Asymmetric Encryption

With material from Jonathan Katz, David Brumley, and Dave Levin
• Warmup activity
• Overview of asymmetric-key crypto
• Intuition for El Gamal and RSA
 • And intuition for attacks
• Digital signatures / authenticity
Public-Key Crypto
• Recall our three goals:
 • Confidentiality
 • Integrity
 • Authenticity
Recall: Drawbacks of symmetric crypto

- How to securely exchange keys?
- Hard to scale
- Limited authenticity / non-repudiation

We will use asymmetric crypto to mitigate these drawbacks!
High-level idea

• Generate a pair of keys
 • One for encryption, one for decryption

• Make encryption key public!
 • On your website, in the New York Times
 • Anyone can send you a private message

• Secret key is the *trapdoor*
Warmup Activity
Public key example map
Message = 66
Private key map

Minimum dominating set = NP hard
Message = 66
Your turn! Public map
private map
Notes on this example

• Finding the (a) private map is very hard
 • Minimum dominating set (NP)
 • For a sufficiently large map

• But, can solve as a system of linear equations

• So, this is **not secure**
 • But it is kind of a fun illustration
Asymmetric crypto

• $k_e \neq k_d$
• $k_d =$ **private** key, $k_e =$ **public** key
 • Bob computes both, gives public key to Alice
• Alice sends a message to Bob: $c = E(m, k_e)$
• Bob can decrypt it: $m = D(m, k_d)$
• Anyone can send, only **Bob** can read!
Asymm. Cryptosystem: Definition

- Three polynomial-time algorithms:
 - KeyGen: Returns k_p (public) and k_s (secret)
 - $E(k_p, m)$: Encrypts m with k_p, returns c in C
 - Must be randomized (why?)
 - $D(k_s, c)$: Decrypts c with k_s, returns m in M
 - Or error

- Correctness condition:
 - For all pairs (k_p, k_s): $D(k_s, E(k_p, m)) = m$
Pros and Cons

- Scales well — everyone makes one key pair
 - Not \(n \) keys
- No direct setup comms between Alice and Bob
- Asymmetric is \textit{much, much slower}
- Asymmetric is easier to attack
 - Requires stronger assumptions
The authenticity problem

• In symmetric, we needed an authentic, private channel to exchange keys
 • Diffie-Hellman let us relax to authentic only
 • Public-key also requires authentic channel

• Who posted that ad in the NY Times?
 • Much more on this later
In practice: Hybrid

- Bob generates key pair and publishes k_p
- Alice generates new symmetric key k_{AB}
- Alice -> Bob: $c_1 = E(k_p, (Alice || k_{AB}))$
- Alice -> Bob: $c_2 = E(k_{AB}, \text{message})$
- Arbitrary-length messages, efficiently
 - Keep k_{AB} as a session key
Intuition for algorithms
El Gamal (simplified)

- Similar to Diffie-Hellman
 - Public key: prime p, generator g, $h = g^x$
 - Private key: x

- Encryption: Sender chooses y
 - $c_1 = g^y$, $c_2 = m^y h^y$

- Decryption: $m = c_2 / c_1^x$

- Security equivalent to D-H hardness
A teeny bit of number theory

• $N = pq$, where p and q are distinct primes

• $\phi(N) = (p-1)(q-1)$
 • Easy to compute if you know p and q; hard if not

• $a^b \mod N = a^{b \mod \phi(N)} \mod N$
 • Take my word or take 456

• \mathbb{Z}_M^*: integers relatively prime to M
 • Have no common denominators except 1
Building to RSA (simplified)

- Choose \(e \) relatively prime to \(\phi(N) \)
 - You can do do mod arithmetic
- Choose \(d \) s.t. \(e \cdot d \mod \phi(N) = 1 \)
 - Easy if you know \(\phi(N) \); else hard
 - By extension, easy if you know \(p \) and \(q \)
- Public key = \((e, N) \); Private key = \(d \)
Textbook RSA

- Encrypt: \(c = m^e \mod N \)
- Decrypt: \(m = c^d \mod N \)
- Why does this work? \(m^{ed} = m^1 = m \)
Textbook RSA: NOT Secure

- Deterministic
-Leaks info about plaintext
 - In practice: Preprocess message before applying RSA permutation
 - Randomized padding, hash permutations
PKCS #1 v1.5

• You need 1024 total bits

• Pad message: $c = (r || m)^e \mod N$
 • r is (mostly) a random number

• Check padding on decryption to detect error
Is RSA hard?

• Easy to compute m when we know d (of course)
 • But what about if we don’t?

• Challenge: Compute x given $c = m^e \mod N$
 • Easiest known way: Factor N into p and q
 • Believed (not proven) nothing easier
 • Factoring N is believed hard (but not proven)
How hard is hard?

- Best current algorithms to factor $N=pq$
 - p and q equal-length
 - runs in $\approx \exp(|N|^{1/3})$

- Currently $|N| \sim 1024$ for OK security
 - ~ 2048 to be sure
How hard is hard?

• World record: RSA-768 (232 digits)
 • Two years, hundreds of machines
 • Equivalent to 2000 single-core years!

• Factoring 1024-bit integer
 • About 1000 times harder
 • …. Possible this decade?
Implementation attacks

- Timing and power:
 - How long / how much to compute $c^d \bmod N$

- Bad randomness:
 - p and q can’t be predictably generated
 - If $N = pq$ and $N’ = pq’$, both are broken

- Bad padding / malleability
Malleability

- Given c (m unknown), can construct c' that will decrypt to a related message m'
- Recall CBC attack last time
CBC is not CCA-secure

Challenge:
Choose $b = x$ or y at uniform random

m_x and m_y
$|m_x| = |m_y| = 1$ blk
$c = E(k, m_b) = IV || c[0]$
$c' = (IV \ xor \ 1) || c[0]$
$m' = D(k, c') = m_b \ xor \ 1$

Decryption oracle

Uh oh.
Malleability

- Given c (m unknown), can construct c' that will decrypt to a related message m'
 - Recall CBC attack last time
 - CBC, CTR are malleable; auth. encr. is not!

- Basic El Gamal and basic RSA are malleable
 - CCA-safe variations exist
Bleichenbacher attack

- Insecure padding, malleability
 - Return error if padding not formatted correctly
- Allows gradual CCA attack based on error detection
 - Analogous to blind ROP attack?
In practice

• Need CCA security for real applications
• Symmetric: Use authenticated encryption
• Use approved pub key scheme
• Hybrid: Combine!
 • Secure if components are
Digital signatures
Signatures for integrity

• Sign with your private key

• Anyone can verify using public key
 • Assuming private key is secret, only you could have sent the message

• e.g., Sign software patches
 • Public key bundled with initial software
Signatures vs. MACs

<table>
<thead>
<tr>
<th>Manage one key</th>
<th>Manage n keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign once, verifiable by anyone</td>
<td>Sign separately per verifier</td>
</tr>
<tr>
<td>Public non-repudiation</td>
<td>Nope</td>
</tr>
</tbody>
</table>
Defining a signature scheme

• Keygen: outputs k_p and k_s
• $s = S(k_s, m)$
• $V(k_p, m, s)$ outputs true or false
• Correctness:
 • For all pairs (k_p, k_s): $V(k_p, m, S(k_s, m)) = true$
Signature security game

- No existential forgeries (analogous to MAC)

Security IFF \(\Pr[V(k_p, m', s') = 1] \) is very small!
Naive RSA signatures

- Public key \((e, N)\) and private key \((d, N)\)
 - Recall: \(e \cdot d \equiv 1 \pmod{\text{arithmetic}}\)
- \(s = m^d \pmod{N}\)
- Verify whether \(s^e \pmod{N} = m\)
- This is \textit{easily existentially forgeable}
 - Choose \(s\). Calculate \(m\).
RSA signatures (better)

• Send $s = H(m)^d \mod N$ along with m
 • Use a good cryptographic hash function H

• Recipient calculates digest $g = s^e \mod N$
 • Verify $g == H(m)$

• Why does this fix the problem?
 • You can choose s' and find the matching digest g'
 • BUT, preimage resistance means that you can’t pick a message m' s.t. $g == H(m')$

• Variants of this approach are believed secure
 • Assuming RSA is hard
 • Bonus: Handles long messages “for free”