
CMSC 330: Organization of
Programming Languages

Introduction to Ruby

1CMSC 330 Fall 2017

Clickers improve student engagement

2

Students say

3

I	have	my	clicker

A. True
B. False

4

Ruby

An object-oriented, imperative, dynamically
typed (scripting) language
• Created in 1993 by Yukihiro Matsumoto (Matz)
• “Ruby is designed to make programmers happy”
• Core of Ruby on Rails web programming framework

(a key to its popularity)
• Similar in flavor to many other scripting languages

Ø Much cleaner than perl
• Full object-orientation (even primitives are objects!)

6

Books on Ruby

• Earlier version of Thomas book available on web
Ø See course web page

7

Applications of Scripting Languages

Scripting languages have many uses
• Automating system administration
• Automating user tasks
• Quick-and-dirty development

Motivating application

Text processing

8

Output from Command-Line Tool
% wc *

271 674 5323 AST.c
100 392 3219 AST.h
117 1459 238788 AST.o
1874 5428 47461 AST_defs.c
1375 6307 53667 AST_defs.h
371 884 9483 AST_parent.c
810 2328 24589 AST_print.c
640 3070 33530 AST_types.h
285 846 7081 AST_utils.c
59 274 2154 AST_utils.h
50 400 28756 AST_utils.o
866 2757 25873 Makefile
270 725 5578 Makefile.am
866 2743 27320 Makefile.in
38 175 1154 alloca.c

2035 4516 47721 aloctypes.c
86 350 3286 aloctypes.h
104 1051 66848 aloctypes.o

...

9

Climate Data for IAD in August, 2005
==
1 2 3 4 5 6A 6B 7 8 9 10 11 12 13 14 15 16 17 18

AVG MX 2MIN
DY MAX MIN AVG DEP HDD CDD WTR SNW DPTH SPD SPD DIR MIN PSBL S-S WX SPD DR
==

1 87 66 77 1 0 12 0.00 0.0 0 2.5 9 200 M M 7 18 12 210
2 92 67 80 4 0 15 0.00 0.0 0 3.5 10 10 M M 3 18 17 320
3 93 69 81 5 0 16 0.00 0.0 0 4.1 13 360 M M 2 18 17 360
4 95 69 82 6 0 17 0.00 0.0 0 3.6 9 310 M M 3 18 12 290
5 94 73 84 8 0 19 0.00 0.0 0 5.9 18 10 M M 3 18 25 360
6 89 70 80 4 0 15 0.02 0.0 0 5.3 20 200 M M 6 138 23 210
7 89 69 79 3 0 14 0.00 0.0 0 3.6 14 200 M M 7 1 16 210
8 86 70 78 3 0 13 0.74 0.0 0 4.4 17 150 M M 10 18 23 150
9 76 70 73 -2 0 8 0.19 0.0 0 4.1 9 90 M M 9 18 13 90
10 87 71 79 4 0 14 0.00 0.0 0 2.3 8 260 M M 8 1 10 210
...

10

Raw Census 2000 Data for DC
u108_S,DC,000,01,0000001,572059,72264,572059,12.6,572059,572059,572059,0,0,

0,0,572059,175306,343213,2006,14762,383,21728,14661,572059,527044,15861
7,340061,1560,14605,291,1638,10272,45015,16689,3152,446,157,92,20090,43
89,572059,268827,3362,3048,3170,3241,3504,3286,3270,3475,3939,3647,3525
,3044,2928,2913,2769,2752,2933,2703,4056,5501,5217,4969,13555,24995,242
16,23726,20721,18802,16523,12318,4345,5810,3423,4690,7105,5739,3260,234
7,303232,3329,3057,2935,3429,3326,3456,3257,3754,3192,3523,3336,3276,29
89,2838,2824,2624,2807,2871,4941,6588,5625,5563,17177,27475,24377,22818
,21319,20851,19117,15260,5066,6708,4257,6117,10741,9427,6807,6175,57205
9,536373,370675,115963,55603,60360,57949,129440,122518,3754,3168,22448,
9967,4638,14110,16160,165698,61049,47694,13355,71578,60875,10703,33071,
35686,7573,28113,248590,108569,47694,60875,140021,115963,58050,21654,36
396,57913,10355,4065,6290,47558,25229,22329,24058,13355,10703,70088,657
37,37112,21742,12267,9475,9723,2573,2314,760,28625,8207,7469,738,19185,
18172,1013,1233,4351,3610,741,248590,199456,94221,46274,21443,24831,479
47,8705,3979,4726,39242,25175,14067,105235,82928,22307,49134,21742,1177
6,211,11565,9966,1650,86,1564,8316,54,8262,27392,25641,1751,248590,1159
63,4999,22466,26165,24062,16529,12409,7594,1739,132627,11670,32445,2322
5,21661,16234,12795,10563,4034,248590,115963,48738,28914,19259,10312,47
48,3992,132627,108569,19284,2713,1209,509,218,125

...

11

A Simple Example

Let’s start with a simple Ruby program

This is a ruby program
x = 37
y = x + 5
print(y)
print("\n")

ruby1.rb:

% ruby -w ruby1.rb
42
%

12

Language Basics

This is a ruby program
x = 37
y = x + 5
print(y)
print("\n")

comments begin with #, go to end of line

variables need not
be declared

line break separates
expressions
(can also use “;”
to be safe)

no special main()
function or
method

13

Run Ruby, Run
There are two basic ways to run a Ruby program

• ruby -w filename – execute script in filename
Ø tip: the -w will cause Ruby to print a bit more if something

bad happens
Ø Ruby filenames should end with ‘.rb’ extension

• irb – launch interactive Ruby shell
Ø Can type in Ruby programs one line at a time, and watch as

each line is executed
irb(main):001:0> 3+4
Þ7

Ø Can load Ruby programs via load command
• Form: load string
• String must be name of file containing Ruby program
• E.g.: load ‘foo.rb’

Ruby 1.9.3 is installed on Grace cluster (upgrading to 2.4)
14

Run Ruby, Run (cont.)

Suppose you want to run a Ruby script as if it
were an executable (e.g. “double-click”, or as a
command)
• Windows

Ø Must associate .rb file extension with ruby command
Ø If you installed Ruby using the Windows installer, this was

done automatically
Ø The Ruby web site has information on how to make this

association

16

Run Ruby, Run (cont.)

Suppose you want to run a Ruby script as if it
were an executable (cont.)
• *nix (Linux / Unix / etc.)

Ø The first line (“shebang”) tells the system where to find the
program to interpret this text file

Ø Must chmod u+x filename first, or chmod a+x filename so
everyone has exec permission

Ø Warning: Not very portable: Depends on location of Ruby
interpreter

• /usr/local/bin/ruby vs. /usr/bin/ruby vs. /opt/local/bin/ruby
etc.

#!/usr/local/bin/ruby -w
print("Hello, world!\n")

17

Some Ruby Language Features
Implicit declarations
• Java, C have explicit declarations

Dynamic typing
• Java, C have (mostly) static typing

Everything is an object
• No distinction between objects and primitive data
• Even “null” is an object (called nil in Ruby), as are classes

No outside access to private object state
• Must use getters, setters

No method overloading
Class-based and Mixin inheritance

19

Implicit vs. Explicit Declarations

In Ruby, variables are implicitly declared
• First use of a variable declares it and determines type

x = 37; // no declaration needed – created when assigned to
y = x + 5

• x, y now exist, are integers

Java and C/C++ use explicit variable declarations
• Variables are named and typed before they are used

int x, y; // declaration
x = 37; // use
y = x + 5; // use

20

Tradeoffs?

Explicit Declarations Implicit Declarations

More text to type Less text to type

Helps prevent typos Easy to mistype variable
name

23

var = 37
If (rare-condition)
y = vsr + 5

Typo!
Only caught when this line is actually run.
Bug could be latent for quite a while

24

Static Type Checking (Static Typing)

Before program is run
• Types of all expressions are determined
• Disallowed operations cause compile-time error

Ø Cannot run the program

Static types are often explicit (aka manifest)
• Specified in text (at variable declaration)

Ø C, C++, Java, C#
• But may also be inferred – compiler determines type

based on usage
Ø OCaml, C# and Go (limited)

25

Dynamic Type Checking

During program execution
• Can determine type from run-time value
• Type is checked before use
• Disallowed operations cause run-time exception

Ø Type errors may be latent in code for a long time

Dynamic types are not manifest (aka implicit)
• Variables are just introduced/used without types
• Examples

Ø Ruby, Python, Javascript, Lisp

Static and Dynamic Typing

Ruby is dynamically typed, C is statically typed

Notes
• Can always run the Ruby program; may fail when run
• C variables declared, with types

Ø Ruby variables declared implicitly
Ø Implicit declarations most natural with dynamic typing

Ruby
x = 3
x = "foo" # gives x a

new type
x.foo # NoMethodError

at runtime

/* C */
int x;
x = 3;
x = "foo"; /* not allowed */
/* program doesn’t compile */

26

27

Tradeoffs?
Static type checking
• More work for programmer (at first)

Ø Catches more (and subtle) errors at compile time
• Precludes some correct programs

Ø May require a contorted rewrite
• More efficient code (fewer run-time checks)

Dynamic type checking
• Less work for programmer (at first)

Ø Delays some errors to run time
• Allows more programs

Ø Including ones that will fail
• Less efficient code (more run-time checks)

Java: Mostly Static Typing

In Java, types are mostly checked statically
Object x = new Object();
x.println(“hello”); // No such method error at compile time

But sometimes checks occur at run-time
Object o = new Object();
String s = (String) o; // No compiler warning, fails at run time
// (Some Java compilers may be smart enough to warn about

above cast)

28

Quiz 1: Get out your clickers!

True or false: This program has a type error

True or false: This program has a type error

29

Ruby
x = 3
y = “foo”
x = y

A. True
B. False

/* C */
void foo() {
int x = 3;
char *y = “foo”;
x = y;

}

A. True
B. False

Quiz 1: Get out your clickers!

True or false: This program has a type error

True or false: This program has a type error

30

Ruby
x = 3
y = “foo”
x = y

A. True
B. False

/* C */
void foo() {
int x = 3;
char *y = “foo”;
x = y;

}

A. True
B. False

Control Statements in Ruby

A control statement is one that affects which
instruction is executed next
• While loops
• Conditionals

if grade >= 90 then
puts "You got an A"

elsif grade >= 80 then
puts "You got a B"

elsif grade >= 70 then
puts "You got a C"

else
puts "You’re not doing so well"

end

31

i = 0
while i < n
i = i + 1

end

Conditionals and Loops Must End!

All Ruby conditional and looping statements
must be terminated with the end keyword.
Examples
• if grade >= 90 then

puts "You got an A"
end

• if grade >= 90 then
puts "You got an A"

else
puts “No A, sorry"

end

32

• i = 0
while i < n
i = i + 1

end

What is True?

The guard of a conditional is the expression that
determines which branch is taken

The true branch is taken if the guard evaluates
to anything except
• false
• nil

Warning to C programmers: 0 is not false!

if grade >= 90 then
...

Guard

33

Yet More Control Statements in Ruby

unless cond then stmt-f else stmt-t end
• Same as “if not cond then stmt-t else stmt-f end”

until cond body end
• Same as “while not cond body end”

until i >= n
puts message
i = i + 1

end

unless grade < 90 then
puts "You got an A"

else unless grade < 80 then
puts "You got a B”

end

34

Using If and Unless as Modifiers

Can write if and unless after an expression
• puts "You got an A" if grade >= 90
• puts "You got an A" unless grade < 90

Why so many control statements?
• Is this a good idea? Why or why not?

Ø Good: can make program more readable, expressing
programs more directly. In natural language, many ways to
say the same thing, which supports brevity and adds style.

Ø Bad: many ways to do the same thing may lead to confusion
and hurt maintainability (if future programmers don’t
understand all styles)

35

Methods in Ruby

def sayN(message, n)
i = 0
while i < n
puts message
i = i + 1

end
return i

end

x = sayN("hello", 3)
puts(x)

List parameters
at definition

Invoke method

May omit parens
on call

Methods are declared with def...end

Methods should begin with lowercase letter and be defined before they are called
Variable names that begin with uppercase letter are constants (only assigned once)

37

Like print, but
Adds newline

Terminology

Formal parameters
• Variable parameters used in the method
• def sayN(message, n) in our example

Actual arguments
• Values passed in to the method at a call
• x = sayN("hello", 3) in our example

Top-level methods are “global”
• Not part of a class. sayN is a top-level method.

38

Method Return Values

Value of the return is the value of the last
executed statement in the method
• These are the same:

Methods can return multiple results (as an
Array)

39

def dup(x)
return x,x

end

def add_three(x)
return x+3

end

def add_three(x)
x+3

end

Everything is an Object

All values are (references to) objects
• Java/C/C++ distinguish primitives from objects

Objects communicate via method calls
Each object has its own (private) state
Every object is an instance of a class
• An object’s class determines its behavior:
• The class contains method and field definitions

Ø Both instance fields and per-class (“static”) fields

40

Everything is an Object

Examples
• (-4).abs

Ø integers are instances of class Fixnum
• 3 + 4

Ø infix notation for “invoke the + method of 3 on argument 4”
• "programming".length

Ø strings are instances of String
• String.new

Ø classes are objects with a new method
• 4.13.class

Ø use the class method to get the class for an object
Ø floating point numbers are instances of Float

41

No-argument instance method of Fixnum

Classes

Class names begin with an uppercase letter
The new method creates an object
• s = String.new creates a new String and makes s

refer to it
Every class inherits from Object

42

Objects and Classes
Objects are data
Classes are types (the kind of data which things are)
Classes are also objects

Integer, Float, and String are objects of type Class
• So is Class itself!

Object Class (aka type)
10 Fixnum
-3.30 Float
"CMSC 330" String
String.new String
[‘a’, ‘b’, ‘c’] Array
Integer Class

43

Two Cool Things to Do with Classes

Since classes are objects, you can manipulate
them however you like
• Here, the type of y depends on p

Ø Either a String or a Time object

You can get names of all the methods of a class
• Object.methods

Ø => ["send", "name", "class_eval", "object_id", "new",
"autoload?", "singleton_methods", ...]

44

if p then
x = String

else
x = Time

End
y = x.new

The nil Object

Ruby uses a special object nil
• All uninitialized fields set to nil (@ prefix used for fields)

irb(main):004:0> @x
=> nil

• Like NULL or 0 in C/C++ and null in Java
nil is an object of class NilClass
• It’s a singleton object – there is only one instance of it

Ø NilClass does not have a new method
• nil has methods like to_s, but not other methods

irb(main):006:0> nil + 2
NoMethodError: undefined method `+' for nil:NilClass

45

Quiz 2

What is the type of variable x at the end of the
following program?

46

p = 0
if p then
x = nil

else
x = “hello”

end
A. String
B. Integer
C. NilClass
D. Nothing – there’s a type error

Quiz 2

What is the type of variable x at the end of the
following program?

47

p = 0
if p then
x = nil

else
x = “hello”

end
A. String
B. Integer
C. NilClass
D. Nothing – there’s a type error

Creating Strings in Ruby

Substitution in double-quoted strings with #{ }
• course = "330"; msg = "Welcome to #{course}"
• "It is now #{Time.new}"
• The contents of #{ } may be an arbitrary expression
• Can also use single-quote as delimiter

Ø No expression substitution, fewer escaping characters

Here-documents
s = <<END
This is a text message on multiple lines
and typing \\n is annoying

END
48

Creating Strings in Ruby (cont.)

Ruby has printf and sprintf
• printf("Hello, %s\n", name);
• sprintf("%d: %s", count, Time.now)

Ø Returns a String

to_s returns a String representation of an object
• Can be invoked implicitly – write puts(p) instead of

puts(p.to_s)
Ø Like Java’s toString()

inspect converts any object to a string
irb(main):033:0> p.inspect
=> "#<Point:0x54574 @y=4, @x=7>"

49

Standard Library: String

The String class has many useful methods
• s.length # length of string
• s1 == s2 # structural equality (string contents)
• s = "A line\n"; s.chomp # returns "A line"

Ø Return new string with s's contents except newline at end of
line removed

• s = "A line\n"; s.chomp!
Ø Destructively removes newline from s
Ø Convention: methods ending in ! modify the object
Ø Another convention: methods ending in ? observe the object

50

Symbols

Ruby symbols begin with a colon
• :foo, :baz_42, :"Any string at all"

Symbols are “interned” Strings
• The same symbol is at the same physical address
• Can be compared with physical equality

Are symbols worth it? Probably not…

51

“foo” == “foo” # true
“foo”.equal? “foo” # false
:foo == :foo # true
:foo.equal :foo # true

Defining Your Own Classes
class Point
def initialize(x, y)
@x = x
@y = y

end

def add_x(x)
@x += x

end

def to_s
return "(" + @x.to_s + "," + @y.to_s + ")"

end
end

p = Point.new(3, 4)
p.add_x(4)
puts(p.to_s)

constructor definition

class name is uppercase

instance variables prefixed with “@”

method with no arguments

instantiation

invoking no-arg method
53

No Outside Access To Internal State

Instance variables (with @) can be directly
accessed only by instance methods
Outside class, they require accessors:

Very common, so Ruby provides a shortcut

54

def x
@x

end

def x= (value)
@x = value

end

A typical getter A typical setter

class ClassWithXandY
attr_accessor :x, :y

end

Says to generate the
x= and x and
y= and y methods

No Method Overloading in Ruby

Thus there can only be one initialize method
• A typical Java class might have two or more

constructors
No overloading of methods in general
• You can code up your own overloading by using a

variable number of arguments, and checking at run-
time the number/types of arguments

Ruby does issue an exception or warning if a
class defines more than one initialize method
• But last initialize method defined is the valid one

55

A. I ate #{food}
B. I ate meat
C. I ate pounds of meat
D. Error 56

class Animal
def eat(food)

"I ate #{food}”
end
def eat(food,amount)

"I ate #{amount} pounds of #{food}”
end

end
animal = Animal.new
puts animal.eat("meat")

Quiz 3: What is the output?

A. I ate #{food}
B. I ate meat
C. I ate pounds of meat
D. Error 57

class Animal
def eat(food)

"I ate #{food}”
end
def eat(food,amount)

"I ate #{amount} pounds of #{food}”
end

end
animal = Animal.new
puts animal.eat("meat")

Quiz 3: What is the output?

A. I ate meat
B. I ate 23 pounds of meat
C. Error
D. I ate #{amount} pounds pf #{food}

58

class Animal
def eat(food)

"I ate #{food}”
end

def eat(food,amount)
"I ate #{amount} pounds of #{food}”

end
End
animal = Animal.new
puts animal.eat("meat”,23)

Quiz 4: What is the output?

A. I ate meat
B. I ate 23 pounds of meat
C. Error
D. I ate #{amount} pounds pf #{food}

59

class Animal
def eat(food)

"I ate #{food}”
end

def eat(food,amount)
"I ate #{amount} pounds of #{food}”

end
End
animal = Animal.new
puts animal.eat("meat”,23)

Quiz 4: What is the output?

Inheritance

Recall that every class inherits from Object
class A ## < Object
def add(x)
return x + 1

end
end

class B < A
def add(y)
return (super(y) + 1)

end
end

b = B.new
puts(b.add(3))

extend superclass

invoke add method
of parent

60

b.is_a? A
true
b.instance_of? A
false

Mixins

Another form of code reuse is “mix-in” inclusion
• include A “inlines” A’s methods at that point

Ø Referred-to variables/methods captured from context
Ø In effect: it adds those methods to the current class

61

class OneDPoint
attr_accessor :x
include Comparable
def <=>(other)# used by Comparable
if @x < other.x then return -1
elsif @x > other.x then return 1
else return 0
end

end
end

p = OneDPoint.new
p.x = 1
q = OneDPoint.new
q.x = 2
x < y # true
puts [y,x].sort
prints x, then y

super() in Ruby

Within the body of a method
• Call to super() acts just like a call to that original

method
• Except that search for method body starts in the

superclass of the object that was found to contain
the original method

62

Global Variables in Ruby

Ruby has two kinds of global variables
• Class variables beginning with @@ (static in Java)
• Global variables across classes beginning with $

class Global
@@x = 0

def Global.inc
@@x = @@x + 1; $x = $x + 1

end

def Global.get
return @@x

end
end

$x = 0
Global.inc
$x = $x + 1
Global.inc
puts(Global.get)
puts($x)

define a class
(“singleton”) method

63

Special Global Variables

Ruby has a special set of global variables that
are implicitly set by methods
The most insidious one: $_
• Last line of input read by gets or readline

Example program

Using $_ leads to shorter programs
• And confusion
• We suggest you avoid using it

gets # implicitly reads input line into $_
print # implicitly prints out $_

64

What is a Program?
In C/C++, a program is...
• A collection of declarations and definitions
• With a distinguished function definition

Ø int main(int argc, char *argv[]) { ... }
• When you run a C/C++ program, it’s like the OS

calls main(...)
In Java, a program is...
• A collection of class definitions
• With some class (say, MyClass) containing a method

Ø public static void main(String[] args)
• When you run java MyClass, the main method of

class MyClass is invoked

65

A Ruby Program is...

The class Object
• When the class is loaded, any expressions not in

method bodies are executed
def sayN(message, n)
i = 0
while i < n
puts message
i = i + 1

end
return i

end

x = sayN("hello", 3)
puts(x)

defines a method of Object
(i.e., top-level methods belong to Object)

invokes self.sayN

invokes self.puts
(part of Object)

66

A. 0
B. 1
C. 2
D. 3

class Thing
@@things = 0
def initialize(name)
@name = name
@@things += 1

end
def self.get_things
return @@things

end
end
Thing.new("thing20");
Thing.new("thing6")
puts Thing.get_things

67

Quiz 5: What is the output?

A. 0
B. 1
C. 2
D. 3

class Thing
@@things = 0
def initialize(name)
@name = name
@@things += 1

end
def self.get_things
return @@things

end
end
Thing.new("thing20");
Thing.new("thing6")
puts Thing.get_things

68

Quiz 5: What is the output?

A. I like to bark
B. I like to #{@bark}
C. I like to ruff ruff
D. ruff ruff

class Dog
def initialize
@bark = "ruff ruff"

end
def speak
"I like to #{@bark}"

end
end
fido = Dog.new
puts fido.speak()

69

Quiz 6: What is the output?

A. I like to bark
B. I like to #{@bark}
C. I like to ruff ruff
D. ruff ruff

class Dog
def initialize
@bark = "ruff ruff"

end
def speak
"I like to #{@bark}"

end
end
fido = Dog.new
puts fido.speak()

70

Quiz 6: What is the output?

Quiz 7: What is the output?

A. Sometimes I go #{@sound}"
B. Sometimes I go
C. Error
D. Sometimes I go nil

class Computer
def initialize
@sound = "beep beep"

end
def self.about
"Sometimes I go #{@sound}"

end
end
print Computer.about

71

Quiz 7: What is the output?

A. Sometimes I go #{@sound}"
B. Sometimes I go
C. Error
D. Sometimes I go nil

class Computer
def initialize
@sound = "beep beep"

end
def self.about
"Sometimes I go #{@sound}"

end
end
print Computer.about

72

Quiz 8: What is the output?
A. Dr. #{super}
B. Dr.
C. Dr. Phil McGraw
D. Error

class Person
def initialize(first, last)
@first = first
@last = last

end
def full_name
"#{@first} #{@last}"

end
end
class Doctor < Person

def full_name
"Dr. #{super}"

end
end
d = Doctor.new("Phil", "McGraw")
print d.full_name

73

Quiz 8: What is the output?
A. Dr. #{super}
B. Dr.
C. Dr. Phil McGraw
D. Error

class Person
def initialize(first, last)
@first = first
@last = last

end
def full_name
"#{@first} #{@last}"

end
end
class Doctor < Person

def full_name
"Dr. #{super}"

end
end
d = Doctor.new("Phil", "McGraw")
print d.full_name

74

