INTRODUCTION TO
DATA SCIENCE

JOHN P DICKERSON

PREM SAGGAR \
Today!

Lecture #2 — 08/29/2018

CMSC320

Mondays & Wednesdays
2:00pm — 3:15pm

COMPUTER SCIENCE

UNIVERSITY OF MARYLAND

ANNOUNCEMENTS

Register on Piazza: piazza.com/umd/fall2018/cmsc320
« 103 have registered already ()
« 122 have not registered yet &P

If you were on Piazza, you’d know ...
* Project 0 is out! Itis due next Wednesday evening.

 Link: https://qithub.com/JohnDickerson/cmsc320-fall2018/tree/master/project0

We'll also link some reading for the week soon!

« First quiz will be due Wednesday at noon. dOC er

https://github.com/umddb/cmsc320-fall2018/tree/master/project0

THE DATA LIFECYCLE

Exploratory Analysis, Insiaht
DEIE! Data analysis hypothesis |§Og|icy&

collection processing & testing, &

Data viz ML Decision

TODAY’S LECTURE

Data
collection

-

() () ()
Exploratory Analysis,
Data | analysis hypothesis
processing & testing, &
Data viz ML
\ J \ J \ J

\ 4

_

Insight &
Policy
Decision

~

J

W

A

BUT FIRST, SNAKES! C pg’[hOﬂ

Python is an interpreted, dynamically-typed, high-level,
garbage-collected, object-oriented-functional-imperative, and
widely used scripting language.

* Interpreted: instructions executed without being compiled into
(virtual) machine instructions™®

« Dynamically-typed: verifies type safety at runtime

* High-level: abstracted away from the raw metal and kernel
« Garbage-collected: memory management is automated

* OOFI: you can do bits of OO, F, and | programming

Not the point of this class!

« Python is fast (developer time), intuitive, and used in industry!

*you can compile Python source, but it’s not required

THE ZEN OF PYTHON

« Beautiful is better than ugly.
- Explicit is better than implicit.

« Simple is better than complex.

« Complex is better than complicated.
* Flat is better than nested.

« Sparse is better than dense.
 Readability counts.

« Special cases aren't special enough to break the rules ...
« ... although practicality beats purity.

* Errors should never pass silently ...

... unless explicitly silenced.

Thanks: SDSMT ACM/LUG

LITERATE
PROGRAMMING

Literate code contains in one document:

» the source code;

» text explanation of the code; and
» the end result of running the code.

Basic idea: present code in the order that logic and flow of
human thoughts demand, not the machine-needed ordering

« Necessary for data science!
« Many choices made need textual explanation, ditto results.

Stuff you’ll be using in Project 0 (and beyond)!

1P e, — JUPYTer

10-MINUTE PYTHON
PRIMER

Define a function:

def my func(x, y):
if x > y:

return x
else:
return y

Python is whitespace-delimited

Define a function that returns a tuple:

def my func(x, y):
return (x-1, y+2)

(a, b) = my func(l, 2)

USEFUL BUILT-IN FUNCTIONS:
COUNTING AND ITERATING

len: returns the number of items of an enumerable object

range: returns an iterable object
list(range(10))

3, 4, 5, 6, 7, 8, 9]
enumerate: returns iterable tuple (index, element) of a list
enumerate([“311”, “320", *“330"])

[(0, “311"), (1, *320"), (2, “330")]

https://docs.python.org/3/library/functions.html

USEFUL BUILT-IN FUNCTIONS:
MAP AND FILTER

map: apply a function to a sequence or iterable

arr = [1, 2, 3, 4, 5]
map(lambda x: x**2, arr)

arr = [1, 2,
filter(lambda x:

We’ll go over in much greater depth with pandas/numpy.

PYTHONIC
PROGRAMMING

Basic iteration over an array in Java:

int[] arr = new int[10];
for(int idx=0; idx<arr.length; ++idx) {

System.out.println(arr[idx]);

}

Direct translation into Python:

idx =
while idx < len(arr):
print(arr[idx]); idx += 1

A more “Pythonic” way of iterating:

for element in arr:

print(element)

LIST COMPREHENSIONS

Construct sets like a mathematician!
- P={1,2,4,8,16,...,21%}
« E={x|xinN and xis odd and x <1000 }

Construct lists like a mathematician who codes!

P = 2*¥*x for x in range(l7)]

E = [x for x in range(1000) if x

Very similar to map, but:
 You’ll see these way more than map in the wild

 Many people consider map/filter not “pythonic” youwn
* They can perform differently (map is “lazier”) v

EXCEPTIONS

Syntactically correct statement throws an exception:
* tweepy (Python Twitter API) returns “Rate limit exceeded

7

» sqlite (a file-based database) returns IntegrityError

print('Python', python version())

try:
cause a NameError

except NameError as err:
print(err, '-> some extra text')

PYTHON 2 VS 3

Python 3 is intentionally backwards incompatible
« (But not that incompatible)

Biggest changes that matter for us:

e print “statement” - print (“function”)
e 1/2 =0 2> 1/2 = 0.5and1//2 = 0
 ASCII str default —> default Unicode
Namespace ambiguity fixed:

i =1

[1 for 1 in range(5)]

print(i) # 2?222222°?

TO ANY CURMUDGEONS ...

If you’re going to use Python 2 anyway, use the future
module:

« Python 3 introduces features that will throw runtime errors in
Python 2 (e.g., with statements)

« future module incrementally brings 3 functionality into 2

* https://docs.python.org/2/library/ _future _.html

from future import division
from future import print function

from future import please just use python 3

PYTHON VS R (FOR
DATA SCIENTISTS)

. . KDnuggets Analytics/Data Science

There is no right answer here!
ere Is no right answer here 2016 Software Poll, top 10 tools

° Python is a “fu"” 0% 10% 20% 30% 40% 50% 60%
programming language — R
easier to integrate with Python
systems in the field saL

Excel

R has a more mature set of s
pure stats libraries ... ot

m 2016 |%share

C ol

* ... but Python is catching up
quickly ...

Python, R, Both, or Other platforms for
Analytics, Data Science, Machine Learning

e ...andis already ahead =
specifically for ML. |

41%

P 36%

Python
Both

30%

You will see Python more in the ..
tech industry.

0%

mR
m Other

Share in 2016 Share in 2017 |B,nuggets”
Poll 2017

EXTRA RESOURCES

Plenty of tutorials on the web:

* https://www.learnpython.org/

Work through Project 0, which will take you through some
baby steps with Python and the Pandas library:

« (WEe'll also post some readings soon.)

Come hang out at office hours (or chat with me privately)
» All office hours will be on the website/Piazza very soon.

* Will have coverage MTWThF.

TODAY’S LECTURE

(N\ N\ N\)

Exploratory Analysis, Insiaht &
Data Data | analysis hypothesis g.
: _ > — . Policy
collection processing & testing, & o
Data viz ML Decision

with @& python’

Thanks: Zico Kolter’'s 15-388

GOTTA CATCH ‘EM ALL

Five ways to get data:

« Direct download and load from local storage
« Generate locally via downloaded code (e.g., simulation)

* Query data from a database (covered in a few lectures)

* Query an API from the intra/internet
Covered today.
« Scrape data from a webpage

WHEREFORE ART
THOU, API?

A web-based Application Programming Interface (API) like
we’ll be using in this class is a contract between a server and
a user stating:

“If you send me a specific request, | will return some
information in a structured and documented format.”

(More generally, APIs can also perform actions, may not be
web-based, be a set of protocols for communicating between
processes, between an application and an OS, etc.)

“SEND ME A SPECIFIC
REQUEST?”

Most web API queries we’ll be doing will use HTTP requests:

* conda install —c anaconda requests=2.12.4

= requests.get('https://api.github.com/user’,
auth=('user', 'pass'))

r.status code
AV
r.headers|[‘content-type

‘application/json; charset=utf8’

{u'private gists': 419, u'total private repos': 77, ...}

http://docs.python-requests.org/en/master/

HTTP REQUESTS

https://www.google.com/?q=cmsc320&ths=qdr:m

Go gle 2922222727

HTTP GET Request:

GET /?g=cmsc320&tbs=qdr:m HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:10.0.1) Gecko/20100101 Firefox/10.0.1

params = { “g”: “cmsc320”, “tbs”: “gdr:m” }

r = requests.get(“https://www.google.com”,
params = params)

*be careful with https:// calls; requests will not verify SSL by default

RESTFUL APIS

This class will just query web APIs, but full web APIs typically
allow more.

Representational State Transfer (RESTful) APls:
« GET: perform query, return data

- POST: create a new entry or object

- PUT: update an existing entry or object
 DELETE: delete an existing entry or object

Can be more intricate, but verbs (“put”) align with actions

QUERYING A RESTFUL API

Stateless: with every request, you send along a
token/authentication of who you are

token = "super secret token”

r = requests.get(“https://github.com/user”,
params={"access_token”: token})

print(r.content)

{"login":”JohnDickerson","id":472985, "avatar url":"ht..

GitHub is more than a GETHub:
« PUT/POST/DELETE can edit your repositories, etc.
« Try it out: https://github.com/settings/tokens/new

AUTHENTICATION
AND OAUTH

Old and busted:

r = requests.get(“https://api.github.com/user”,

auth=(“JohnDickerson”, “ILoveKittens”))

New hotness:

 What if | wanted to grant an app access to, e.g., my Facebook
account without giving that app my password?

» OAuth: grants access tokens that give (possibly incomplete)
access to a user or app without exposing a password

“.. 1 WILL RETURN INFORMATION
IN A STRUCTURED FORMAT.”

So we’ve queried a server using a well-formed GET request
via the requests Python module. What comes back?

General structured data:

« Comma-Separated Value (CSV) files & strings

- Javascript Object Notation (JSON) files & strings

« HTML, XHTML, XML files & strings
Domain-specific structured data:

« Shapefiles: geospatial vector data (OpenStreetMap)
« RVT files: architectural planning (Autodesk Revit)

* You can make up your own! Always document it.

CSV FILES IN PYTHON

Any CSV reader worth anything can parse files with any
delimiter, not just a comma (e.g., “TSV” for tab-separated)

1,26-Jan,Introduction,
2,31-Jan,Scraping Data
3,2-Feb,"Vectors, Matricesyand Dataframes”, Introduction to pandas.,,Dickerson,

"pdf, pptx",PDickerson,

Don’t write your own CSV or JSON parser

import csv
with open(”schedule.csv”, "rb”) as f:

reader = csv.reader(f, delimiter=","”, quotechar='"")
for row in reader:
print(row)

(We’ll use pandas to do this much more easily and efficiently)

00
N

JSON FILES & STRINGS

JSON is a method for serializing objects:

« Convert an object into a string (done in Java in 131/1327?)
« Deserialization converts a string back to an object

Easy for humans to read (and sanity check, edit)

Defined by three universal data structures

object
(O | string |) () Python dictionary, Java
Map, hash table, etc ...
£\

—
array
[value | Python list, Java array,
vector, etc ...
7\
value L/
T oerinm 1 []
% L Python string, float, int,
{ number | boolean, JSON object,
[object } JSON array, ... g

Images from: http://www.json.org/

JSON IN PYTHON

Some built-in types: “Strings”, 1.0, True, False, None
Lists: [“Goodbye”, “Cruel”, “World”]

Dictionaries: {“hello”: “bonjour”, *“goodbye”, *“au
revoir”}

Dictionaries within lists within dictionaries within lists:

[1, 2, {“Help”:]
uI rm" , {utrapped" e “ in"} ,
“CMSC320"
1}]

-

JSON FROM TWITTER

GET https://api.twitter.com/1l.1/friends/list.json?cursor=-
l&screen name=twitterapi&skip status=true&include user entitie
s=false

"previous_cursor": 0,
"previous_cursor_str": "0",
"next_cursor": 1333504313713126852,
"users": [{
"profile _sidebar _fill_color": "252429",
"profile_sidebar_border color": "181A1E",
"profile_background tile": false,
"name": "Sylvain Carle",
"profile_image url":
"http://a0.twimg.com/profile _images/2838630046/4b82e286a659fae310012520f4f7
56bb_normal.png",
"created_at": "Thu Jan 18 00:10:45 +0000 2007", ...

PARSING JSON IN
PYTHON

Repeat: don’t write your own CSV or JSON parser
* https://news.ycombinator.com/item?id=7796268
» rsdy.github.io/posts/dont_write your json_parser_plz.html

Python comes with a fine JSON parser

import json

r = requests.get(
“https://api.twitter.com/1.1/statuses/user timeline.jso
n?screen name=JohnPDickerson&count=100", auth=auth)

data = json.loads(r.content)

json.load(some file) # loads JSON from a file
json.dump(json obj, some file) # writes JSON to file
json.dumps(json _obj) # returns JSON string

XML, XHTML, HTML
FILES AND STRINGS

Still hugely popular online, but JSON has essentially
replaced XML for:

« Asynchronous browser €<-> server calls
* Many (most?) newer web APls

XML is a hierarchical markup language:

<tag attribute=*“valuel”>

<subtag>

Some content goes here
</subtag>
<openclosetag attribute=*value2” />

</tag>

You probably won’t see much XML, but you will see plenty of
HTML, its substantially less well-behaved cousin ...

Example XML from: Zico Kolter

SCRAPING HTML IN
PYTHON

HTML - the specification — is fairly pure X
HTML - what you find on the web — is horrifying

We’ll use BeautifulSoup:

* conda install -c asmeurer beautiful-soup=4.3.2

import requests
from bs4 import BeautifulSoup

r = requests.get(
“https://cs.umd.edu/class/fall2018/cmsc320/")

root = BeautifulSoup(r.content)

root.find(“div”, id=“schedule”)\
.find(“table”)\ # find all schedule
.find(“tbody”).findAll(“a”) # links for CMSC320

BUILDING A WEB
SCRAPER IN PYTHON

Totally not hypothetical situation:

* You really want to learn about data science, so you choose to
download all of last semester’s CMSC320 lecture slides to
wallpaper your room ...

* ... but you now have carpal tunnel syndrome from clicking
refresh on Piazza last night, and can no longer click on the
PDF and PPTX links.

Hopeless? No! Earlier, you built a scraper to do this!

lnks = root.find(“div”, id=*“schedule”)\

.find(“table”)\ # find all schedule
.find(“tbody”).findAll(“a”) # links for CMSC320

Sort of. You only want PDF and PPTX files, not links to other
websites or files.

REGULAR
EXPRESSIONS

Given a list of URLSs (strings), how do | find only those strings
that end in *.pdf or *.pptx?

* Regular expressions!

* (Actually Python strings come with a built-in endswith
function.)

“this is a filename.pdf”.endswith((“.pdf”, “.pptx”))

What about .pDf or .pPTXx, still legal extensions for PDF/PPTX?

* Regular expressions!
* (Or cheat the system again: built-in string 1lower function.)

“tHiS IS a FileNAme.pDF”.lower().endswith(

(u.pdf", ”opth"))

IF YOURE HAVIN' PERL
PROBLEMS I FEEL
BAD FOR Yo, SON—

iy

NOW T HAVE
100 PROBLEMS.

K

REGULAR EXPRESSIONS

Used to search for specific elements, or groups of elements,
that match a pattern

import re

Find the index of the 1lst occurrence of “cmsc320”
match = re.search(r”cmsc320”, text)
print(match.start())

Does start of text match “cmsc320”?
match = re.match(r”cmsc320”, text)

Iterate over all matches for “cmsc320” in text
for match in re.finditer(r”cmsc320”, text):
print(match.start())

Return all matches of “cmsc320” in the text
match = re.findall(r”cmsc320”, text)

MATCHING MULTIPLE
CHARACTERS

Can match sets of characters, or multiple and more elaborate
sets and sequences of characters:

 Match the character ‘a’: a

1 J 1

« Match the character ‘a’, ‘b’, or ‘c’: [abc]

« Match any character except ‘a’, ‘b’, or ‘c’: [“abc]
« Match any digit: \d (= [0123456789]0or [0-9])
* Match any alphanumeric: \w (= [a-zA-Z0-9])
* Match any whitespace: \s (= [\t\n\r\f\v])
« Match any character: .

Special characters must be escaped: .*$*+2{}\[1] ()

(o
(op
Thanks to: Zico Kolter

MATCHING SEQUENCES AND
REPEATED CHARACTERS

A few common modifiers (available in Python and most other
high-level languages; +, {n}, {n,} may not):

« Match character ‘a’ exactly once: a
 Match character ‘a’ zero or once: a?
 Match character ‘a’ zero or more times: a*
* Match character ‘a’ one or more times: a+
« Match character ‘a’ exactly n times: a{n}

 Match character ‘a’ at least n times: a{n, }

Example: match all instances of “University of <somewhere>" where
<somewhere> is an alphanumeric string with at least 3 characters:

* \s*University\sof\s\w{3,}

COMPILED REGEXES

If you’re going to reuse the same regex many times, or if you
aren’t but things are going slowly for some reason, try
compiling the regular expression.

» https://blog.codinghorror.com/to-compile-or-not-to-compile/

Compile the regular expression “cmsc320”
regex = re.compile(r”cmsc320”)

Use it repeatedly to search for matches in text
regex.match(text) # does start of text match?
regex.search(text) # find the first match or None
regex.findall(text) # find all matches

Interested? CMSC330, CMSC430, CMSC452, talk to me.

DOWNLOADING A
BUNCH OF FILES

import re
import requests
from bs4 import BeautifulSoup
try:
from urllib.parse import urlparse
except ImportError:
from urlparse import urlparse

Import the modules

Get some HTML via HTTP

HTTP GET request sent to the URL url
r = requests.get(url)

Use BeautifulSoup to parse the GET response

root = BeautifulSoup(r.content)

lnks = root.find("div", id="schedule")\
.find("table")\
.find("tbody").findAll("a")

DOWNLOADING A
BU NCH OF FI LES Parse exactly what you want

Cycle through the href for each anchor, checking
to see if it's a PDF/PPTX link or not
for 1lnk in lnks:

href = 1nk['href']

If it's a PDF/PPTX link, queue a download

if href.lower().endswith(('.pdf', '.pptx')):

Get some more data?!

urld = urlparse.urljoin(url, href)
rd = requests.get(urld, stream=True)

Write the downloaded PDF to a file

outfile = path.join(outbase, href)

with open(outfile, 'wb') as f:
f.write(rd.content)

NEXT LECTURE

Data
collection

DEE]
processing

-

~

Exploratory
analysis
&
Data viz

()

Analysis,
hypothesis

-

testing, &
ML

\ 4

~

Insight &
Policy
Decision

J

\ J J
————

NEXT CLASS:
NUMPY, SCIPY, AND DATAFRAMES

pandas '"Irl wu

