INTRODUCTION TO DATA SCIENCE

JOHN P DICKERSON PREM SAGGAR

Lecture #5 - 9/12/2018

CMSC320 Mondays and Wednesdays 2pm – 3:15pm

ANNOUNCEMENTS

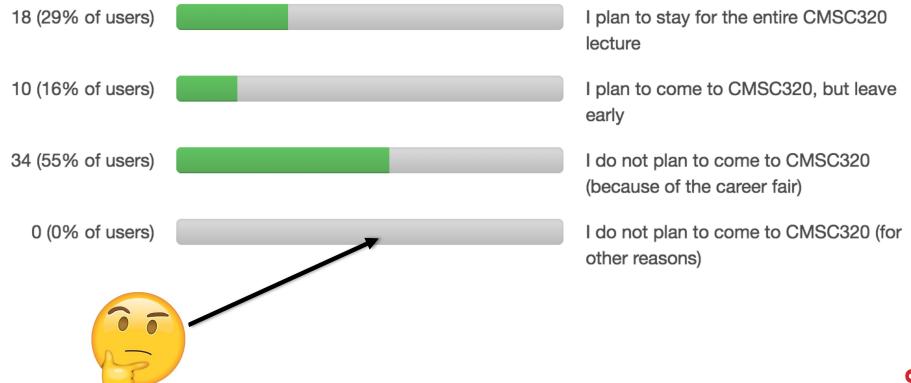
Project 1 out by the end of the week

Please, go find a job! Career fair in the Xfinity Center!

AN EXAMPLE OF BIASED SAMPLING

Lecture Tomorrow (Wed, 9/12) closes in 1 day(s)

A total of 62 vote(s) in 7 hours



REVIEW OF LAST CLASS

Shift thinking from:

Imperative code to manipulate data structures

to:

Sequences/pipelines of operations on data

Two key questions:

- **1. Data Representation**, i.e., what is the natural way to think about given data
- 2. Data Processing Operations, which take one or more datasets as input and produce

REVIEW OF LAST CLASS

1. NumPy: Python Library for Manipulating nD Arrays

- A powerful *n*-dimensional array object.
- Homogeneous arrays of fixed size
- Operations like: indexing, slicing, map, applying filters
- Also: Linear Algebra, Vector operations, etc.
- Many other libraries build on top of NumPy

TODAY/NEXT CLASS

1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including Linear Algebra

 Pandas: Python Library for Manipulating Tabular Data Series, Tables (also called DataFrames) Many operations to manipulate and combine tables/series

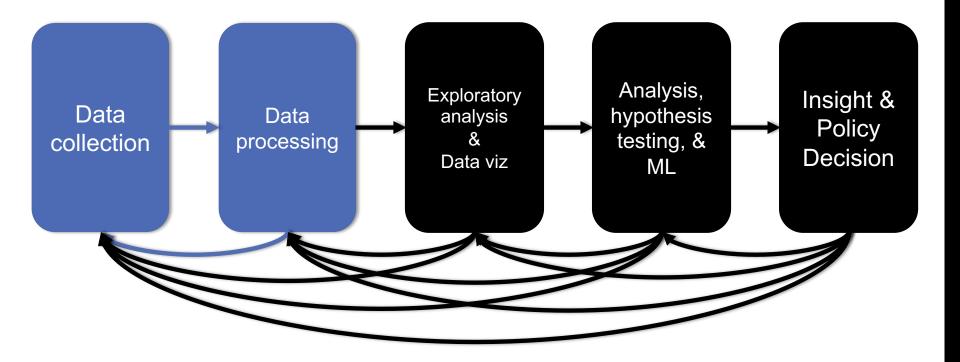
3. Relational Databases

Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark

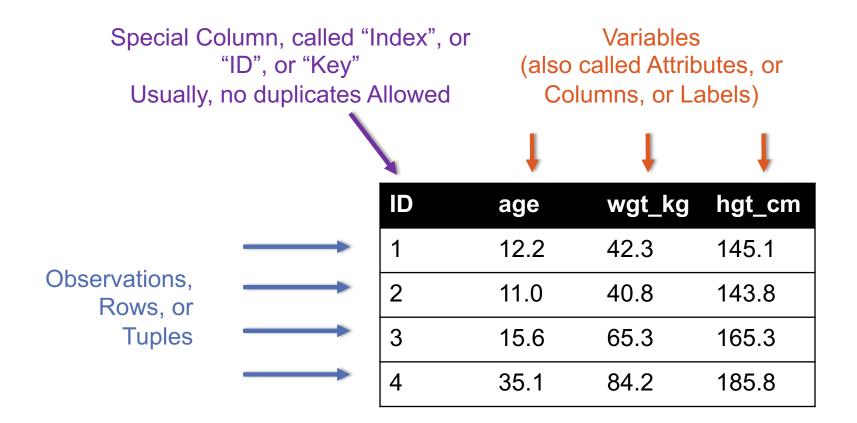
Sets of objects or key-value pairs MapReduce and SQL-like operations

TODAY'S LECTURE



TODAY/NEXT CLASS

- Tables
 - Abstraction
 - Operations
- Pandas
- Tidy Data
- SQL



TABLES

ID	Address
1	College Park, MD, 20742
2	Washington, DC, 20001
3	Silver Spring, MD 20901

ID	age	wgt_kg	hgt_cm
1	12.2	42.3	145.1
2	11.0	40.8	143.8
3	15.6	65.3	165.3
4	35.1	84.2	185.8

199.72.81.55 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ HTTP/1.0" 200 6245

unicomp6.unicomp.net - - [01/Jul/1995:00:00:06 -0400] "GET /shuttle/countdown/ HTTP/1.0" 200 3985

199.120.110.21 - - [01/Jul/1995:00:00:09 -0400] "GET /shuttle/missions/sts-73/mission-sts-73.html HTTP/1.0" 200 4085

1. SELECT/SLICING

Select only some of the rows, or some of the columns, or a combination

age

						age	
ID	age	wgt_kg	hgt_cm	Only columns	1	12.2	
1	12.2	42.3	145.1	ID and Age	2	11.0	
2	11.0	40.8	143.8		3	15.6	
3	15.6	65.3	165.3		4	35.1	
4	35.1	84.2	185.8				
	Only rows with wgt > 41			Both)	age	
ID	age	wgt_kg	hgt_cm	1		12.2	
1	12.2	42.3	145.1	3		15.6	
3	15.6	65.3	165.3	4		35.1	11
4	35.1	84.2	185.8			55.1	

2. AGGREGATE/REDUCE

Combine values across a column into a single value

0.	ingle value				73.9	232.6	640.0
ID	age	wgt_kg	hgt_cm	SUM			
1	12.2	42.3	145.1				
2	11.0	40.8	143.8	MAX	35.1	84.2	185.8
3	15.6	65.3	165.3				
4	35.1	84.2	185.8	SUM(wgt_kg	1^2 - hat	cm)	
				oom(mgr_ng	, <u> </u>		
		ndex colum neaningful to		e across it	14	167.66	

May need to explicitly add an ID column

Apply a function to every row, possibly creating more or fewer columns

ID	Address
1	College Park, MD, 20742
2	Washington, DC, 20001
3	Silver Spring, MD 20901
5	

ID	City	State	Zipcode
1	College Park	MD	20742
2	Washington	DC	20001
3	Silver Spring	MD	20901

Variations that allow one row to generate multiple rows in the output (sometimes called "flatmap")

4. GROUP BY

Group tuples together by column/dimension

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

A = foo

ID	В	С
1	3	6.6
3	4	3.1
4	3	8.0
7	4	2.3
8	3	8.0

A = bar

ID	В	С
2	2	4.7
5	1	1.2
6	2	2.5

14

4. GROUP BY

Group tuples together by column/dimension

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

B = 1

ID	Α	С
2	bar	4.7
6	bar	2.5

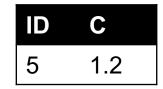
ID	Α	С
3	foo	3.1
7	foo	2.3

4. GROUP BY

Group tuples together by column/dimension

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

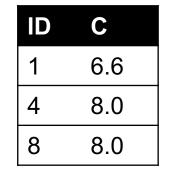
A = bar, B = 1



$$A = bar, B = 2$$

ID	С
2	4.7
6	2.5

By 'A', 'B'



$$A = foo, B = 4$$

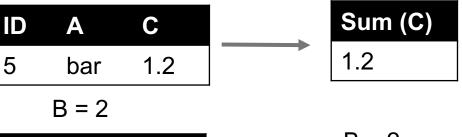
5. GROUP BY AGGREGATE

Compute one aggregate Per group

ID	Α	Β	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

B = 1

B = 1



ID	Α	С	
2	bar	4.7	
6	bar	2.5	

С

6.6

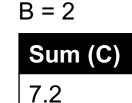
8.0

8.0

С

3.1

2.3



Α

foo

foo

foo

Α

foo

foo

B = 4

ID

1

4

8

ID

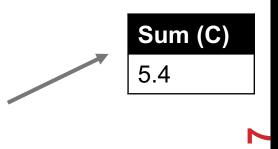
3

7

Group by 'B'

Sum on C

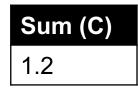
B = 4



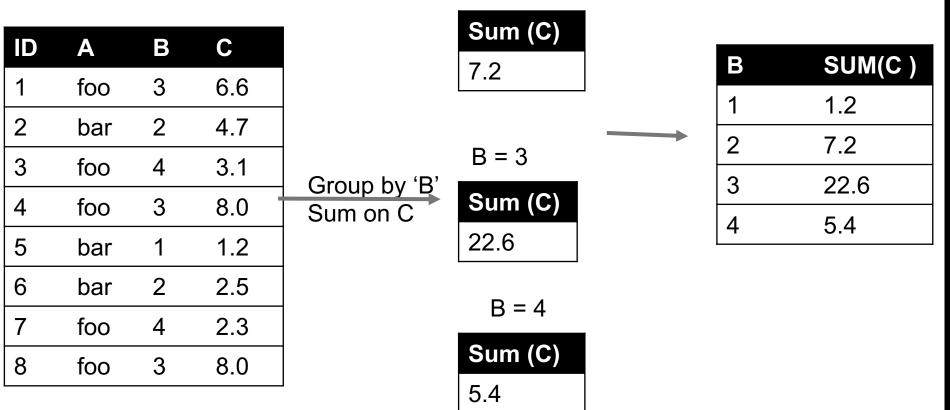
5. GROUP BY AGGREGATE

Final result usually seen

As a table



B = 2



6. UNION/INTERSECTION/DIFFERENCE

Set operations – only if the two tables have identical attributes/columns

ID	Α	В	С	
1	foo	3	6.6	
2	bar	2	4.7	
3	foo	4	3.1	
4	foo	3	8.0	

ID	Α	В	С	
5	bar	1	1.2	
6	bar	2	2.5	-
7	foo	4	2.3	
8	foo	3	8.0	

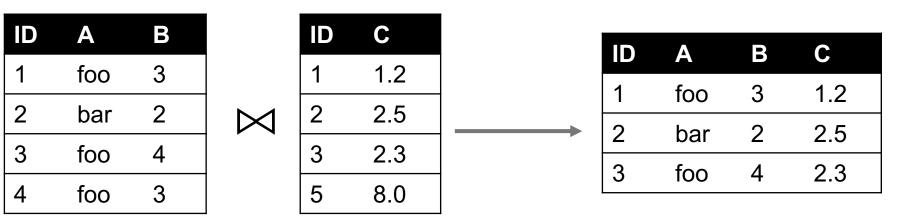
ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

Similarly Intersection and Set Difference manipulate tables as Sets

IDs may be treated in different ways, resulting in somewhat different behaviors

7. MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key



What about IDs not present in both tables?

Often need to keep them around

Can "pad" with NaN

7. MERGE OR JOIN

Combine rows/tuples across two tables if they have the same key Outer joins can be used to "pad" IDs that don't appear in both tables Three variants: LEFT, RIGHT, FULL

SQL Terminology -- Pandas has these operations as well

foo 3 1 1.2 2 bar 2 2.5 2 2.5 3 foo 4 3 2.3 3 foo 4	D	Α	В		ID	С	ID	Α	В	
2 bar 2 2.5 2 2.5 3 foo 4 3 600 4 4 600 3	1	_			1		1	foo	3	1
3 foo 4 3 2.3 3 foo 4 2	2	_		- 	2		2	bar	2	
							 3	foo	4	
				-	_		4	foo	3	1

Tables: A simple, common abstraction

Subsumes a set of "strings" – a common input

Operations

- Select, Map, Aggregate, Reduce, Join/Merge, Union/Concat, Group By
- In a given system/language, the operations may be named differently
 - E.g., SQL uses "join", whereas Pandas uses "merge"
- Subtle variations in the definitions, especially for more complex operations

ID	Α	В	С
1	foo	3	6.6
2	baz	2	4.7
3	foo	4	3.1
4	baz	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

Group By 'A'

How many tuples in the answer?

A. 1

B. 3

C. 5

D. 8

ID	Α	В	С
1	foo	3	6.6
2	baz	2	4.7
3	foo	4	3.1
4	baz	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

Group By 'A', 'B'

How many groups in the answer?

A. 1

B. 3

C. 4

D. 6

ID	Α	В		ID	С
1	foo	3		2	1.2
2	bar	2	\bowtie	4	2.5
4	foo	4		6	2.3
5	foo	3		7	8.0

How many tuples in the answer?

- A. 1
- B. 2
- C. 4
- D. 6

ID	Α	В		ID	С
1	foo	3		2	1.2
2	bar	2	\bowtie	4	2.5
4	foo	4		6	2.3
5	foo	3		7	8.0

FULL OUTER JOIN

All IDs will be present in the answer With NaNs

How many tuples in the answer?

- A. 1
- B. 4

C. 6

D. 8

TODAY/NEXT CLASS

- Tables
 - Abstraction
 - Operations
- Pandas
- Tidy Data
- SQL and Relational Databases

PANDAS: HISTORY

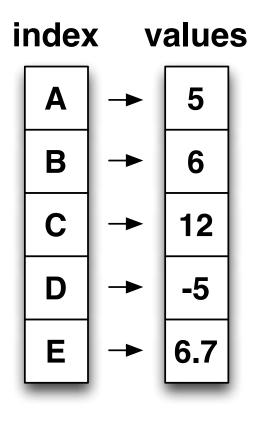
Written by: Wes McKinney

- Started in 2008 to get a high-performance, flexible tool to perform quantitative analysis on financial data
- Highly optimized for performance, with critical code paths written in Cython or C

Key constructs:

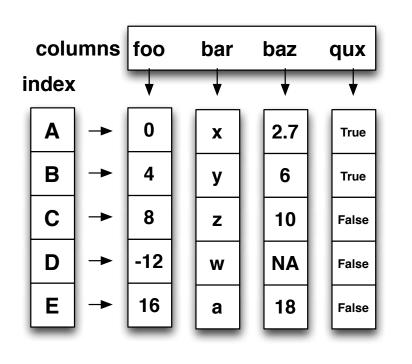
- Series (like a NumPy Array)
- DataFrame (like a Table or Relation, or R data.frame)
- Foundation for Data Wrangling and Analysis in Python

PANDAS: SERIES



- Subclass of numpy.ndarray
- Data: any type
- Index labels need not be ordered
- Duplicates possible but result in reduced functionality

PANDAS: DATAFRAME



- Each column can have a different type
- Row and Column index
- Mutable size: insert and delete columns
- Note the use of word "index" for what we called "key"
 - Relational databases use "index" to mean something else
- Non-unique index values allowed
 - May raise an exception for some operations

HIERARCHICAL INDEXES

Sometimes more intuitive organization of the data

Makes it easier to understand and analyze higherdimensional data

e.g., instead of 3-D array, may only need a 2-D array

day		Fri	Sat	Sun	Thur
sex	smoker				
Female	No	3.125	2.725	3.329	2.460
	Yes	2.683	2.869	3.500	2.990
Male	No	2.500	3.257	3.115	2.942
	Yes	2.741	2.879	3.521	3.058

first	second	
bar	one	0.469112
	two	-0.282863
baz	one	-1.509059
	two	-1.135632
foo	one	1.212112
	two	-0.173215
qux	one	0.119209
	two	-1.044236
dtype:	float64	

Abstraction of Tables and Operations on them

Pandas Basics

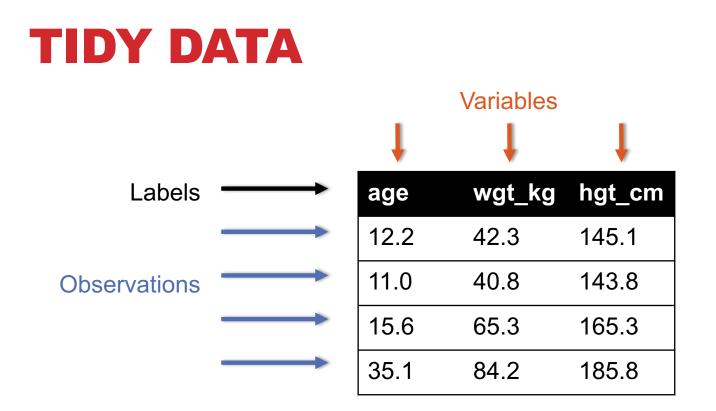
Next Class:

Continue with Pandas, and Tidy Data SQL and Relational Databases

Project 1 will be out by the end of the week

TODAY/NEXT CLASS

- Tables
 - Abstraction
 - Operations
- Pandas
- Tidy Data
- SQL and Relational Databases



But also:

- Names of files/DataFrames = description of one dataset
- Enforce one data type per dataset (ish)

EXAMPLE

Variable: measure or attribute:

• age, weight, height, sex

Value: measurement of attribute:

• 12.2, 42.3kg, 145.1cm, M/F

Observation: all measurements for an object

• A specific person is [12.2, 42.3, 145.1, F]

TIDYING DATA I

Name	Treatment A	Treatment B
John Smith	-	2
Jane Doe	16	11
Mary Johnson	3	1

Name	Treatment A	Treatment B	Treatment C	Treatment D
John Smith	-	2	-	-
Jane Doe	16	11	4	1
Mary Johnson	3	1	-	2

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

36

TIDYING DATA II

/^{2/21}

Name	Treatment	Result
John Smith	А	-
John Smith	В	2
John Smith	С	<u>(-</u>
John Smith	D	(-)
Jane Doe	А	16
Jane Doe	В	11
Jane Doe	С	4
Jane Doe	D	1
Mary Johnson	А	3
Mary Johnson	В	1
Mary Johnson	С	-
Mary Johnson	D	2

MELTING DATA I

Agnostic27Atheist12Buddhist27Catholic41	2 2 7 2	27 : 21 :	37		76 35	137 70
Buddhist 27 Catholic 41	7 :	21				70
Catholic 41			30	24		l l l l l l l l l l l l l l l l l l l
	18	047		34	33	58
		617	732	670	638	1116
Dont know/refused 15	5	14	15	11	10	35
Evangelical Prot 57	75 8	869	1064	982	881	1486
Hindu 1		9	7	9	11	34
Historically Black Prot 22	28 2	244	236	238	197	223
Jehovahs 20 Witness	0 2	27	24	24	21	30
Jewish 19	9	19	25	25	30	95

MELTING DATA II

religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$30-40k	81
Agnostic	\$40-50k	76
Agnostic	\$50-75k	137
Agnostic	\$10-20k	34
Agnostic	\$20-30k	60
Atheist	\$40-50k	35
Atheist	\$20-30k	37
Atheist	\$10-20k	27
Atheist	\$30-40k	52

Billboard Top 100 data for songs, covering their position on the Top 100 for 75 weeks, with two "messy" bits:

- Column headers for each of the 75 weeks
- If a song didn't last 75 weeks, those columns have are null

year	artist.in verted	track	time	genre	date.ente red	date.pea ked	x1st.wee k	x2nd.we ek	•••
2000	Destiny's Child	Independent Women Part I	3:38	Rock	2000-09- 23	2000-11- 18	78	63.0	
2000	Santana	Maria, Maria	4:18	Rock	2000-02- 12	2000-04- 08	15	8.0	
2000	Savage Garden	l Knew l Loved You	4:07	Rock	1999-10- 23	2000-01- 29	71	48.0	
2000	Madonn a	Music	3:45	Rock	2000-08- 12	2000-09- 16	41	23.0	
2000	Aguilera, Christina	Come On Over Baby	3:38	Rock	2000-08- 05	2000-10- 14	57	47.0	
2000	Janet	Doesn't Really Matter	4:17	Rock	2000-06- 17	2000-08- 26	59	52.0	
							Mess	y columr	ns!

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

THE HOT

```
# Keep identifier variables
id vars = ["year",
           "artist.inverted",
            "track",
            "time",
            <u>"g</u>enre",
            "date.entered",
            "date.peaked"]
# Melt the rest into week and rank columns
df = pd.melt(frame=df,
              id vars=id vars,
              var name="week",
              value name="rank")
```

Creates one row per week, per record, with its rank

[..., "x2nd.week", 63.0] \rightarrow [..., 2, 63]


```
# Ignore now-redundant, messy columns
df = df[["year",
        "artist.inverted",
        "track",
        "time",
        "genre",
        "week",
        "rank",
        "date"]]
```

```
df = df.sort_values(ascending=True,
    by=["year","artist.inverted","track","week","rank"])
```

```
# Keep tidy dataset for future usage
billboard = df
```

```
df.head(10)
```


year	artist.in verted	track	time	genre	week	rank	date
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	1	87	2000-02-26
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	2	82	2000-03-04
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	3	72	2000-03-11
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	4	77	2000-03-18
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	5	87	2000-03-25
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	6	94	2000-04-01
2000	2 Pac	Baby Don't Cry (Keep Ya Head Up II)	4:22	Rap	7	99	2000-04-08
2000	2Ge+her	The Hardest Part Of Breaking Up (Is Getting Ba	3:15	R&B	1	91	2000-09-02
2000	2Ge+her	The Hardest Part Of Breaking Up (Is Getting Ba	3:15	R&B	2	87	2000-09-09
2000	2Ge+her	The Hardest Part Of Breaking Up (Is Getting Ba	3:15	R&B	3	92	2000-09-16

MORE TO DO?

Column headers are values, not variable names?

• Good to go!

Multiple variables are stored in one column?

• Maybe (depends on if genre text in raw data was multiple)

Variables are stored in both rows and columns?

• Good to go!

Multiple types of observational units in the same table?

• Good to go! One row per song's week on the Top 100.

A single observational unit is stored in multiple tables?

• Don't do this!

Repetition of data?

• Lots! Artist and song title's text names. Which leads us to ...

TODAY/NEXT CLASS

- Tables
 - Abstraction
 - Operations
- Pandas
- Tidy Data
- SQL and Relational Databases

TODAY'S LECTURE

Relational data:

• What is a relation, and how do they interact?

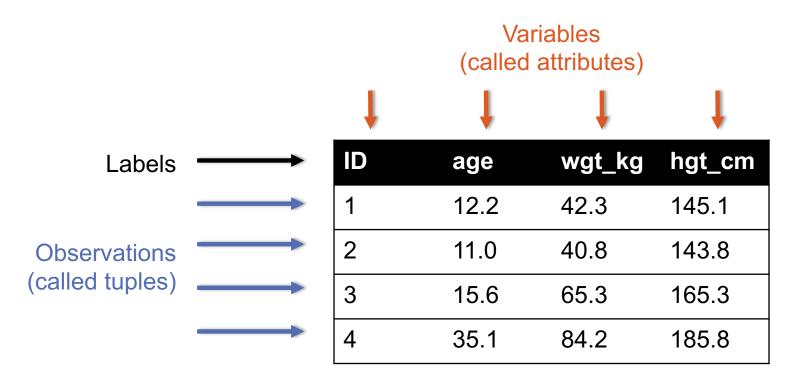
Querying databases:

- SQL
- SQLite
- How does this relate to pandas?

Joins

Thanks to Zico Kolter for some structure for this lecture!

Simplest relation: a table aka tabular data full of unique tuples



PRIMARY KEYS

ID	age	wgt_kg	hgt_cm	nat_id
1	12.2	42.3	145.1	1
2	11.0	40.8	143.8	1
3	15.6	65.3	165.3	2
4	35.1	84.2	185.8	1
5	18.1	62.2	176.2	3
6	19.6	82.1	180.1	1

ID	Nationality
1	USA
2	Canada
3	Mexico

The primary key is a unique identifier for every tuple in a relation

• Each tuple has exactly one primary key

FOREIGN KEYS

ID	age	wgt_kg	hgt_cm	nat_id
1	12.2	42.3	145.1	1
2	11.0	40.8	143.8	1
3	15.6	65.3	165.3	2
4	35.1	84.2	185.8	1
5	18.1	62.2	176.2	3
6	19.6	82.1	180.1	1

ID	Nationality
1	USA
2	Canada
3	Mexico

Foreign keys are attributes (columns) that point to a different table's primary key

• A table can have multiple foreign keys

SEARCHING FOR ELEMENTS

Find all people with nationality Canada (nat_id = 2):

ID	age	wgt_kg	hgt_cm	nat_id
1	12.2	42.3	145.1	1
2	11.0	40.8	143.8	1
3	15.6	65.3	165.3	2
4	35.1	84.2	185.8	1
5	18.1	62.2	176.2	3
6	19.6	82.1	180.1	1

Like a hidden sorted map of references to a specific attribute (column) in a table; allows O(log n) lookup instead of O(n)

loc	ID	age	wgt_kg	hgt_cm	nat_id	nat_id
0	1	12.2	42.3	145.1	1	1
128	2	11.0	40.8	143.8	2	2
256	3	15.6	65.3	165.3	2	3
384	4	35.1	84.2	185.8	1	
512	5	18.1	62.2	176.2	3	
640	6	19.6	82.1	180.1	1	

locs

640

0, 384,

INDEXES

Actually implemented with data structures like B-trees

• (Take courses like CMSC424 or CMSC420)

But: indexes are not free

- Takes memory to store
- Takes time to build
- Takes time to update (add/delete a row, update the column)

But, but: one index is (mostly) free

• Index will be built automatically on the primary key

Think before you build/maintain an index on other attributes!

RELATIONSHIPS

Primary keys and foreign keys define interactions between different tables aka entities. Four types:

- One-to-one
- One-to-one-or-none
- One-to-many and many-to-one
- Many-to-many

Connects (one, many) of the rows in one table to (one, many) of the rows in another table

ONE-TO-MANY & MANY-TO-ONE

One person can have one nationality in this example, but one nationality can include many people.

		Persor			National	ity
ID	age	wgt_kg	hgt_cm	nat_id	ID	Nationality
1	12.2	42.3	145.1	1	1	USA
2	11.0	40.8	143.8	1	2	Canada
3	15.6	65.3	165.3	2	3	Mexico
4	35.1	84.2	185.8	1	-	
5	18.1	62.2	176.2	3		
6	19.6	82.1	180.1	1		

Two tables have a one-to-one relationship if every tuple in the first tables corresponds to exactly one entry in the other

In general, you won't be using these (why not just merge the rows into one table?) unless:

- Split a big row between SSD and HDD or distributed
- Restrict access to part of a row (some DBMSs allow column-level access control, but not all)
- Caching, partitioning, & serious stuff: take CMSC424

ONE-TO-ONE-OR-NONE

Say we want to keep track of people's cats:

Person ID	Cat1	Cat2
1	Chairman Meow	Fuzz Aldrin
4	Anderson Pooper	Meowly Cyrus
5	Gigabyte	Megabyte

People with IDs 2 and 3 do not own cats*, and are not in the table. Each person has at most one entry in the table.

Is this data tidy?

57

*nor do they have hearts, apparently.

MANY-TO-MANY

Say we want to keep track of people's cats' colorings:

ID	Name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin
4	Chairman Meow
5	Anderson Pooper
6	Gigabyte

Cat ID	Color ID	Amount
1	1	50
1	2	50
2	2	20
2	4	40
2	5	40
3	1	100

One column per color, too many columns, too many nulls

Each cat can have many colors, and each color many cats

ASSOCIATIVE TABLES

Cats

ID	Name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin
4	Chairman Meow
5	Anderson Pooper
6	Gigabyte

Cat ID	Color ID	Amount
1	1	50
1	2	50
2	2	20
2	4	40
2	5	40
3	1	100

ID	Name
1	Black
2	Brown
3	White
4	Orange
5	Neon Green
6	Invisible

Primary key ???????????

• [Cat ID, Color ID] (+ [Color ID, Cat ID], case-dependent)

Foreign key(s) ??????????

Cat ID and Color ID

ASIDE: PANDAS

So, this kinda feels like pandas ...

• And pandas kinda feels like a relational data system ...

Pandas is not strictly a relational data system:

• No notion of primary / foreign keys

It does have indexes (and multi-column indexes):

- pandas.Index: ordered, sliceable set storing axis labels
- pandas.MultiIndex: hierarchical index

Rule of thumb: do heavy, rough lifting at the relational DB level, then fine-grained slicing and dicing and viz with pandas

SQLITE

On-disk relational database management system (RDMS)

• Applications connect directly to a file

Most RDMSs have applications connect to a server:

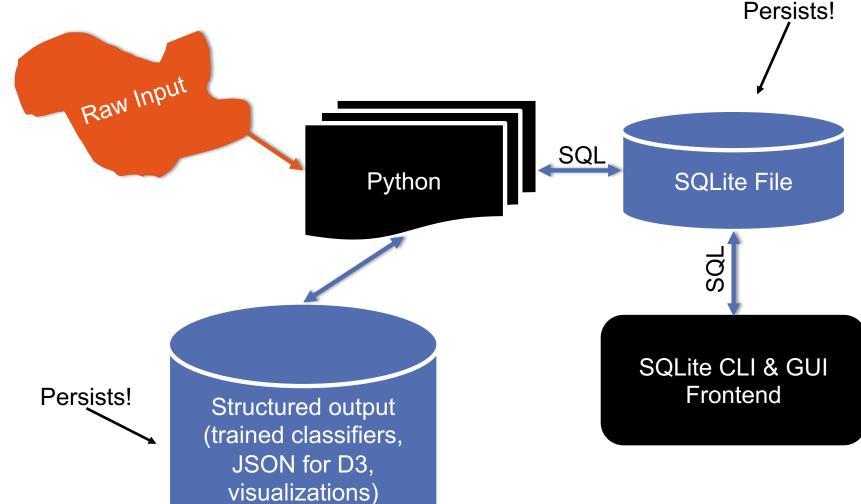
- Advantages include greater concurrency, less restrictive locking
- Disadvantages include, for this class, setup time ③

Installation:

- conda install -c anaconda sqlite
- (Should come preinstalled, I think?)

All interactions use Structured Query Language (SQL)

HOW A RELATIONAL DB FITS INTO YOUR WORKFLOW



62

import sqlite3

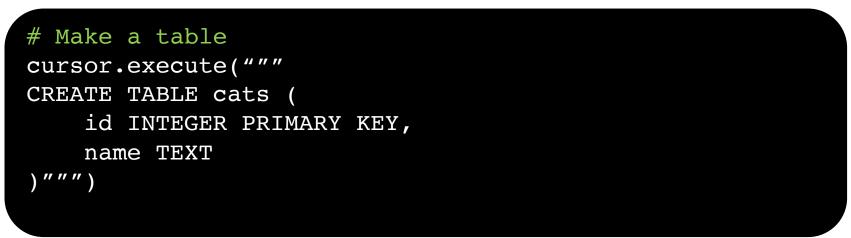
Create a database and connect to it conn = sqlite3.connect("cmsc320.db") cursor = conn.cursor()

do cool stuff conn.close()

Cursor: temporary work area in system memory for manipulating SQL statements and return values

If you do not close the connection (conn.close()), any outstanding transaction is rolled back

• (More on this in a bit.)



?????????

Capitalization doesn't matter for SQL reserved words

• SELECT = select = SeLeCt

Rule of thumb: capitalize keywords for readability

Insert into the table

cursor.execute("INSERT INTO cats VALUE (1, 'Megabyte')")
cursor.execute("INSERT INTO cats VALUE (2, 'Meowly Cyrus')")
cursor.execute("INSERT INTO cats VALUE (3, 'Fuzz Aldrin')")
conn.commit()

id	name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin

Delete row(s) from the table

cursor.execute("DELETE FROM cats WHERE id == 2"); conn.commit()

id	name
1	Megabyte
3	Fuzz Aldrin

S

Read all rows from a table
for row in cursor.execute("SELECT * FROM cats"):
 print(row)

Read all rows into pandas DataFrame
pd.read_sql_query("SELECT * FROM cats", conn, index_col="id")

id	name
1	Megabyte
3	Fuzz Aldrin

index_col="id": treat column with label "id" as an index index_col=1: treat column #1 (i.e., "name") as an index (Can also do multi-indexing.)

JOINING DATA

A join operation merges two or more tables into a single relation. Different ways of doing this:

- Inner
- Left
- Right
- Full Outer

Join operations are done on columns that explicitly link the tables together

INNER JOINS

id	name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin
4	Chairman Meow
5	Anderson Pooper
6	Gigabyte

cat_id	last_visit	
1	02-16-2017	
2	02-14-2017	
5	02-03-2017	
	visits	

cats

Inner join returns merged rows that share the same value in the column they are being joined on (id and cat_id).

id	name	last_visit	
1	Megabyte	02-16-2017	
2	Meowly Cyrus	02-14-2017	
5	Anderson Pooper	02-03-2017	

00

INNER JOINS

Inner join in pandas

Inner joins are the most common type of joins (get results that appear in **both** tables)

Left joins: all the results from the left table, only some matching results from the right table

Left join (cats, visits) on (id, cat_id) ??????????

id	name	last_visit
1	Megabyte	02-16-2017
2	Meowly Cyrus	02-14-2017
3	Fuzz Aldrin	NULL
4	Chairman Meow	NULL
5	Anderson Pooper	02-03-2017
6	Gigabyte	NULL

RIGHT JOINS

Take a guess! Right join (cats, visits) on (id, cat_id) ???????????

id	name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin
4	Chairman Meow
5	Anderson Pooper
6	Gigabyte

cat_id	last_visit
1	02-16-2017
2	02-14-2017
5	02-03-2017
7	02-19-2017
12	02-21-2017
	visits

cats

id	name	last_visit
1	Megabyte	02-16-2017
2	Meowly Cyrus	02-14-2017
5	Anderson Pooper	02-03-2017
7	NULL	02-19-2017
12	NULL	02-21-2017

LEFT/RIGHT JOINS

Right join in SQL / SQLite via Python

 $(\dot{\sim})$

FULL OUTER JOIN

Combines the left and the right join

id	name	last_visit
1	Megabyte	02-16-2017
2	Meowly Cyrus	02-14-2017
3	Fuzz Aldrin	NULL
4	Chairman Meow	NULL
5	Anderson Pooper	02-03-2017
6	Gigabyte	NULL
7	NULL	02-19-2017
12	NULL	02-21-2017

GOOGLE IMAGE SEARCH ONE SLIDE SQL JOIN VISUAL

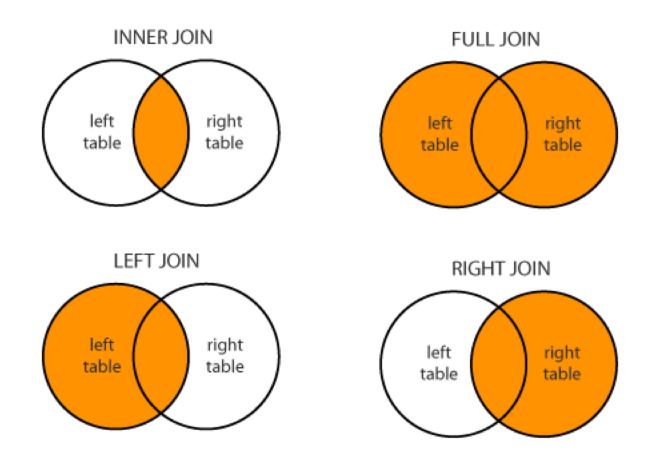


Image credit: http://www.dofactory.com/sql/join

If you "think in SQL" already, you'll be fine with pandas:

- conda install -c anaconda pandasql
- Info: http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

```
# Write the query text
q = """
SELECT
 *
FROM
 cats
LIMIT 10;"""
# Store in a DataFrame
df = sqldf(q, locals())
```

NEXT CLASS: EXPLORATORY ANALYSIS

