
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON

PREM SAGGAR

Lecture #4 – 9/10/2018

CMSC320
Mondays & Wednesdays
2:00pm – 3:15pm

ANNOUNCEMENTS
Register on Piazza: piazza.com/umd/fall2018/cmsc320
• 228 have registered already?!

• -3 have not registered yet?!

We will release the first mini-project this week.
• Please make sure Jupyter installed correctly!

• (See any of us if it didn’t.)

2

WAITLIST UPDATE
“Sure, we can expand it. Will take care of it. --Mike [Hicks]”

3

Waitlist should clear soon – if not, talk to me.

TODAY’S LECTURE

4

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

Best practices
for managing this monstrosity.

REPRODUCIBILITY
Extremely important aspect of data analysis

• “Starting from the same raw data, can we reproduce your analysis
and obtain the same results?”

Using libraries helps:
• Since you don’t reimplement everything, reduce programmer error

• Large user bases serve as “watchdog” for quality and correctness

Standard practices help:
• Version control: git, git, git, …, git, svn, cvs, hg, Dropbox

• Unit testing: unittest (Python), RUnit (R), testthat

• Share and publish: github, gitlab

5

Many slides in this lecture adapted from Hector Corrado Bravo

REPRODUCIBILITY
Open data:
“Open data is the idea that some data should be freely available
to everyone to use and republish as they wish, without restrictions
from copyright, patents or other mechanisms of control”

Open Data movement website
• http://www.opendatafoundation.org/

6

http://www.opendatafoundation.org/

PRACTICAL TIPS
Many tasks can be organized in modular manner:
• Data acquisition:

• Get data, put it in usable format (many ‘join’ operations),
clean it up

• Algorithm/tool development:

• If new analysis tools are required
• Computational analysis:

• Use tools to analyze data
• Communication of results:

• Prepare summaries of experimental results, plots,
publication, upload processed data to repositories

7

Usually a single language or tool does not handle all of
these equally well – choose the best tool for the job!

PRACTICAL TIPS
Modularity requires organization and careful thought
In Data Science, we wear two hats:
• Algorithm/tool developer

• Experimentalist: we don’t get trained to think this way
enough!

It helps two consciously separate these two jobs

8

THINK LIKE AN
EXPERIMENTALIST
Plan your experiment
Gather your raw data
Gather your tools
Execute experiment
Analyze
Communicate

9

THINK LIKE AN
EXPERIMENTALIST
Let this guide your organization. One potential structure for
organizing a project:

10

project/
| data/
| | processing_scripts
| | raw/
| | proc/
| tools/
| | src/
| | bin/
| exps
| | pipeline_scripts
| | results/
| | analysis_scripts
| | figures/

THINK LIKE AN
EXPERIMENTALIST
Keep a lab notebook!
Literate programming tools are making this easier for
computational projects:
• http://en.wikipedia.org/wiki/Literate_programming (Lec #2!)

• https://ipython.org/

• http://rmarkdown.rstudio.com/
• http://jupyter.org/

11

http://en.wikipedia.org/wiki/Literate_programming

THINK LIKE AN
EXPERIMENTALIST
Separate experiment from analysis from communication
• Store results of computations, write separate scripts to analyze

results and make plots/tables

Aim for reproducibility
• There are serious consequences for not being careful

• Publication retraction
• Worse:

http://videolectures.net/cancerbioinformatics2010_baggerly_i
rrh/

• Lots of tools available to help, use them! Be proactive: learn
about them on your own!

12

http://videolectures.net/cancerbioinformatics2010_baggerly_irrh/

BIAS, ETHICS, & RESPONSIBILITY

DATA SCIENCE LIFECYCLE: AN
ALTERNATE VIEW

14

EXAMPLES OF BIAS
Genetic testing
• Genetic tests for heart disorder and race-biased risk

(NYTimes)

• Race-bias in ancestry reports

Search results / feed optimization
• Google
• Facebook

15

http://www.nytimes.com/2016/08/18/science/genetic-tests-for-a-heart-disorder-mistakenly-find-blacks-at-risk.html?smprod=nytcore-iphone&smid=nytcore-iphone-share
http://qz.com/765879/23andme-has-a-race-problem-when-it-comes-to-ancestry-reports-for-non-whites/
http://www.politico.com/magazine/story/2015/08/how-google-could-rig-the-2016-election-121548
http://nymag.com/selectall/2016/04/could-facebook-swing-the-election.html

COMBATING BIAS
Fairness through blindness:
• Don’t let an algorithm look at protected attributes

Examples currently in use ??????????
• Race

• Gender
• Sexuality

• Disability

• Religion

Problems with this approach ?????????

16

COMBATING BIAS
Demographic parity:
• A decision must be independent of the protected attribute

• E.g., a loan application’s acceptance rate is independent of an
applicant’s race (but can be depenedent on non-protected
features like salary)

Formally: binary decision variable C, protected attribute A
• P{ C = 1 | A = 0 } = P{ C = 1 | A = 1 }

Membership in a protected class should have no correlation
with the final decision.
• Problems ????????

17

Example from Moritz Hardt’s blog

COMBATING BIAS
What if the decision isn’t the thing that matters?
“Consider, for example, a luxury hotel chain that renders a promotion
to a subset of wealthy whites (who are likely to visit the hotel) and a
subset of less affluent blacks (who are unlikely to visit the hotel). The
situation is obviously quite icky, but demographic parity is completely
fine with it so long as the same fraction of people in each group see
the promotion.”

Demographic parity allows classifiers that select qualified
candidates in the “majority” demographic and unqualified
candidate in the “minority” demographic, within a protected
attribute, so long as the expected percentages work out.

More: http://blog.mrtz.org/2016/09/06/approaching-fairness.html

18

Example from Moritz Hardt’s blog

FATML
This stuff is really tricky (and really important).
• It’s also not solved, even remotely, yet!

• CMSC498/499

New community: Fairness, Accountability, and Transparency in
Machine Learning (aka FATML)

“… policymakers, regulators, and advocates have expressed
fears about the potentially discriminatory impact of machine
learning, with many calling for further technical research into the
dangers of inadvertently encoding bias into automated decisions.”

19

F IS FOR FAIRNESS
In large data sets, there is always proportionally less data
available about minorities.
Statistical patterns that hold for the majority may be invalid
for a given minority group.
Fairness can be viewed as a measure of diversity in the
combinatorial space of sensitive attributes, as opposed to
the geometric space of features.

20

Thanks to: Faez Ahmed

A IS FOR
ACCOUNTABILITY
Accountability of a mechanism implies an obligation to
report, explain, or justify algorithmic decision-making as well
as mitigate any negative social impacts or potential harms.
• Current accountability tools were developed to oversee human

decision makers

• They often fail when applied to algorithms and mechanisms
instead

Example, no established methods exist to judge the intent of
a piece of software. Because automated decision systems
can return potentially incorrect, unjustified or unfair results,
additional approaches are needed to make such systems
accountable and governable.

21

Thanks to: Faez Ahmed

T IS FOR
TRANSPARENCY
Automated ML-based algorithms make many important
decisions in life.
• Decision-making process is opaque, hard to audit

A transparent mechanism should be:
• understandable;

• more meaningful;
• more accessible; and

• more measurable.

22

Thanks to: Faez Ahmed

DATA COLLECTION
What data should (not) be collected
Who owns the data
Whose data can (not) be shared
What technology for collecting, storing, managing data
Whose data can (not) be traded
What data can (not) be merged
What to do with prejudicial data

23

Thanks to: Kaiser Fung

DATA MODELING
Data is biased (known/unknown)
• Invalid assumptions

• Confirmation bias

Publication bias
• WSDM 2017: https://arxiv.org/abs/1702.00502
Badly handling missing values

24

Thanks to: Kaiser Fung

https://arxiv.org/abs/1702.00502

DEPLOYMENT
Spurious correlation / over-generalization

Using “black-box” methods that cannot be explained

Using heuristics that are not well understood

Releasing untested code

Extrapolating

Not measuring lifecycle performance (concept drift in ML)

25

Thanks to: Kaiser Fung

We will go over ways to counter
this in the ML/stats/hypothesis
testing portion of the course

GUIDING PRINCIPLES
Start with clear user need and public benefit
Use data and tools which have minimum intrusion necessary
Create robust data science models
Be alert to public perceptions
Be as open and accountable as possible
Keep data secure

26

Thanks to: UK cabinet office

SOME REFERENCES
Presentation on ethics and data analysis, Kaiser Fung @
Columbia Univ. http://andrewgelman.com/wp-
content/uploads/2016/04/fung_ethics_v3.pdf
O’Neil, Weapons of math destruction.
https://www.amazon.com/Weapons-Math-Destruction-Increases-
Inequality/dp/0553418815
UK Cabinet Office, Data Science Ethical Framework.
https://www.gov.uk/government/publications/data-science-
ethical-framework
Derman, Modelers’ Hippocratic Oath.
http://www.iijournals.com/doi/pdfplus/10.3905/jod.2012.20.1.035
Nick D’s MIT Tech Review Article.
https://www.technologyreview.com/s/602933/how-to-hold-
algorithms-accountable/

27

http://andrewgelman.com/wp-content/uploads/2016/04/fung_ethics_v3.pdf
https://www.amazon.com/Weapons-Math-Destruction-Increases-Inequality/dp/0553418815
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/524298/Data_science_ethics_framework_v1.0_for_publication__1_.pdf
http://www.iijournals.com/doi/pdfplus/10.3905/jod.2012.20.1.035
https://www.technologyreview.com/s/602933/how-to-hold-algorithms-accountable/

REST OF TODAY’S
LECTURE
By popular request …
• Version control primer!
• Specifically, git via GitHub and GitLab
• Thanks: Mark Groves (Microsoft), Ilan Biala & Aaron

Perley (CMU), Sharif U., & the HJCB Senior Design Team!
And then a bit on keeping your data … tidy data.

28

WHAT IS VERSION
CONTROL?

29

DEVELOPMENT TOOL
When working with a team, the need for a central repository
is essential
• Need a system to allow versioning, and a way to acquire the

latest edition of the code

• A system to track and manage bugs was also needed

30

atlassian.com/git/tutorials/what-is-version-control

GOALS OF VERSION
CONTROL
Be able to search through revision history and retrieve
previous versions of any file in a project
Be able to share changes with collaborators on a project
Be able to confidently make large changes to existing files

31

NAMED FOLDERS
APPROACH
Can be hard to track
Memory-intensive
Can be slow
Hard to share
No record of authorship

32

LOCAL DATABASE OF
VERSIONS APPROACH

Provides an abstraction over finding the right versions of
files and replacing them in the project
Records who changes what, but hard to parse that
Can’t share with collaborators

33

CENTRALIZED VERSION
CONTROL SYSTEMS
A central, trusted repository
determines the order of commits
(“versions” of the project)

Collaborators “push” changes
(commits) to this repository.

Any new commits must be
compatible with the most recent
commit. If it isn’t, somebody must
“merge” it in.

Examples: SVN, CVS, Perforce

34

Central
Repositor

y

Developer
A’s local

files

Developer
D’s local

files

Developer
C’s local

files

Developer
B’s local

files

Commi
t

Checkou
t

Checkou
t

Commi
t

Commi
t

Commi
t

Checkou
t

Checkou
t

Dev
A’s
Repo

Dev
B’s
Repo

Dev
C’s
Repo

Dev
D’s
Repo

Commit Commit

Commit

Commit

Push/Fetc
h

Push/Fetch

Push/Fetc
h

Push/Fetch
Push/Fetc

h Push/Fetc
h

Centralized
Version Control

System

Distributed
Version Control

System

DISTRIBUTED VERSION
CONTROL SYSTEMS (DVCS)
• No central repository
• Every repository has every commit
• Examples: Git, Mercurial

35

WHAT IS GIT
Git is a version control system
Developed as a repository system for both local and remote
changes
Allows teammates to work simultaneously on a project
Tracks each commit, allowing for a detailed documentation of
the project along every step
Allows for advanced merging and branching operations

36

A SHORT HISTORY OF
GIT
Linux kernel development
1991-2002
• Changes passed around as archived file

2002-2005
• Using a DVCS called BitKeeper
2005
• Relationship broke down between two

communities (BitKeeper licensing issues)

37

A SHORT HISTORY OF
GIT
Goals:
• Speed

• Simple design

• Strong support for non-linear development (thousands of
parallel branches)

• Fully distributed – not a requirement, can be centralized
• Able to handle large projects like the Linux kernel efficiently

(speed and data size)

38

A SHORT HISTORY OF
GIT
Popularity:
• Git is now the most widely used source code management tool

• 33.3% of professional software developers use Git (often
through GitHub) as their primary source control system

39

[citation needed]

GIT IN INDUSTRY
Companies and projects currently using Git
• Google
• Android
• Facebook
• Microsoft
• Netflix
• Linux
• Ruby on Rails
• Gnome
• KDE
• Eclipse
• X.org

40

GIT BASICS
Snapshots, not changes
• A picture of what all your files look like at that moment

• If a file has not changed, store a reference

Nearly every operation is local
• Browsing the history of project
• See changes between two versions

41

WHY GIT IS BETTER
Git tracks the content rather than the files
Branches are lightweight, and merging is a simple process
Allows for a more streamlined offline development process
Repositories are smaller in size and are stored in a single .git
directory
Allows for advanced staging operations, and the use of
stashing when working through troublesome sections

42

WHAT ABOUT SVN?

Linus Torvalds

Subversion has been the most pointless project ever started …
Subversion used to say CVS done right: with that slogan there is
nowhere you can go. There is no way to do CVS right … If you like
using CVS, you should be in some kind of mental institution or
somewhere else.

43

GIT VS {CVS, SVN, …}
Why you should care:
• Many places use legacy systems that will cause problems in

the future – be the change you believe in!

Git is much faster than SVN:
• Coded in C, which allows for a great amount of optimization

• Accomplishes much of the logic client side, thereby reducing
time needed for communication

• Developed to work on the Linux kernel, so that large project
manipulation is at the forefront of the benchmarks

44

GIT VS {CVS, SVN, …}
Speed benchmarks:

Benchmarks performed by http://git-scm.com/about/small-and-fast

45

http://git-scm.com/about/small-and-fast

GIT VS {CVS, SVN, …}
Git is significantly smaller than SVN
• All files are contained in a small decentralized .git file

• In the case of Mozilla’s projects, a Git repository was 30 times
smaller than an identical SVN repository

• Entire Linux kernel with 5 years of versioning contained in a
single 1 GB .git file

• SVN carries two complete copies of each file, while Git
maintains a simple and separate 100 bytes of data per file,
noting changes and supporting operations

Nice because you can (and do!) store the whole thing locally

46

GIT VS {CVS, SVN, …}
Git is more secure than SVN
• All commits are uniquely hashed for both security and indexing

purposes

• Commits can be authenticated through numerous means

• In the case of SSH commits, a key may be provided by both
the client and server to guarantee authenticity and prevent
against unauthorized access

47

GIT VS {CVS, SVN, …}
Git is decentralized:
• Each user contains an individual repository and can check

commits against itself, allowing for detailed local revisioning

• Being decentralized allows for easy replication and deployment

• In this case, SVN relies on a single centralized repository and
is unusable without

48

GIT VS {CVS, SVN, …}
Git is flexible:
• Due to it’s decentralized nature, git commits can be stored

locally, or committed through HTTP, SSH, FTP, or even by Email

• No need for a centralized repository

• Developed as a command line utility, which allows a large
amount of features to be built and customized on top of it

49

GIT VS {CVS, SVN, …}
Data assurance: a checksum is performed on both upload
and download to ensure sure that the file hasn’t been
corrupted.
Commit IDs are generated upon each commit:
• Linked list style of commits

• Each commit is linked to the next, so that if something in the
history was changed, each following commit will be rebranded to
indicate the modification

50

GIT VS {CVS, SVN, …}
Branching:
• Git allows the usage of advanced branching mechanisms and

procedures

• Individual divisions of the code can be separated and
developed separately within separate branches of the code

• Branches can allow for the separation of work between
developers, or even for disposable experimentation

• Branching is a precursor and a component of the merging
process

Will give an example shortly.

51

GIT VS {CVS, SVN, …}
Merging
• The process of merging is directly related to the process of

branching

• Individual branches may be merged together, solving code
conflicts, back into the default or master branch of the project

• Merges are usually done automatically, unless a conflict is
presented, in which case the user is presented with several
options with which to handle the conflict

Will give an example shortly.

52

GIT VS {CVS, SVN, …}
Merging: content of the files is tracked rather than the file
itself:
• This allows for a greater element of tracking and a smarter and
more automated process of merging

• SVN is unable to accomplish this, and will throw a conflict if,
e.g., a file name is changed and differs from the name in the
central repository

• Git is able to solve this problem with its use of managing a
local repository and tracking individual changes to the code

53

INITIALIZATION OF A
GIT REPOSITORY

C:\> mkdir CoolProject
C:\> cd CoolProject
C:\CoolProject > git init
Initialized empty Git repository in
C:/CoolProject/.git
C:\CoolProject > notepad README.txt
C:\CoolProject > git add .
C:\CoolProject > git commit -m 'my first
commit'
[master (root-commit) 7106a52] my first commit
1 file changed, 1 insertion(+)
create mode 100644 README.txt

GIT BASICS I
The three (or four) states of a file:
• Modified:

• File has changed but not committed
• Staged:

• Marked to go to next commit snapshot
• Committed:

• Safely stored in local database
• Untracked!

• Newly added or removed files

GIT BASICS II
Three main areas of a git project:
• Working directory

• Single checkout of one version of the project.
• Staging area

• Simple file storing information about what will go into your
next commit

• Git directory
• What is copied when cloning a repository

GIT BASICS III
Three main areas of a git project:

BRANCHES
ILLUSTRATED

master
A

> git commit –m ‘my first commit’

(Default branch is called “master”; your
first commit will be on this branch.)

BRANCHES
ILLUSTRATED

master

> git commit (x2)

A B C

BRANCHES
ILLUSTRATED

bug123

master

> git checkout –b bug123

A B C

BRANCHES
ILLUSTRATED

master

> git commit (x2)

A B C

D E

bug123

BRANCHES
ILLUSTRATED

master

> git checkout master

A B C

D E

bug123

BRANCHES
ILLUSTRATED

bug123

master

> git merge bug123

A B C D E

BRANCHES
ILLUSTRATED

master

> git branch -d bug123

A B C D E

BRANCHES
ILLUSTRATED

master
A B C D E

F G

bug456

BRANCHES
ILLUSTRATED

master
A B C D E

F G

bug456

> git checkout master

BRANCHES
ILLUSTRATED

master
A B C D E

F G

> git merge bug456

H

bug456

BRANCHES
ILLUSTRATED

master
A B C D E

F G

> git branch -d bug456

H

BRANCHES
ILLUSTRATED

master
A B C D E

F G

bug456

BRANCHES
ILLUSTRATED

master
A B C D E

> git rebase master

F’ G’

bug456

BRANCHES
ILLUSTRATED

master
A B C D E

> git checkout master
> git merge bug456

F’ G’

bug456

WHEN TO BRANCH?
General rule of thumb:
• Anything in the master branch is always deployable.
Local branching is very lightweight!
• New feature? Branch!

• Experiment that you won’t ever deploy? Branch!
Good habits:
• Name your branch something descriptive (add-like-

button, refactor-jobs, create-ai-singularity)

• Make your commit messages descriptive, too!

72

SO YOU WANT SOMEBODY ELSE
TO HOST THIS FOR YOU …
Git: general distributed version control system
GitHub / BitBucket / GitLab / …: hosting services for git
repositories
In general, GitHub is the most popular:
• Lots of big projects (e.g., Python, Bootstrap, Angular,

D3, node, Django, Visual Studio)

• Lots of ridiculously awesome projects (e.g.,
https://github.com/maxbbraun/trump2cash)

There are reasons to use the competitors (e.g., private
repositories, access control)

73

https://github.com/maxbbraun/trump2cash)

“SOCIAL CODING”

74

REVIEW: HOW TO USE
Git commands for everyday usage are relatively simple
• git pull

• Get the latest changes to the code
• git add .

• Add any newly created files to the repository for tracking
• git add –u

• Remove any deleted files from tracking and the repository
• git commit –m ‘Changes’

• Make a version of changes you have made
• git push

• Deploy the latest changes to the central repository
Make a repo on GitHub and clone it to your machine:
• https://guides.github.com/activities/hello-world/

75

https://guides.github.com/activities/hello-world/

STUFF TO CLICK ON
Git
• http://git-scm.com/
GitHub
• https://github.com/
• https://guides.github.com/activities/hello-world/
• ^-- Just do this one. You’ll need it for your tutorial J.
GitLab
• http://gitlab.org/
Git and SVN Comparison
• https://git.wiki.kernel.org/index.php/GitSvnComparison

76

http://git-scm.com/
https://github.com/
https://guides.github.com/activities/hello-world/
http://gitlab.org/
https://git.wiki.kernel.org/index.php/GitSvnComparison

NEXT CLASS:
TIDY DATA & MAYBE SOME RELATIONAL

DATABASE STUFF

77

