
CMSC 131A, Midterm 2

Fall 2017

NAME:________________________________________________________

UID: __________________________________________

Question Points
1 15
2 12
3 20
4 15
5 15
6 20

Total: 97

This test is open-book, open-notes, but you may not use any computing device other than your
brain and may not communicate with anyone. You have 50 minutes to complete the test.

The phrase “design a program” or “design a function” means follow the steps of the design recipe.
Unless specifically asked for, you do not need to provide intermediate products like templates or
stubs, though they may be useful to help you construct correct solutions.

You may use any of the data definitions given to you within this exam and do not need to repeat
their definitions.

Unless specifically instructed otherwise, you may use any built-in ISL+ functions or data types.

When writing tests, you may use a shorthand for writing check-expects by drawing an arrow be-
tween two expressions to mean you expect the first to evaluate to same result as the second. For
example, you may write (add1 3)→ 4 instead of (check-expect (add1 3) 4).

1



Problem 1 (15 points). Here are some data definition relevant to representing a dictionary, which
associates words with the their definitions:

;; A Dict is one of:
;; - '()
;; - (cons (list String String) Dict)
;; Interp: a collection of definitions where each element is a
;; two-element list of a word (first) and its meaning (second).

;; A Result is one of:
;; - #false
;; - String
;; Interp: represents the result of looking up a word in the
;; dictionary; #false means not found.

Design the following function:

;; lookup : String Dict -> Result
;; Lookup the (first) definition of a word in the dictionary,
;; produces #false if not found

2



Problem 2 (12 points). For each of the following functions, provide the most general signature
that correctly describes the function:

;; method :

(define (method x)
(+ (sqr x) 2))

;; raekwon :

(define (raekwon x)
(ormap positive? x))

;; rza :

(define (rza x y)
(cond [(empty? x) y]

[(cons? x)
(cons (string-length (first x))

(rza (rest x) y))]))

;; gza :

(define (gza x)
(foldr x 0 (list "a" "b" "c")))

;; odb :

(define (odb x)
(lambda (y)
(/ (- (x (+ y 0.001))

(x (- y 0.001)))
(* 2 0.001))))

;; ghostface :

(define (ghostface x y)
(cond [(empty? x) '()]

[(cons? x)
(cons (y (first x))

(ghostface (rest x) y))]))

3



Problem 3 (20 points). Design a program called w-avg that computes the weighted average of a
list of numbers and a list of weights.

For example, let’s say a class grade is based on two midterms and a project where the project is
worth twice as much as the midterms. A student who gets an 80 and a 70 on the midterms and a 90
on the project would have a weighted average of 82.5: ((1× 80) + (1× 70) + (2× 90))/4, which
can be computed with (w-avg (list 80 70 90) (list 1 1 2)). You should assume the two
lists have the same length.

4



Problem 4 (15 points). Here is a parametric data definition for a tree of elements:

;; A [Tree X] is one of:
;; - (make-leaf)
;; - (make-node X [Tree X] [Tree X])
;; Interp: a binary tree that is either empty (a leaf), or non-empty (a node)
;; with an element and two sub-trees.
(define-struct leaf ())
(define-struct node (elem left right))

Here is a function that produces a list of all the elements in a tree:

;; tree-elems : [X] . [Tree X] -> [Listof X]
;; Produce a list of all elements in tree going top-down, left-to-right
(check-expect (tree-elems (make-leaf)) '())
(check-expect (tree-elems (make-node 7

(make-node 9 (make-leaf) (make-leaf))
(make-node 2 (make-leaf) (make-leaf))))

(list 7 9 2))
(define (tree-elems bt)

(cond [(leaf? bt) '()]
[(node? bt)
(cons (node-elem bt)

(append (tree-elems (node-left bt))
(tree-elems (node-right bt))))]))

Here is an abstraction function for trees that is similar to foldr for lists, but works on trees:

;; tree-fold : [X Y] . [X Y Y -> Y] Y [Tree X] -> Y
;; The fundamental abstraction function for trees
(define (tree-fold f b bt)

(cond [(leaf? bt) b]
[(node? bt)
(f (node-elem bt)

(tree-fold f b (node-left bt))
(tree-fold f b (node-right bt)))]))

Give an equivalent definition of tree-elems in terms of tree-fold. (Just provide the code.)

[Provide your answer on the next page.]

5



[Space for problem 4.]

6



Problem 5 (15 points). Design a program that takes a list of strings and produces the count of
strings with length longer than 3 in the list. For example, if the list contains "a", "dave", "abc",
and "fred", the count is 2. You may assume the [Listof String] data definition is defined.
For full credit, use list abstraction functions. For partial credit, follow the template for [Listof
String].

7



Problem 6 (20 points). Here’s a data definition for choose-your-own-adventure books:

;; A CYOA is one:
;; - String
;; - (make-choice String CYOA CYOA)
(define-struct choice (q yes no))
;; Interp: a choose-your-own-adventure book where a string
;; is a conclusion and a choice is a yes/no question and
;; the two adventures that follow as a consequnce of the answer.

Design a function called ans that consumes a CYOA and a [Listof Boolean] that represents an-
swers to the yes/no questions: #truemeans yes, #falsemeans no. The ans function produces the
CYOA adventure that results after giving all of the answers in the list. If the list contains too many
answers, ans just produces the conclusion of the adventure.

8


