (2 pts) What is the associativity of the x operator for the grammar?

Left associative

e. (6 pts) Apply the algorithm discussed in class to transform the grammar so that it can be parsed using a recursive descent parser.

\[
\begin{align*}
S & \to TL \\
L & \to xTL | \varepsilon \\
T & \to a | b
\end{align*}
\]

5. (22 pts) Parsing

Consider the following grammar

\[
\begin{align*}
S & \to Abc | dS | \varepsilon \quad (* \text{epsilon} *) \\
A & \to aSA | f
\end{align*}
\]

a. (8 pts) Compute First sets for S and A

First(S) = \{ a, d, f, \varepsilon \}

First(A) = \{ a, f \}

b. (14 pts) Using pseudocode, write a recursive descent parser for the grammar. Use the following utilities:

<table>
<thead>
<tr>
<th>lookahead</th>
<th>Variable holding next terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lookahead == "$" when at end of input</td>
</tr>
<tr>
<td>match(x)</td>
<td>Function to match next terminal to x</td>
</tr>
<tr>
<td>error()</td>
<td>Reports parse error for input</td>
</tr>
</tbody>
</table>

parse_S() {
 if (lookahead == "a") || (lookahead == "f") { // S → Abc
 parse_A(); match("b"); match("c");
 }
 else if (lookahead == "d") { // S → dS
 match("d"); parse_S();
 }
 else
 ; // S → \varepsilon
}

parse_A() {
 if (lookahead == "a") { // A → aSA
 match("a"); parse_S(); parse_A();
 }
 else if (lookahead == "f") { // A → f
 match("f");
 }
 else
 error();
}
6. (16 pts) Operational semantics

a. (4 pts) Consider the following operational semantics judgement. State in English what this statement is expressing:

\[\cdot, x:1 ; (+ x 2) \rightarrow 3 \]

The expression \((+ x 2)\) evaluates to the value 3 in the environment resulting from the empty environment adding the binding \(x=1\).

b. (12 pts) In an empty environment, to what value \(v\) will the expression

\((\text{fun } z = z) (+ 1 2)\)

evaluate to? In other words, find a \(v\) such that you can prove the following:

\[\cdot ; (\text{fun } z = z) (+ 1 2) \rightarrow v \]

Use the operational semantics rules given in class. Show the complete proof that stacks uses of these rules.

\[\cdot ; 1 \rightarrow 1 \quad \cdot ; 2 \rightarrow 2 \]

\[\cdot ; (\text{fun } z = z) \rightarrow (\cdot , \lambda z . z) \quad \cdot ; (+ 1 2) \rightarrow 3 \quad (z:3 ; z) \rightarrow 3 \]

\[\cdot ; (\text{fun } z = z) (+ 1 2) \rightarrow 3 \]