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ANNOUNCEMENTS
Project 1 out by the end of the week

Please, go find a job!  Career fair in the Xfinity Center!
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AN EXAMPLE OF 
BIASED SAMPLING
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REVIEW OF LAST CLASS
Shift thinking from:

Imperative code to manipulate data structures

to: 
Sequences/pipelines of operations on data

Two key questions:
1. Data Representation, i.e., what is the natural way to think 

about given data

2. Data Processing Operations, which take one or more 
datasets as input and produce 
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REVIEW OF LAST CLASS
1. NumPy: Python Library for Manipulating nD Arrays
• A powerful n-dimensional array object.

• Homogeneous arrays of fixed size

• Operations like: indexing, slicing, map, applying filters

• Also: Linear Algebra, Vector operations, etc.

• Many other libraries build on top of NumPy

5



TODAY/NEXT CLASS
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including 
Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data 
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4.    Apache Spark
Sets of objects or key-value pairs 
MapReduce and SQL-like operations
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TODAY’S LECTURE
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Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision



TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL
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TABLES 
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ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Observations,
Rows, or 

Tuples

Variables
(also called Attributes, or 

Columns, or Labels)

Special Column, called “Index”, or 
“ID”, or “Key”

Usually, no duplicates Allowed



TABLES 
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ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

ID Address
1 College Park, MD, 20742

2 Washington, DC, 20001

3 Silver Spring, MD 20901

199.72.81.55 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ HTTP/1.0" 200 
6245

unicomp6.unicomp.net - - [01/Jul/1995:00:00:06 -0400] "GET /shuttle/countdown/ 
HTTP/1.0" 200 3985

199.120.110.21 - - [01/Jul/1995:00:00:09 -0400] "GET /shuttle/missions/sts-
73/mission-sts-73.html HTTP/1.0" 200 4085



1. SELECT/SLICING
Select only some of the rows, or some of the columns, or a 
combination
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ID age wgt_kg hgt_cm
1 12.2 42.3 145.1
2 11.0 40.8 143.8
3 15.6 65.3 165.3
4 35.1 84.2 185.8

ID age
1 12.2
2 11.0
3 15.6
4 35.1

Only columns
ID and Age

Only rows 
with wgt > 41

Both

ID age wgt_kg hgt_cm
1 12.2 42.3 145.1
3 15.6 65.3 165.3
4 35.1 84.2 185.8

ID age

1 12.2

3 15.6

4 35.1



2. AGGREGATE/REDUCE
Combine values across a column into a 
single value
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ID age wgt_kg hgt_cm
1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

SUM

SUM(wgt_kg^2 - hgt_cm)

73.9 232.6 640.0

MAX 35.1 84.2 185.8

14167.66What about ID/Index column?
Usually not meaningful to aggregate across it
May need to explicitly add an ID column



3. MAP
Apply a function to every row, possibly 
creating more or fewer columns
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ID Address
1 College Park, MD, 20742
2 Washington, DC, 20001
3 Silver Spring, MD 20901

Variations that allow one row to generate multiple 
rows in the output (sometimes called “flatmap”)

ID City State Zipcode
1 College 

Park
MD 20742

2 Washington DC 20001
3 Silver 

Spring
MD 20901



4. GROUP BY
Group tuples together by 
column/dimension
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

ID B C
1 3 6.6
3 4 3.1
4 3 8.0
7 4 2.3
8 3 8.0

ID B C
2 2 4.7
5 1 1.2
6 2 2.5

A = foo

A = bar
By ‘A’



4. GROUP BY
Group tuples together by 
column/dimension
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘B’

ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4



4. GROUP BY
Group tuples together by 
column/dimension
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘A’, ‘B’

ID C
5 1.2

A = bar, B = 1

ID C
2 4.7
6 2.5

ID C
3 3.1
7 2.3

ID C
1 6.6
4 8.0
8 8.0

A = foo, B = 3

A = bar, B = 2

A = foo, B = 4



5. GROUP BY 
AGGREGATE
Compute one aggregate
Per group
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group by ‘B’
Sum on C
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ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4

Sum (C)
1.2

B = 1

B = 3

B = 2

B = 4

Sum (C)
22.6

Sum (C)
7.2

Sum (C)
5.4



5. GROUP BY 
AGGREGATE
Final result usually seen
As a table

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group by ‘B’
Sum on C
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Sum (C)
1.2

B = 1

B = 3

B = 2

B = 4

Sum (C)
22.6

Sum (C)
7.2

Sum (C)
5.4

B SUM(C )
1 1.2
2 7.2
3 22.6
4 5.4



6. UNION/INTERSECTION/DIFFERENCE
Set operations – only if the two tables 
have identical attributes/columns
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0

19

ID A B C
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

U

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0Similarly Intersection and Set Difference 

manipulate tables as Sets

IDs may be treated in different ways, resulting in 
somewhat different behaviors



7. MERGE OR JOIN
Combine rows/tuples across two tables if they have the 
same key

20

ID A B
1 foo 3
2 bar 2
3 foo 4
4 foo 3

20

ID C
1 1.2
2 2.5
3 2.3
5 8.0

ID A B C
1 foo 3 1.2
2 bar 2 2.5
3 foo 4 2.3

⨝

What about IDs not present in both tables?
Often need to keep them around
Can “pad” with NaN



7. MERGE OR JOIN
Combine rows/tuples across two tables if they have the same key
Outer joins can be used to ”pad” IDs that don’t appear in both tables

Three variants: LEFT, RIGHT, FULL
SQL Terminology -- Pandas has these operations as well
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ID A B
1 foo 3
2 bar 2
3 foo 4
4 foo 3

21

ID C
1 1.2
2 2.5
3 2.3
5 8.0

ID A B C
1 foo 3 1.2
2 bar 2 2.5
3 foo 4 2.3
4 foo 3 NaN
5 NaN NaN 8.0

⟗



SUMMARY
§ Tables: A simple, common abstraction

§ Subsumes a set of “strings” – a common input

§ Operations
§ Select, Map, Aggregate, Reduce, Join/Merge, 

Union/Concat, Group By

§ In a given system/language, the operations may be named 
differently
§ E.g., SQL uses “join”, whereas Pandas uses “merge”

§ Subtle variations in the definitions, especially for more 
complex operations
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How many tuples 
in the answer?

A. 1
B. 3
C. 5
D. 8

ID A B C
1 foo 3 6.6
2 baz 2 4.7
3 foo 4 3.1
4 baz 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group By ‘A’



How many groups 
in the answer?

A. 1
B. 3
C. 4
D. 6

ID A B C
1 foo 3 6.6
2 baz 2 4.7
3 foo 4 3.1
4 baz 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group By ‘A’, ‘B’



How many tuples 
in the answer?

A. 1
B. 2
C. 4
D. 6

ID A B
1 foo 3
2 bar 2
4 foo 4
5 foo 3

ID C
2 1.2
4 2.5
6 2.3
7 8.0

⨝



How many tuples 
in the answer?

A. 1
B. 4
C. 6
D. 8

ID A B
1 foo 3

2 bar 2

4 foo 4

5 foo 3

ID C
2 1.2

4 2.5

6 2.3

7 8.0

⟗

FULL OUTER JOIN

All IDs will be present in the answer
With NaNs



TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL and Relational Databases
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PANDAS: HISTORY
§ Written by: Wes McKinney

§ Started in 2008 to get a high-performance, flexible tool to 

perform quantitative analysis on financial data

§ Highly optimized for performance, with critical code paths 
written in Cython or C

§ Key constructs: 
§ Series (like a NumPy Array)

§ DataFrame (like a Table or Relation, or R data.frame)

§ Foundation for Data Wrangling and Analysis in Python
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PANDAS: SERIES

§ Subclass of numpy.ndarray

§ Data: any type

§ Index labels need not be ordered

§ Duplicates possible but result in 

reduced functionality

29

Series

• Subclass of numpy.ndarray

• Data: any type

• Index labels need not be ordered

• Duplicates are possible (but 
result in reduced functionality)

5

6

12

-5

6.7

A

B

C

D

E

valuesindex



PANDAS: DATAFRAME
§ Each column can have a different 

type
§ Row and Column index
§ Mutable size: insert and delete 

columns

§ Note the use of word “index” for 
what we called “key”
§ Relational databases use “index” 

to mean something else

§ Non-unique index values allowed
§ May raise an exception for some 

operations

30

DataFrame

• NumPy array-like

• Each column can have a 
different type

• Row and column index

• Size mutable: insert and delete 
columns 

0

4

8

-12

16

A

B

C

D

E

index

x

y

z

w

a

2.7

6

10

NA

18

True

True

False

False

False

foo bar baz quxcolumns



HIERARCHICAL INDEXES
Sometimes more intuitive organization of the data
Makes it easier to understand and analyze higher-
dimensional data

e.g., instead of 3-D array, may only need a 2-D array 
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DataFrame

• Axis indexing enable rich data alignment, 
joins / merges, reshaping, selection, etc.

day            Fri    Sat    Sun    Thur 
sex    smoker                            
Female No      3.125  2.725  3.329  2.460
       Yes     2.683  2.869  3.500  2.990
Male   No      2.500  3.257  3.115  2.942
       Yes     2.741  2.879  3.521  3.058



WRAP UP
Abstraction of Tables and Operations on them

Pandas Basics

Next Class:

Continue with Pandas, and Tidy Data

SQL and Relational Databases

Project 1 will be out by the end of the week
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TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL and Relational Databases
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TIDY DATA

But also:
• Names of files/DataFrames = description of one dataset
• Enforce one data type per dataset (ish)

34

age wgt_kg hgt_cm

12.2 42.3 145.1

11.0 40.8 143.8

15.6 65.3 165.3

35.1 84.2 185.8

Labels

Observations

Variables



EXAMPLE
Variable: measure or attribute:
• age, weight, height, sex

Value: measurement of attribute:
• 12.2, 42.3kg, 145.1cm, M/F

Observation: all measurements for an object
• A specific person is [12.2, 42.3, 145.1, F]
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TIDYING DATA I

36

Name Treatment A Treatment B
John Smith - 2
Jane Doe 16 11
Mary Johnson 3 1

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

?????????????

Name Treatment A Treatment B Treatment C Treatment D
John Smith - 2 - -
Jane Doe 16 11 4 1
Mary Johnson 3 1 - 2

?????????????



TIDYING DATA II

37

Name Treatment Result
John Smith A -
John Smith B 2
John Smith C -
John Smith D -
Jane Doe A 16
Jane Doe B 11
Jane Doe C 4
Jane Doe D 1
Mary Johnson A 3
Mary Johnson B 1
Mary Johnson C -
Mary Johnson D 2

2/21



MELTING DATA I

38

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137

Atheist 12 27 37 52 35 70

Buddhist 27 21 30 34 33 58

Catholic 418 617 732 670 638 1116

Dont 
know/refused 15 14 15 11 10 35

Evangelical Prot 575 869 1064 982 881 1486

Hindu 1 9 7 9 11 34

Historically 
Black Prot 228 244 236 238 197 223

Jehovahs 
Witness 20 27 24 24 21 30

Jewish 19 19 25 25 30 95

?????????????



MELTING DATA II

39

f_df = pd.melt(df,
["religion"],
var_name="income",
value_name="freq")

f_df = f_df.sort_values(by=["religion"])
f_df.head(10)

religion income freq
Agnostic <$10k 27

Agnostic $30-40k 81

Agnostic $40-50k 76

Agnostic $50-75k 137

Agnostic $10-20k 34

Agnostic $20-30k 60

Atheist $40-50k 35

Atheist $20-30k 37

Atheist $10-20k 27

Atheist $30-40k 52



MORE COMPLICATED EXAMPLE
Billboard Top 100 data for songs, covering their position on 
the Top 100 for 75 weeks, with two “messy” bits:
• Column headers for each of the 75 weeks

• If a song didn’t last 75 weeks, those columns have are null

40

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

year artist.in
verted track time genre date.ente

red
date.pea
ked

x1st.wee
k

x2nd.we
ek ...

2000 Destiny's 
Child

Independent 
Women Part I 3:38 Rock 2000-09-

23
2000-11-
18 78 63.0 ...

2000 Santana Maria, Maria 4:18 Rock 2000-02-
12

2000-04-
08 15 8.0 ...

2000 Savage 
Garden

I Knew I Loved 
You 4:07 Rock 1999-10-

23
2000-01-
29 71 48.0 ...

2000 Madonn
a Music 3:45 Rock 2000-08-

12
2000-09-
16 41 23.0 ...

2000 Aguilera, 
Christina

Come On Over 
Baby 3:38 Rock 2000-08-

05
2000-10-
14 57 47.0 ...

2000 Janet Doesn't Really 
Matter 4:17 Rock 2000-06-

17
2000-08-
26 59 52.0 ...

Messy columns!



MORE COMPLICATED EXAMPLE

Creates one row per week, per record, with its rank
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# Keep identifier variables
id_vars = ["year",

"artist.inverted",
"track",
"time",
"genre",
"date.entered",
"date.peaked"]

# Melt the rest into week and rank columns
df = pd.melt(frame=df,

id_vars=id_vars,
var_name="week",
value_name="rank")
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MORE COMPLICATED EXAMPLE
# Formatting
df["week"] = df['week'].str.extract('(\d+)’,

expand=False).astype(int)
df["rank"] = df["rank"].astype(int)

# Cleaning out unnecessary rows
df = df.dropna()

# Create "date" columns
df['date'] = pd.to_datetime(

df['date.entered']) +
pd.to_timedelta(df['week'], unit='w') –
pd.DateOffset(weeks=1) 

[…, “x2nd.week”, 63.0] à […, 2, 63]



MORE COMPLICATED EXAMPLE
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# Ignore now-redundant, messy columns
df = df[["year",

"artist.inverted",
"track",
"time",
"genre",
"week",
"rank",
"date"]]

df = df.sort_values(ascending=True,
by=["year","artist.inverted","track","week","rank"])

# Keep tidy dataset for future usage
billboard = df

df.head(10)



MORE COMPLICATED EXAMPLE

44

year artist.in
verted track time genre week rank date

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 1 87 2000-02-26

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 2 82 2000-03-04

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 3 72 2000-03-11

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 4 77 2000-03-18

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 5 87 2000-03-25

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 6 94 2000-04-01

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 7 99 2000-04-08

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 1 91 2000-09-02

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 2 87 2000-09-09

2000 2Ge+her
The Hardest Part Of Breaking Up (Is 

Getting Ba...
3:15 R&B 3 92 2000-09-16

?????????????



MORE TO DO?
Column headers are values, not variable names?
• Good to go!

Multiple variables are stored in one column?
• Maybe (depends on if genre text in raw data was multiple)

Variables are stored in both rows and columns?
• Good to go!

Multiple types of observational units in the same table?
• Good to go!  One row per song’s week on the Top 100.

A single observational unit is stored in multiple tables?
• Don’t do this!

Repetition of data?
• Lots!  Artist and song title’s text names.  Which leads us to …
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TODAY/NEXT CLASS
§ Tables

§ Abstraction
§ Operations

§ Pandas

§ Tidy Data

§ SQL and Relational Databases 
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TODAY’S LECTURE
Relational data:
• What is a relation, and how do they interact?

Querying databases:
• SQL

• SQLite
• How does this relate to pandas?

Joins

47

Thanks to Zico Kolter for some structure for this lecture!



RELATION
Simplest relation: a table aka tabular data full of unique tuples

48

ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Labels

Observations
(called tuples)

Variables
(called attributes)



PRIMARY KEYS

The primary key is a unique identifier for every tuple in a relation

• Each tuple has exactly one primary key

49

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico



FOREIGN KEYS

Foreign keys are attributes (columns) that point to a different 
table’s primary key
• A table can have multiple foreign keys

50

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico



SEARCHING FOR 
ELEMENTS
Find all people with nationality Canada (nat_id = 2):

??????????????? 

51

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

O(n)



INDEXES
Like a hidden sorted map of references to a specific attribute 
(column) in a table; allows O(log n) lookup instead of O(n)

52

loc ID age wgt_kg hgt_cm nat_id

0 1 12.2 42.3 145.1 1

128 2 11.0 40.8 143.8 2

256 3 15.6 65.3 165.3 2

384 4 35.1 84.2 185.8 1

512 5 18.1 62.2 176.2 3

640 6 19.6 82.1 180.1 1

nat_id locs
1 0, 384,

640
2 128, 256
3 512



INDEXES
Actually implemented with data structures like B-trees
• (Take courses like CMSC424 or CMSC420)

But: indexes are not free
• Takes memory to store

• Takes time to build
• Takes time to update (add/delete a row, update the column)

But, but: one index is (mostly) free
• Index will be built automatically on the primary key

Think before you build/maintain an index on other attributes!
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RELATIONSHIPS
Primary keys and foreign keys define interactions between 
different tables aka entities.  Four types:
• One-to-one

• One-to-one-or-none

• One-to-many and many-to-one 

• Many-to-many

Connects (one, many) of the rows in one table to (one, many) 
of the rows in another table

54



ONE-TO-MANY & 
MANY-TO-ONE
One person can have one nationality in this example, but one 
nationality can include many people.

55

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico

Person Nationality



ONE-TO-ONE
Two tables have a one-to-one relationship if every tuple in the 
first tables corresponds to exactly one entry in the other

In general, you won’t be using these (why not just merge the 
rows into one table?) unless:
• Split a big row between SSD and HDD or distributed

• Restrict access to part of a row (some DBMSs allow column-level 
access control, but not all)

• Caching, partitioning, & serious stuff: take CMSC424

56

Person SSN



ONE-TO-ONE-OR-NONE
Say we want to keep track of people’s cats:

People with IDs 2 and 3 do not own cats*, and are not in the 
table.  Each person has at most one entry in the table.

Is this data tidy?

57

Person ID Cat1 Cat2
1 Chairman Meow Fuzz Aldrin
4 Anderson Pooper Meowly Cyrus
5 Gigabyte Megabyte

Person Cat

*nor do they have hearts, apparently.



MANY-TO-MANY
Say we want to keep track of people’s cats’ colorings:

One column per color, too many columns, too many nulls
Each cat can have many colors, and each color many cats 

58

ID Name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

Cat Color



ASSOCIATIVE TABLES

Primary key  ???????????
• [Cat ID, Color ID] (+ [Color ID, Cat ID], case-dependent)

Foreign key(s)   ???????????
• Cat ID and Color ID

59

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

ID Name

1 Megabyte

2 Meowly Cyrus

3 Fuzz Aldrin

4 Chairman Meow

5 Anderson Pooper

6 Gigabyte

ID Name

1 Black

2 Brown

3 White

4 Orange

5 Neon Green

6 Invisible

Cats Colors



ASIDE: PANDAS
So, this kinda feels like pandas …
• And pandas kinda feels like a relational data system …

Pandas is not strictly a relational data system:
• No notion of primary / foreign keys

It does have indexes (and multi-column indexes):
• pandas.Index: ordered, sliceable set storing axis labels

• pandas.MultiIndex: hierarchical index

Rule of thumb: do heavy, rough lifting at the relational DB 
level, then fine-grained slicing and dicing and viz with pandas
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SQLITE
On-disk relational database management system (RDMS)
• Applications connect directly to a file

Most RDMSs have applications connect to a server:
• Advantages include greater concurrency, less restrictive 

locking

• Disadvantages include, for this class, setup time J
Installation:
• conda install -c anaconda sqlite

• (Should come preinstalled, I think?)

All interactions use Structured Query Language (SQL)
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HOW A RELATIONAL DB FITS 
INTO YOUR WORKFLOW
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SQLite CLI & GUI 
Frontend

SQLite FilePython

Raw Input

Structured output 
(trained classifiers, 

JSON for D3, 
visualizations)

SQL

SQ
L

Persists!

Persists!



CRASH COURSE IN 
SQL (IN PYTHON)

Cursor: temporary work area in system memory for 
manipulating SQL statements and return values
If you do not close the connection (conn.close()), any 
outstanding transaction is rolled back
• (More on this in a bit.)
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import sqlite3

# Create a database and connect to it
conn = sqlite3.connect(“cmsc320.db”)
cursor = conn.cursor()

# do cool stuff
conn.close()



CRASH COURSE IN 
SQL (IN PYTHON)

Capitalization doesn’t matter for SQL reserved words
• SELECT = select = SeLeCt
Rule of thumb: capitalize keywords for readability 64

# Make a table
cursor.execute(“””
CREATE TABLE cats (

id INTEGER PRIMARY KEY,
name TEXT

)”””)

?????????

id name
cats



CRASH COURSE IN 
SQL (IN PYTHON)
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# Insert into the table
cursor.execute(“INSERT INTO cats VALUE (1, ’Megabyte’)”)
cursor.execute(“INSERT INTO cats VALUE (2, ‘Meowly Cyrus’)”)
cursor.execute(“INSERT INTO cats VALUE (3, ‘Fuzz Aldrin’)”)
conn.commit()

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin

# Delete row(s) from the table
cursor.execute(“DELETE FROM cats WHERE id == 2”);
conn.commit()

id name
1 Megabyte
3 Fuzz Aldrin



CRASH COURSE IN 
SQL (IN PYTHON)

index_col=“id”: treat column with label “id” as an index
index_col=1: treat column #1 (i.e., “name”) as an index
(Can also do multi-indexing.)

66

# Read all rows from a table
for row in cursor.execute(”SELECT * FROM cats”):

print(row)

# Read all rows into pandas DataFrame
pd.read_sql_query(“SELECT * FROM cats”, conn, index_col=”id”)

id name
1 Megabyte
3 Fuzz Aldrin



JOINING DATA
A join operation merges two or more tables into a single 
relation.  Different ways of doing this:
• Inner
• Left
• Right
• Full Outer

Join operations are done on columns that explicitly link the 
tables together
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INNER JOINS

Inner join returns merged rows that share the same value in 
the column they are being joined on (id and cat_id).
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id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017

cats

visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017



INNER JOINS
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# Inner join in pandas
df_cats = pd.read_sql_query(“SELECT * from cats”, conn)
df_visits = pd.read_sql_query(“SELECT * from visits”, conn)
df_cats.merge(df_visits, how = “inner”, 

left_on = “id”, right_on = ”cat_id”)

# Inner join in SQL / SQLite via Python
cursor.execute(“””

SELECT 
*

FROM 
cats, visits

WHERE
cats.id == visits.cat_id

”””)



LEFT JOINS
Inner joins are the most common type of joins (get results 
that appear in both tables)
Left joins: all the results from the left table, only some
matching results from the right table
Left join (cats, visits) on (id, cat_id)  ???????????
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id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL



RIGHT JOINS
Take a guess!
Right join

(cats, visits)
on

(id, cat_id)
???????????
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id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017
7 02-19-2017
12 02-21-2017

cats
visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017
7 NULL 02-19-2017
12 NULL 02-21-2017



LEFT/RIGHT JOINS
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# Left join in pandas
df_cats.merge(df_visits, how = “left”, 

left_on = “id”, right_on = ”cat_id”)

# Right join in pandas
df_cats.merge(df_visits, how = “right”, 

left_on = “id”, right_on = ”cat_id”)

# Left join in SQL / SQLite via Python
cursor.execute(“SELECT * FROM cats LEFT JOIN visits ON

cats.id == visits.cat_id”)

# Right join in SQL / SQLite via Python
L



FULL OUTER JOIN
Combines the left and the right join          ???????????
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id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL
7 NULL 02-19-2017
12 NULL 02-21-2017

# Outer join in pandas
df_cats.merge(df_visits, how = “outer”, 

left_on = “id”, right_on = ”cat_id”)



GOOGLE IMAGE SEARCH ONE 
SLIDE SQL JOIN VISUAL
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Image credit: http://www.dofactory.com/sql/join



RAW SQL IN PANDAS
If you “think in SQL” already, you’ll be fine with pandas:
• conda install -c anaconda pandasql

• Info: http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html
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# Write the query text
q = ”””

SELECT
*

FROM
cats

LIMIT 10;”””

# Store in a DataFrame
df = sqldf(q, locals())



NEXT CLASS:
EXPLORATORY ANALYSIS
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