
CMSC 131
Fall 2018

Announcements

• Project #4 due Sunday

Recall: Exception Handling

• When are exceptions thrown?

Example:

if (internet is down) {

throw new IOException(“No networkconnection”);

}

• What happens when the exception is thrown?

• What does a “handler” look like?

Example:

try {

weather = downloadWeatherInfo();

} catch(IOException e) {

weather = lookOutWindowAndSeeIfItsRaining();

}

Practical Examples

Have we seen examples where exception throwing would have made sense?

• Student class (spending a token when you have none)

if(tokenLevel == 0) {

throw new IllegalStateException(“No tokens present”);

}

• FlagMaker (error flag is stupid)

if(countryCode < 1 || countryCode > 12) {

throw new IllegalArgumentException(countryCode + “ is

not a valid country.”);

}

Catching Multiple Types of Exceptions

You can catch more than one kind of exception:

try {

<put troublesome code here>

} catch (NullPointerException e) {

<handler here>

} catch (ArithmeticException e) {

<another handler here>

} catch (IOException e) {

<another one here>

}

Finally block

Optional. Put code in finally block that is “mission critical”.

try {

<put troublesome code here>

} catch (NullPointerException e) {

<handler here>

} catch (ArithmeticException e) {

<another handler here>

} catch (IOException e) {

<another one here>

} finally {

<put something here that should ALWAYS run>

}

Finally block ALWAYS runs

Once try block has begun, the finally block will run…

• When no exceptions are thrown

• When an exception is thrown and caught locally

• When an exception is thrown but NOT caught locally

• When method is terminated with return

Example

DateReader.java

There are three types of exceptions that could be thrown while
this method runs! Let’s trace the output in all cases.

Collections

Real world programs process huge quantities of data

How can we store a billion user names?

• Make a billion individual variables?

We need a way to use a single variable to store a (theoretically)
unbounded number of items.

1. Java Collections Framework (later)

2. Arrays (today)

Arrays of primitives

An array is a sequence of values stored contiguously.

Let’s explain and draw memory diagram:

int[] a;

a = new int[4];

How do we access each value individually?

Elements are indexed (0-based).

Examples of expressions using indexing.

Details

• Values in the array must all be the same type

• Arrays are objects, so they go on the heap.

• Arrays are always initialized with default values

• Indexing is 0-based

