
Interfaces

Relatedness of types

■ Consider the task of writing classes to represent
tour guides such as LasVegasTourGuide,
ParisTourGuide, and UMStudentGuide.

■ There are certain attributes or operations that are
common to all tour guides:
greeting, attractions, direct visitors, etc.

■ By being a tour guide, you promise that you can
implement those methods, but each tour guide
computes them differently.

Interface as a contract
■ Analogous to the idea of roles or certifications in real life:

❑ "I'm certified as a CPA accountant. The
certification assures you that I know how to do
taxes, perform audits.”

Compare to:
❑ "I'm certified as a tour guide. That means you can

be sure that I know how to compute conduct a
tour.”

The attractions and greetings of tour guides

■ LasVegasTourGuide:
 attractions = Bellagio, Venetian, etc.
 greeting = “Welcome to LasVegas"

■ ParisTourGuide:
 attractions = Eiffel tower, Napolean’s tomb, etc.
 greeting = “Bonjour, mes amis! Bienvenue Paris!”

■ UMTourGuide
 attractions = Student Union, North Gym, etc.

 greeting = “Hey everybody — welcome to Maryland”

Interfaces
■ interface: A list of methods that a class promises to

implement.
❑ Interfaces give you an is-a relationship without code sharing.

■ Only method stubs in the interface
■ Object can-act-as any interface it implements
■ A LasVegasTourGuide object can be treated as a Tourguide as long as it

implements the interface.

Interface classes
public interface TourGuide {
 public void sayGreeting();
 public String[] listAttractions();
 public void directVisitorsTo(String

attraction);
 public void describe();
 public void sayGoodbye();
 }

Java Interfaces
■ An interface for tourguides:

 public interface TourGuide {
 public void sayGreeting();
 public String[] listAttractions();
 public void directVisitorsTo(String attraction);
 public void describe();
 public void sayGoodbye();
 }
This interface describes the features common to all tour

guides.  

■ Interface declaration syntax:
public interface <name> {
 public <type> <name>(<type> <name>, ..., <type> <name>);
 public <type> <name>(<type> <name>, ..., <type> <name>);
 ...
 public <type> <name>(<type> <name>, ..., <type> <name>);
}

■ All methods are public!

Implementing an interface
public class ParisTourGuide implements TourGuide {

 public void sayGreeting() {
 System.out.println(“Bonjour,….”);
 }

 public String[] listAttractions() {
 String[] attractions = {“Eiffel Tower”,…};
 }

 …..
 }
}

Implementing an interface

■ A class can declare that it implements an
interface.
❑ This means the class contains an implementation

for each of the abstract methods in that interface.
(Otherwise, the class will fail to compile.)

■ Syntax for implementing an interface
 public class <name> implements

<interface name> {
 ...
 }

Requirements
■ If we write a class that claims to be a TourGuide but

doesn't implement the interface methods, it will not
compile.

❑ Example:
 public class Banana implements TourGuide {
 //without implementing any of the methods
 }

❑ The compiler error message:
 Banana.java:1: Banana is not abstract and does

not override abstract method sayGreeting() in
TourGuides

 public class Banana implements TourGuide {
 ^

