
Homework 2: Greedy Algorithms

Handed out Thu, Sep 28. Due Friday, Oct 6, 11:59pm (electronic submission through ELMS.)

Problem 1. This problem involves an analysis of Huffman’s algorithm in the special case where
probabilities are all powers of 2.

(a) Show the result of running Huffman’s algorithm on the 9-character alphabet shown
below.

Symbol Prob. Symbol Prob. Symbol Prob.

a 1/16 d 1/8 g 1/32

b 1/8 e 1/2 h 1/16

c 1/32 f 1/32 i 1/32

As part of your answer, you should indicate the following things:

• Show the final tree, and label each leaf node with its symbol and its codeword.
(For example, see Fig. 2 from Lecture 6. You need only give the final tree, not the
intermediate results.)

• Give the cost B(T ) for your tree, that is, the expected number of bits per codeword.
Letting dT (x) denote the depth of symbol x in the tree (where the root is at depth
0), this is given by

B(T ) =
∑
x∈X

p(x)dT (x).

(There was an error in this formula in the lecture notes. It is now fixed.)

Note: For the sake uniformity and to make the grader’s life simpler, whenever you have
a choice because two or more symbols that have equal probabilities, select the symbols
that are lowest in alphabetic order or the tree that has the lowest symbol in alphabetic
order.

(b) Looking at your result to (a), what is the relationship of the depth d(x) of each symbol
x (or equivalently the number of bits in its codeword) as a function of its probability
p(x)?

(c) State your result for part (b) as a theorem, and prove it formally. For example “Given
an alphabet X such that, for each x ∈ X, the associated probability p(x) is a power of
2, the depth of x in the Huffman tree of X is . . . .” (Hint: Use induction on n = |X|.
You may assume the easily proven fact that if all the probabilities are powers of 2, then
the two lowest probabilities are equal to one another.)

Problem 2. You are given a collection of files {f1, . . . , fn} files that are to be stored on a tape.
File fi is si bytes long. The tape is long enough to store all the files. The probability of
accessing file fi is pi, where 0 ≤ pi ≤ 1, and

∑n
i=1 pi = 1. The tape is rewound before each

access, and so the time to access any file is proportional to the distance from the front of the
tape to the end of the file.

A layout of files on the tape is given by a permutation π = 〈π1, . . . , πn〉 of the numbers
{1, . . . , n}. (For example, Fig. 1 shows the layout (4, 2, 1, 3).) Given a layout π, the expected
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cost of accessing the ith file on the tape is the product of its access probability and the
distance from the start of the tape to the end of the file. The total cost of a layout π is the
sum of the expected costs for all the files, denoted T (π).

(a) (b)

f1 :

f2 :

f3 :

f4 :

p1 = 0.4s1 = 300

s2 = 200

s3 = 500

s4 = 100

p2 = 0.35

p3 = 0.1

p4 = 0.15

f4 f2 f1 f3

100
300

600
1100

T (π) = 100 · 0.15 + 300 · 0.35 +

600 · 0.4 + 1100 · 0.1 = 470

Figure 1: Placing files on a tape to minimize access time.

(a) Present a (short) counterexample so show that laying out the files on the tape in in-
creasing order of size (si) is not optimal.

(b) Present a (short) counterexample so show that laying out the files on the tape in de-
creasing order of access probability (pi) is not optimal.

(c) Present an algorithm, which given si’s and pi’s, determines a layout π of minimum total
cost. Prove your algorithm’s correctness and derive its running time. (Hint: Use a
greedy approach.)

Problem 3. You are given a collection I of n intervals [ai, bi], for 1 ≤ i ≤ n, where ai ≤ bi (see
Fig. 2(a)). A stabbing set is a collection of points X = {x1, . . . , xk} such that for every
interval [ai, bi], there exists a point xj ∈ X that lies within this interval, that is, ai ≤ xj ≤ bi
(see Fig. 2(b)). In this problem, we will consider the question of how to efficiently compute
a stabbing set of the minimum size for a given set of intervals.

(a)

x1 x2 x3 x4

(c)

x′1 x′2 x′3 x′4

ai bi

(b)

I

Figure 2: Minimum stabbing set problem.

(a) Show that for any set of intervals, there exists a stabbing set of minimum size where
every stabbing point is the right endpoint (bi) of some interval (see Fig. 2(c)). (Hint:
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Show how to convert any stabbing set that does not satisfy this property to one that
has the equal or lower cardinality and does satisfy this property.) From now on, we will
just consider stabbing sets of this form.

(b) Given a set of intervals and any point x, define depth(x) to be number of intervals
that contains the point x. Present an O(n log n) time algorithm, which given a set
of intervals, computes a right endpoint (bi) of maximum depth. (Since there may be
multiple endpoints with the same depth, your algorithm should return the leftmost such
point. (For example, in Fig. 2(c), both x′1 and x′2 have the same depth of four, and there
is one other right endpoint with this same depth. The answer should be x′1.)

Consider the following max-depth (MD) greedy heuristic for computing a minimum stabbing
set for a given set of intervals I. Apply the algorithm from (b) to compute the right endpoint
of maximum depth. Add this endpoint to the stabbing set. Remove from I all the intervals
that contain this point. Recompute the depths of the remaining intervals. Repeat until no
intervals remain. Clearly, this produces a valid stabbing set, but is it optimal?

(c) What is the worst-case asymptotic running time of this algorithm? (Express your answer
in terms of n, the number of intervals, and k, the number of elements in the final stabbing
set.)

(d) Present an (ideally short) counterexample to show that the MD heuristic is not optimal.
(Hint: There is a simple counterexample involving a small number of intervals if you
assume that the whenever there are right endpoints of equal depth, the algorithm chooses
the worst one. See Challenge Problem 1.)

(e) Prove that the MD heuristic produces a stabbing set whose size is larger than the op-
timum by a factor of at most lnn. (Hint: Show that the stabbing set problem can be
recast as an instance of the set-cover problem and that the MD heuristic is equivalent
to running the greedy set-cover heuristic on this set-cover instance.)

Problem 4. Given the same stabbing-set problem above, consider a new heuristic called leftmost
right endpoint (LRE). Sort the intervals in increasing order of their right endpoints. Take
the first interval from this list, and add its right endpoint to the stabbing set. Remove all
intervals that contain this point. Repeat until no intervals remain. Clearly, this produces a
valid stabbing set, but is it optimal?

(a) A naive implementation of the LRE heuristic would be rather slow (since it would require
traversing the entire list of intervals each time a new element is added to the stabbing
set). Present a more efficient implementation that produces the same output, but runs
in O(n log n) time, irrespective of the number of elements in the final stabbing set.

(b) Prove that LRE is optimal, that is, it produces a stabbing set of minimum size.

Challenge Problem. Repeat Problem 3(d), but show that you can construct a counterexample
where the MD heuristic fails to return an optimum stabbing set no matter how depth ties are
broken.
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