NFA → DFA Practice
Analyzing the reduction (cont’d)

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with \(n \) states, DFA may have \(2^n \) states
 - Since a set with \(n \) items may have \(2^n \) subsets
 - Corollary
 - Reducing a NFA with \(n \) states may be \(O(2^n) \)
Minimizing DFA: Hopcroft Reduction

- **Intuition**
 - Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

- **Algorithm**
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions & remove dead states

J. Hopcroft, “An $n \log n$ algorithm for minimizing states in a finite automaton,” 1971
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

- **DFA**

- **Initial partitions**
 - Accept \(\{ R \} \) = P1
 - Reject \(\{ S, T \} \) = P2

- **Split partition? \(\rightarrow \) Not required, minimization done**
 - move(S,a) = T \(\in \) P2 \quad \text{← move(S,b) = R \(\in \) P1}
 - move(T,a) = T \(\in \) P2 \quad \text{← move(T,b) = R \(\in \) P1}
Minimizing DFA: Example 3
Minimizing DFA: Example 3

- DFA

- Initial partitions
 - Accept \(\{ R \} = P_1 \)
 - Reject \(\{ S, T \} = P_2 \)

- Split partition? \(\rightarrow \) Yes, different partitions for B
 - \(\text{move}(S,a) = T \in P_2 \) \(- \text{move}(S,b) = T \in P_2 \)
 - \(\text{move}(T,a) = T \in P_2 \) \(- \text{move}(T,b) = R \in P_1 \)

DFA already minimal
Minimizing DFA: Example 3
Minimizing DFA: Example 3
Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a, b\}$

![DFA Diagram]
Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
DFA to RE example

Language over $\Sigma = \{0, 1\}$ such that every string is a multiple of 3 in binary
DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

\[(0 + 1(0 1^* 0)1)^*\]
Run Time of DFA

- How long for DFA to decide to accept/reject string \(s \)?
 - Assume we can compute \(\delta(q, c) \) in constant time
 - Then time to process \(s \) is \(O(|s|) \)
 - Can’t get much faster!

- Constructing DFA for RE \(A \) may take \(O(2^{|A|}) \) time
 - But usually not the case in practice

- So there’s the initial overhead
 - But then processing strings is fast
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - ε-closure & subset algorithm

- DFA
 - Minimization, complement
 - Implementation