Interfaces




Relatedness ot types

Consider the task of writing classes to represent
tour guides such as LasVegasTourGuide,

ParisTourGuide, and UMStudentGuide.

There are certain attributes or operations that are
common to all tour guides:

greeting, attractions, direct visitors, etc.
By being a tour guide, you promise that you can

Implement those methods, but each tour guide
computes them differently.



Interface as a contract

Analogous to the idea of roles or certifications in real life:

2 "I'm certified as a CPA accountant. The
certification assures you that | know how to do
taxes, perform audits.”

Compare to:

2 "I'm certified as a tour guide. That means you can
be sure that | know how to compute conduct a
tour.”



The attractions and greetings of tour guides

LasVegasTourGuide:
attractions = Bellagio, Venetian, etc.
greeting = “Welcome to LasVegas"

ParisTourGuide:

attractions = Eiffel tower, Napolean’s tomb, etc.

greeting = “Bonjour, mes amis! Bienvenue Paris!”
UMTourGuide

attractions = Student Union, North Gym, etc.

greeting = “Hey everybody — welcome to Maryland”



Interfaces

interface: A list of methods that a class promises to
Implement.

2 Interfaces give you an is-a relationship without code sharing.
Only method stubs in the interface
Object can-act-as any interface it implements

A LasVegasTourGuide object can be treated as a Tourguide as long as it
implements the interface.



Interface classes

public i1nterface TourGuide {
public void sayGreeting() ;

public String[] listAttractions();

public void directVisitorsTo (String
attraction);

public void describe () ;
public void sayGoodbye() ;



Java Intertaces

An interface for tourguides:

public interface TourGuide {
public void sayGreeting() ;
public String[] listAttractions{();

public

public

public
}

This interface
guides.

void directVisitorsTo (String attraction);
voilid describe () ;
voilid sayGoodbye () ;

describes the features common to all tour

Interface declaration syntax:
public interface <name> {

public <type> <name> (<type> <name>, ..., <type> <name>) ;
public <type> <name> (<type> <name>, ..., <type> <name>) ;
public <type> <name> (<type> <name>, ..., <type> <name>) ;

}

All methods are public!



Implementing an intertace

public class ParisTourGuide implements TourGuide ({

public void sayGreeting() {
System.out.println (“Bonjour,...”);
}

public String[] listAttractions() {
String[] attractions = {“Eiffel Tower”,..};
}



Implementing an intertace

A class can declare that it implements an
interface.

2 This means the class contains an implementation
for each of the abstract methods in that interface.

(Otherwise, the class will fail to compile.)

Syntax for implementing an interface

public class <name> 1mplements
<interface name> {

J



Requirements

If we write a class that claims to be a TourGuide but
doesn't implement the interface methods, it will not

compile.

2 Example:
public class Banana implements TourGuide

//without implementing any of the methods

2 The compiler error message:

Banana.java:1: Banana 1s not abstract and does
not override abstract method sayGreeting() in
TourGuides

public class Banana implements TourGuide ({

A



