CMSC424: Storage and Indexes

Instructor: Amol Deshpande
amol@cs.umd.edu
Today’s Class

- Storage and Query Processing
 - Indexes

- Other things
 - Project 4: release later today
 - Will focus on implementing B+-Tree and Query Processing algorithms
 - In Python
 - Rest of the assignments will also be python-based
Query Processing/Storage

- Given a input user query, decide how to “execute” it
- Specify sequence of pages to be brought in memory
- Operate upon the tuples to produce results

- Bringing pages from disk to memory
- Managing the limited memory

- Storage hierarchy
- How are relations mapped to files?
- How are tuples mapped to disk blocks?
Index

- A data structure for efficient search through large databases
- Two key ideas:
 - The records are mapped to the disk blocks in specific ways
 - Sorted, or hash-based
 - Auxiliary data structures are maintained that allow quick search
- Think library index/catalogue
- Search key:
 - Attribute or set of attributes used to look up records
 - E.g. SSN for a persons table
- Two types of indexes
 - Ordered indexes
 - Hash-based indexes
Ordered Indexes

- **Primary index**
 - The relation is sorted on the search key of the index
- **Secondary index**
 - It is not
- Can have only one primary index on a relation
Primary **Sparse** Index

- Every key doesn’t have to appear in the index
- Allows for very small indexes
 - Better chance of fitting in memory
 - Tradeoff: Must access the relation file even if the record is not present

Figure 11.3: Sparse index.
Secondary Index

- Relation sorted on *id*
- But we want an index on *salary*
- Must be dense
 - Every search key must appear in the index
Multi-level Indexes

- What if the index itself is too big for memory?
- Relation size = $n = 1,000,000,000$
- Block size = 100 tuples per block
- So, number of pages = 10,000,000
- Keeping one entry per page takes too much space
- Solution
 - Build an index on the index itself
Multi-level Indexes

- How do you search through a multi-level index?

- What about keeping the index up-to-date?
 - Tuple insertions and deletions
 - This is a static structure
 - Need overflow pages to deal with insertions
 - Works well if no inserts/deletes
 - Not so good when inserts and deletes are common
Outline

- Storage hierarchy
- Disks
- RAID
- Buffer Manager
- File Organization
- Indexes
- B+-Tree Indexes
- Etc..
Example B+-Tree Index

Figure 11.9 B+-tree for instructor file \((n = 4)\).
B⁺-Tree Node Structure

- Typical node

| P_1 | K_1 | P_2 | ... | P_{n-1} | K_{n-1} | P_n |

- K_i are the search-key values
- P_i are pointers to children (for non-leaf nodes) or pointers to records or buckets of records (for leaf nodes).

- The search-keys in a node are ordered

$$K_1 < K_2 < K_3 < \ldots < K_{n-1}$$
Properties of B+-Trees

- It is **balanced**
 - Every path from the root to a leaf is same length

- **Leaf** nodes (at the bottom)
 - P_1 contains the pointers to tuple(s) with key K_1
 - …
 - P_n is a pointer to the *next* leaf node
 - Must contain at least $n/2$ entries
Properties

- **Interior nodes**

| P_1 | K_1 | P_2 | ... | P_{n-1} | K_{n-1} | P_n |

- All tuples in the subtree pointed to by P_1, have search key $< K_1$
- To find a tuple with key $K_1' < K_1$, follow P_1
- ...
- Finally, search keys in the tuples contained in the subtree pointed to by P_n, are all larger than K_{n-1}
- Must contain at least $n/2$ entries (unless root)
B+-Trees - Searching

- How to search?
 - Follow the pointers

- Logarithmic
 - $\log_{B/2}(N)$, where $B =$ *Number of entries per block*
 - B is also called the order of the B+-Tree Index
 - Typically 100 or so

- If a relation contains $1,000,000,000$ entries, takes only 4 random accesses

- The top levels are typically in memory
 - So only requires 1 or 2 random accesses per request
Tuple Insertion

- Find the leaf node where the search key should go
- If already present
 - Insert record in the file. Update the bucket if necessary
 - This would be needed for secondary indexes
- If not present
 - Insert the record in the file
 - Adjust the index
 - Add a new \((K_i, P_i)\) pair to the leaf node
 - Recall the keys in the nodes are sorted
 - What if there is no space?
Tuple Insertion

- Splitting a node
 - Node has too many key-pointer pairs
 - Needs to store \(n \), only has space for \(n-1 \)
 - Split the node into two nodes
 - Put about half in each
 - Recursively go up the tree
 - May result in splitting all the way to the root
 - In fact, may end up adding a level to the tree
 - Pseudocode in the book !!
B^{+}-Trees: Insertion

B^{+}-Tree before and after insertion of “Adams”
Updates on B⁺-Trees: Deletion

- Find the record, delete it.
- Remove the corresponding (search-key, pointer) pair from a leaf node
 - Note that there might be another tuple with the same search-key
 - In that case, this is not needed
- Issue:
 - The leaf node now may contain too few entries
 - Why do we care?
 - Solution:
 1. See if you can borrow some entries from a sibling
 2. If all the siblings are also just barely full, then *merge (opposite of split)*
- May end up merging all the way to the root
- In fact, may reduce the height of the tree by one
structure. In our example, the new node has the tree shown in Figure 11.13. The leaf node in which Figure 11.14 shows the result of inserting a record with search key. The root must be split. If the root itself is split, the entire tree becomes deeper.

The entry to be added to its parent. In the worst case, all nodes along the path to the entry. If there were no room, the parent would have had to be split, requiring an entry with no further node split, because there was room in the parent node for the new insertion.

Using the algorithm for lookup, we find that Adams. We then need to insert an entry for Adams. Since, in our example, the underfull node with search-key values becomes underfull would still have some values as well as pointers.)

In this case, we look at a sibling node; in our example, the only sibling is a sar e r e s u l t h e l e a f n o d e h a s a n d a s r e s u l t h e l e a f n o d e h a s.

Before and after deleting “Srinivasan”
Another B+Tree Insertion Example

INITIAL TREE

Next slides show the insertion of (125) into this tree
According to the Algorithm in Figure 12.13, Page 495
Another Example: INSERT (125)

Step 1: Split L to create L’

Insert the lowest value in L’ (130) upward into the parent P
Another Example: INSERT (125)

Step 2: Insert (130) into P by creating a temp node T
Another Example: INSERT (125)

Step 3: Create P’; distribute from T into P and P’

New P has only 1 key, but two pointers so it is OKAY. This follows the last 4 lines of Figure 12.13 (note that “n” = 4) K” = 130. Insert upward into the root
Another Example: INSERT (125)

Step 4: Insert (130) into the parent (R); create R’

Once again following the insert_in_parent() procedure, $K'' = 1000$
Another Example: INSERT (125)

Step 5: Create a new root
B+ Trees in Practice

- Typical order: 100. Typical fill-factor: 67%.
 - average fanout = 133
- Typical capacities:
 - Height 3: $133^3 = 2,352,637$ entries
 - Height 4: $133^4 = 312,900,700$ entries
- Can often hold top levels in buffer pool:
 - Level 1 = 1 page = 8 Kbytes
 - Level 2 = 133 pages = 1 Mbyte
 - Level 3 = 17,689 pages = 133 MBytes
B+ Trees: Summary

- Searching:
 - $\log_d(n)$ – Where d is the order, and n is the number of entries

- Insertion:
 - Find the leaf to insert into
 - If full, split the node, and adjust index accordingly
 - Similar cost as searching

- Deletion
 - Find the leaf node
 - Delete
 - May not remain half-full; must adjust the index accordingly
More…

- Primary vs Secondary Indexes
- More B+-Trees
- Hash-based Indexes
 - Static Hashing
 - Extendible Hashing
 - Linear Hashing
- Grid-files
- R-Trees
- etc…
Secondary Index

- If relation not sorted by search key, called a *secondary index*
 - Not all tuples with the same search key will be together
 - Searching is more expensive
B+-Tree File Organization

- Store the records at the leaves
- Sorted order etc..
B-Tree

- Predates
- Different treatment of search keys
- Less storage
- Significantly harder to implement
- Not used.
Hash-based File Organization

<table>
<thead>
<tr>
<th>Block 0</th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
</tr>
</thead>
</table>
| (1000, “A”,…)
(200, “B”,…)
(4044, “C”,…)
(401, “Ax”,…)
(21, “Bx”,…)
(1002, “Ay”,…)
(10, “By”,…)
(1003, “Az”,…)
(35, “Bz”,…)| | | |

Store record with search key k in block number $h(k)$

e.g. for a person file,
$h(SSN) = SSN \ % 4$

Blocks called “buckets”

What if the block becomes full?
Overflow pages

Uniformity property:
Don’t want all tuples to map to the same bucket
$h(SSN) = SSN \ % 2$ would be bad
Hash-based File Organization

Hashed on “branch-name”

Hash function:

\[a = 1, \ b = 2, \ldots, \ z = 26 \]

\[h(abz) = (1 + 2 + 26) \ % \ 10 \]

= 9
Hash Indexes

Extends the basic idea

Search:
Find the block with search key
Follow the pointer

Range search ?
a < X < b ?
Hash Indexes

- Very fast search on equality
- Can’t search for “ranges” at all
 - Must scan the file
- Inserts/Deletes
 - Overflow pages can degrade the performance
- Two approaches
 - Dynamic hashing
 - Extendible hashing
Grid Files

Multidimensional index structure
Can handle: \(X = x_1 \) and \(Y = y_1 \)
\[a < X < b \text{ and } c < Y < d \]

Stores pointers to tuples with:
branch-name between Mianus and Perryridge
and balance < 1k
R-Trees

For spatial data (e.g. maps, rectangles, GPS data etc)
Conclusions

- Indexing Goal: “Quickly find the tuples that match certain conditions”
- Equality and range queries most common
 - Hence B+-Trees the predominant structure for on-disk representation
 - Hashing is used more commonly for in-memory operations
- Many many more types of indexing structures exist
 - For different types of data
 - For different types of queries
 - E.g. “nearest-neighbor” queries