
CMSC 131
Fall 2018

Announcements

• Project #2 has been posted

• Exam #1 is on Monday 10/8

Recall: Objects have State and Behaviors

More examples:

• String

• Scanner

• Dog

Primitives vs. References

There are two kinds of variables:

• Primitives

• References to objects

Let’s look at the memory diagram (Stack and Heap) for declaring
these local variables:

int x = 7;

double y = 3.4;

Dog z = new Dog();

Scanner s = new Scanner(System.in);

Class

Defines a kind of object

• Instance variables (for the state)

• Instance methods (for the behaviors)

Let’s write a class together:

Example: Dog.java, Driver.java

References

How many Dog objects are created by this statement:

Dog a, b, c;

Creating Strings is Unique

Two ways to do (essentially) the same thing:

String x = “hello”;

String x = new String(“hello”);

Taking out the Garbage

Let’s talk about the garbage collector by considering the memory
diagram for this:

String s = new String(“hello”);

s = new String(“goodbye”);

s = new String(“whatever”);

Assignment with References (Aliasing)

First consider the memory diagram for this:

int x = 7, y = 12;

y = x;

Now consider the memory diagram for this:

String x = “blue”, y = “orange”;

y = x;

Aliasing occurs when two variables refer to the same object.

Can we make copies of objects

1. There is a special method called clone. (Next semester…)

2. Using a copy constructor (later this semester)

String x = “hello”;

String y = new String(x); // invoking “copy constructor”

More details about constructors later…

== vs. equals

Let’s draw memory diagrams and consider:

String a = “cat”;

String b = a;

String c = new String(“cat”);

Are these true or false?

a.equals(b)

a.equals(c)

a == c

a == b

What does equals really check?

What does == really check?

